Q1 DTFT and DFT (25p)

- 1. Explain what is described by the term "discrete frequency".
	- **Answer:** "discrete frequency" ω is a frequency space used to describe the frequency spectrum of a discrete signal. ω can be both continues (as for aperiodic discrete signals and DTFT) or discrete (as for periodic discrete signals and DFT). Discrete frequency is connected to real frequency by $\Omega = \omega t_s$, where t_s is the sampling time of the signal in the time domain.
- 2. Find DTFT of the following discrete time signal:

$$
x_1[n] = a^n u[n]
$$

where $u[n]$ is the discrete unit step function. Use $t_s = 1$ ms. Answer:

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\omega} = \sum_{n=0}^{\infty} a^n e^{-jn\omega} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}
$$

We can for example, use the Euler formula to find the amplitude and the phase:

$$
X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} = \frac{1}{1 - a\cos(\omega) + aj\sin(\omega)} =
$$

$$
= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{(1 - a\cos(\omega))^2 - (ja\sin(\omega))^2} =
$$

$$
= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{1 - 2a\cos(\omega) + a^2\cos^2(\omega) + a^2\sin^2(\omega)} =
$$

$$
= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{1 - 2a\cos(\omega) + a^2}
$$

$$
|X(e^{j\omega})| = \frac{1}{\sqrt{(1 - 2a\cos(\omega) + a^2)}}
$$

- 3. Sketch the amplitude response for $a = 0.8$ using discrete frequency on the x-axis. Answer: See Figure [1.](#page-1-0)
- 4. Sketch the amplitude response for $a = 0.8$ using frequency on the x-axis.

Figure 1: $X(e^{j\omega})$ plotted for discrete frequency ω between 0 and 2π and frequency Ω between 0 and Ω_s .

Answer:

 $\Omega = \omega t_s$

so the frequency range should be $\Omega \in (0, \frac{2\pi}{l})$ t_s $\bigg), \Omega \in (0, \Omega_s)$ or $\Omega \in (-\Omega_s/2, \Omega_s/2)$

5. What would you needed to be able to calculate DFT of the same signal? What would be the main difference between DFT and DTFT? Please explain.

Answer: DFT is defined for signals which are discrete and periodic in the time domain. We therefore would need to define a periodic signal

$$
x_2[n] = a^n u[n] \quad 0 \le n < N
$$
\n
$$
x_2[n+N] = x_2[n]
$$

For such signal, DFT is defined as:

$$
X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N} \quad 0 \le k \le N-1
$$
 (1)

and the discrete frequency is now discrete and given by ω_k = $2\pi k/N$. DFT is discrete in the frequency domain, defined only for integer values of k and periodic with periodicity of 2π .

Q2 System output and frequency response. (25p)

1. A LTI system is characterized by the impulse response function given below. Calculate and plot the response of that system to a unit step input $x_1(t) = \varepsilon(t)$ and to a delta impulse input $x_2(t) =$ $\delta(t)$.

$$
h(t) = \varepsilon(t)e^{-t} - 2e^{-3t}\varepsilon(t)
$$

Also here, $\varepsilon(t)$ is the unit step function.

2. Calculate frequency response of this system for $\omega = 0$ and $\omega =$ $2\pi s^{-1}$. Explain how you would calculate the frequency response for any given frequency.

Answer: Frequency response is given by

$$
H(j\omega) = H(s)|_{s=j\omega}
$$

Where $H(s)$ has been calculated above. To get an general expression for the frequency response, we need to substitute $s = j\omega$ and calculate $H(j\omega)$. For the two frequencies given in the problem text, one can use the simple expression for $H(s)$ obtained above.

$$
H(j\omega) = \frac{1}{1+j\omega} - \frac{2}{3+j\omega}
$$

For $\omega = 0$

$$
|H(j\omega)|=1-\frac{2}{3}=\frac{1}{3}
$$

For $\omega = 2\pi$

$$
H(2\pi j) = \frac{1}{1+2\pi j} - \frac{2}{3+2\pi j} = \frac{1-2\pi j}{1+4\pi^2} - \frac{6+4\pi j}{9+4\pi^2} =
$$

= 0.0247 - 0.155j - 0.1238 + 0.2592j =
= -0.0991 + 0.1040j

$$
|H(2\pi j)| = 0.1436
$$

Q3 Stochastic Signals (25p)

1. What is an "ergodic random process"? What is a "stationary random process"?

Answer: A stationary random process for which the time-averages of each sample function are the same as the ensemble averages is called ergodic random process.

A random process is stationary if its 2nd order expected values only depend on the difference τ between t_1 and t_2 , that is:

$$
E\left\{f\left(x(t_1), x(t_2)\right)\right\} = E\left\{f\left(x(t_1), x(t_1 + \tau)\right)\right\} \tag{2}
$$

2. Define auto-correlation function (ACF). Sketch ACF for two signals, for which few sample functions are shown below, assuming that they are drawn on the same time scale.

Answer:

$$
\varphi_{xx}(t_1, t_2) = E\left\{x(t_1)x(t_2)\right\} \tag{3}
$$

For a stationary process, this simplifies to

$$
\varphi_{xx}(t_1, t_2) = \varphi_{xx}(\tau) = E\left\{x(t_1)x(t_1 + \tau)\right\} \tag{4}
$$

In general ACF is a 2D function defined for any combination of t_1 and t_2 . For stationary process, it becomes a 1D function of τ . Slower rate of change for the process A, would result in slower decay of the ACF, as illustrated on the figure below.

