- 1. Explain what is described by the term "discrete frequency".
 - **Answer:** "discrete frequency" ω is a frequency space used to describe the frequency spectrum of a discrete signal. ω can be both continues (as for aperiodic discrete signals and DTFT) or discrete (as for periodic discrete signals and DFT). Discrete frequency is connected to real frequency by $\Omega = \omega t_s$, where t_s is the sampling time of the signal in the time domain.
- 2. Find DTFT of the following discrete time signal:

$$x_1[n] = a^n u[n]$$

where u[n] is the discrete unit step function. Use $t_s = 1$ ms. Answer:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\omega} = \sum_{n=0}^{\infty} a^n e^{-jn\omega} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}$$

We can for example, use the Euler formula to find the amplitude and the phase:

$$\begin{aligned} X(e^{j\omega}) &= \frac{1}{1 - ae^{-j\omega}} = \frac{1}{1 - a\cos(\omega) + aj\sin(\omega)} = \\ &= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{(1 - a\cos(\omega))^2 - (ja\sin(\omega))^2} = \\ &= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{1 - 2a\cos(\omega) + a^2\cos^2(\omega) + a^2\sin^2(\omega)} = \\ &= \frac{1 - a\cos(\omega) - aj\sin(\omega)}{1 - 2a\cos(\omega) + a^2} \\ X(e^{j\omega}) \Big| &= \frac{1}{\sqrt{(1 - 2a\cos(\omega) + a^2)}} \end{aligned}$$

3. Sketch the amplitude response for a = 0.8 using discrete frequency on the x-axis.

Answer: See Figure 1.

4. Sketch the amplitude response for a = 0.8 using frequency on the x-axis.

Figure 1: $X(e^{j\omega})$ plotted for discrete frequency ω between 0 and 2π and frequency Ω between 0 and Ω_s .

Answer:

 $\Omega = \omega t_s$

so the frequency range should be $\Omega \in \left(0, \frac{2\pi}{t_s}\right), \ \Omega \in (0, \Omega_s)$ or $\Omega \in \left(-\Omega_s/2, \Omega_s/2\right)$

5. What would you needed to be able to calculate DFT of the same signal? What would be the main difference between DFT and DTFT? Please explain.

Answer: DFT is defined for signals which are discrete and periodic in the time domain. We therefore would need to define a periodic signal

$$\begin{aligned} x_2[n] &= a^n u[n] \quad 0 \le n < N \\ x_2[n+N] &= x_2[n] \end{aligned}$$

For such signal, DFT is defined as:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N} \quad 0 \le k \le N-1$$
 (1)

and the discrete frequency is now discrete and given by $\omega_k = 2\pi k/N$. DFT is discrete in the frequency domain, defined only for integer values of k and periodic with periodicity of 2π .

Q2 System output and frequency response. (25p)

1. A LTI system is characterized by the impulse response function given below. Calculate and plot the response of that system to a unit step input $x_1(t) = \varepsilon(t)$ and to a delta impulse input $x_2(t) = \delta(t)$.

$$h(t) = \varepsilon(t) e^{-t} - 2e^{-3t} \varepsilon(t)$$

Also here, $\varepsilon(t)$ is the unit step function. Answer:

2. Calculate frequency response of this system for $\omega = 0$ and $\omega = 2\pi s^{-1}$. Explain how you would calculate the frequency response for any given frequency.

Answer: Frequency response is given by

$$H(j\omega) = H(s)|_{s=j\omega}$$

Where H(s) has been calculated above. To get an general expression for the frequency response, we need to substitute $s = j\omega$ and calculate $H(j\omega)$. For the two frequencies given in the problem text, one can use the simple expression for H(s) obtained above.

$$H(j\omega) = \frac{1}{1+j\omega} - \frac{2}{3+j\omega}$$

For $\omega = 0$

$$|H(j\omega)| = 1 - \frac{2}{3} = \frac{1}{3}$$

For $\omega = 2\pi$

$$H(2\pi j) = \frac{1}{1+2\pi j} - \frac{2}{3+2\pi j} = \frac{1-2\pi j}{1+4\pi^2} - \frac{6+4\pi j}{9+4\pi^2} = 0.0247 - 0.155j - 0.1238 + 0.2592j = -0.0991 + 0.1040j$$

 $|H(2\pi j)| = 0.1436$

Q3 Stochastic Signals (25p)

1. What is an "ergodic random process"? What is a "stationary random process"?

Answer: A stationary random process for which the time-averages of each sample function are the same as the ensemble averages is called ergodic random process.