Q4 Filters. (25p)

1. For time-discrete systems, filters are often characterized as IIR or FIR. Explain what is described by these terms.

Answer:

IIR: infinite impulse response, system described by a recursive equation containing both $x[k]$ and $y[k]$ terms (input and output). $H(z)$ has both zeros and poles. $h[k]$ is given by a recursive equation.

$$
\sum_{n=0}^{N} a_n y[k-n] = \sum_{n=0}^{M} b_n x[k-n]
$$

$$
y[k] = \sum_{n=0}^{M} b_n x[k-n] - \sum_{n=1}^{N} a_n y[k-n]
$$

If we put $x[k] = \delta[k]$, then we can see that

$$
h[k] = \sum_{n=0}^{M} b_n \delta[k-n] - \sum_{n=1}^{N} a_n h[k-n]
$$

So, the impulse response function at time point k depends on both b_k coefficient (delta function in the first sum is not zero only for $k = n$, but also on previous values of the impulse response function $(h[k-1], h[k-2], etc)$

FIR: finite impulse response.

$$
y[k] = \sum_{n=0}^{M} b_n x[k-n]
$$

If we put $x[k] = \delta[k]$, then we can see that

$$
h[k] = \sum_{n=0}^{M} b_n x[k-n] = \{b_0, b_1, b_2, ..., b_M\}
$$

2. For which of these filter types, can we use discrete convolution to calculate output for an input signal similar to $x[n] = \{1, 1, 1, 1, 1, 1\}$? Do not calculate but explain.

Answer: Only for FIR, as in as to do an exact calculation we would need to include infinite number of terms for $h[n]$ in the case of IIR filter.

3. A low pass filters is described by the difference equation given below. Use zeros/poles diagram on an appropriate frequency plane to illustrate that this system is indeed a low pas filter.

$$
y[n] = \alpha x[n] + (1 - \alpha)y[n-1]
$$

where α is a constants and $0 < \alpha < 1$

Answer: To find zeros/poles of the transfer function we need to take z-transform of the difference equation and calculate $H(z)$.

$$
H(z) = \frac{\alpha z}{z - (1 - \alpha)}
$$

This transform has a pole at $z = 1 - \alpha$ which is located on the horizontal axis, on the right hand side of the z-plane and for α approaching zero, the pole will be located close to the DC frequency, resulting in a large amplitude of the transfer function for these frequencies.

4. Is this a IIR or FIR filter? Please explain.

Answer: It is an IIR filter. One can see it for example by calculating few terms of the impulse response function.

$$
h[0] = \alpha
$$

\n
$$
h[1] = \alpha(1-\alpha)
$$

\n
$$
h[2] = \alpha(1-\alpha)^2
$$

\n
$$
h[2] = \alpha(1-\alpha)^3
$$

\n...

One could transfer this filter to FIR by setting

$$
h[n] = 0 \quad \text{for} \quad n > N
$$

Where $N > 0$.

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}{x(t)}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$_{\rm ROC}$ $\mathrm{ROC}\{X_1\}$ \cap ROC{ X_2 }
Delay $x(t-\tau)$	$e^{-s\mathcal{I}}X(s)$	not affected
Modulation $e^{at}x(t)$	$X(s-a)$	$\text{Re}\{a\}$ shifted by $\text{Re}\{a\}$ to the right
'Multiplication by t '. Differentiation in the frequency domain tx(t)	$-\frac{d}{d}X(s)$	not affected
Differentiation in the time domain $\frac{d}{d}$ $\frac{d}{dt}x(t)$	sX(s)	ROC \supseteq $ROC{X}$
Integration $\int x(\tau)d\tau$	$\frac{1}{s}X(s)$	$\mathrm{ROC} \supseteq \mathrm{ROC}\{X\}$ $\bigcap \{s : \text{Re}\{s\} > 0\}$
Scaling x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}{x(t)}$	
$\delta(t)$	$\mathbf{1}$	
1	$2\pi\delta(\omega)$	
$\dot{\delta}(t)$	$j\omega$	
$rac{1}{T}$ \mathbf{H} $\left(\frac{t}{T}\right)$	$\pm\pm\left(\frac{\omega T}{2\pi}\right)$	
$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{i\omega}$	
rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$	
$\sin(at)$	$\frac{\pi}{ a }$ rect $\left(\frac{\omega}{2a}\right)$	
$\frac{1}{t}$	$-j\pi sign(\omega)$	
sign(t)	$rac{2}{j\omega}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{e^{-\frac{\omega^2}{4a^2}}}$	

Appendix B.4 Properties of the Fourier Trans $for m$

Appendix B.6 Properties of the z -Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	ROC \supset $\mathrm{ROC}\{X_1\} \cap \mathrm{ROC}\{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	$\mathrm{ROC}\{x\};$ separate consideration of $z = 0$ and $z \rightarrow \infty$
Modulation	$a^kx[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC} {=}\left\{z \left \frac{z}{a}\in \text{ROC}\{x\} \right\} \right\}$
Multiplication $b\nu k$	kx[k]	$-z\frac{dX(z)}{dz}$	$\mathrm{ROC}\{x\};$ separate consideration of $z=0$
Time inversion	$x[-k]$	$X(z^{-1})$	$\text{ROC}=\{z\, \,z^{-1}\in\text{ROC}\{x\}\}\$
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	ROC \supset $\mathrm{ROC}\{x_1\} \cap \mathrm{ROC}\{x_2\}$
Multiplication	$x_1[k]\cdot x_2[k]$	$\frac{1}{2\pi i}\oint X_1(\zeta)X_2\left(\frac{z}{\zeta}\right)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided z -Transform Pairs