A random process is stationary if its **2nd order expected values** only depend on the difference τ between t_1 and t_2 , that is:

$$E\{f(x(t_1), x(t_2))\} = E\{f(x(t_1), x(t_1 + \tau))\}$$
(2)

2. Define auto-correlation function (ACF). Sketch ACF for two signals, for which few sample functions are shown below, assuming that they are drawn on the same time scale.

$$\varphi_{xx}(t_1, t_2) = E\{x(t_1)x(t_2)\}$$
(3)

For a stationary process, this simplifies to

$$\varphi_{xx}(t_1, t_2) = \varphi_{xx}(\tau) = E\{x(t_1)x(t_1 + \tau)\}$$
(4)

In general ACF is a 2D function defined for any combination of t_1 and t_2 . For stationary process, it becomes a 1D function of τ . Slower rate of change for the process A, would result in slower decay of the ACF, as illustrated on the figure below.

Q4 Filters. (25p)

1. For time-discrete systems, filters are often characterized as IIR or FIR. Explain what is described by these terms.

Answer:

IIR: infinite impulse response, system described by a recursive equation containing both x[k] and y[k] terms (input and output). H(z) has both zeros and poles. h[k] is given by a recursive equation.

$$\sum_{n=0}^{N} a_n y[k-n] = \sum_{n=0}^{M} b_n x[k-n]$$
$$y[k] = \sum_{n=0}^{M} b_n x[k-n] - \sum_{n=1}^{N} a_n y[k-n]$$

If we put $x[k] = \delta[k]$, then we can see that

$$h[k] = \sum_{n=0}^{M} b_n \delta[k-n] - \sum_{n=1}^{N} a_n h[k-n]$$

So, the impulse response function at time point k depends on both b_k coefficient (delta function in the first sum is not zero only for k = n), but also on previous values of the impulse response function (h[k-1], h[k-2], etc)

FIR: finite impulse response.

$$y[k] = \sum_{n=0}^{M} b_n x[k-n]$$

If we put $x[k] = \delta[k]$, then we can see that

$$h[k] = \sum_{n=0}^{M} b_n x[k-n] = \{\underline{b_0}, b_1, b_2, ..., b_M\}$$

2. For which of these filter types, can we use discrete convolution to calculate output for an input signal similar to $x[n] = \{\underline{1}, 1, 1, 1, 1, 1\}$? Do not calculate but explain.

Answer: Only for FIR, as in as to do an exact calculation we would need to include infinite number of terms for h[n] in the case of IIR filter.

3. A low pass filters is described by the difference equation given below. Use zeros/poles diagram on an appropriate frequency plane to illustrate that this system is indeed a low pas filter.

$$y[n] = \alpha x[n] + (1 - \alpha)y[n - 1]$$

where α is a constants and $0 < \alpha < 1$

Answer: To find zeros/poles of the transfer function we need to take z-transform of the difference equation and calculate H(z).

$$H(z) = \frac{\alpha z}{z - (1 - \alpha)}$$

This transform has a pole at $z = 1 - \alpha$ which is located on the horizontal axis, on the right hand side of the z-plane and for α approaching zero, the pole will be located close to the DC frequency, resulting in a large amplitude of the transfer function for these frequencies.

4. Is this a IIR or FIR filter? Please explain.

Answer: It is an IIR filter. One can see it for example by calculating few terms of the impulse response function.

$$h[0] = \alpha$$

$$h[1] = \alpha(1-\alpha)$$

$$h[2] = \alpha(1-\alpha)^{2}$$

$$h[2] = \alpha(1-\alpha)^{3}$$

...

One could transfer this filter to FIR by setting

$$h[n] = 0 \quad \text{for} \quad n > N$$

Where N > 0.

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$.	1	$s \in \mathbb{C}$
$\varepsilon(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$
$t\varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$\cos(\omega_0 t)\varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)\varepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\begin{aligned} \text{Linearity} \\ Ax_1(t) + Bx_2(t) \end{aligned}$	$AX_1(s) + BX_2(s)$	$ \begin{array}{c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array} $
$\begin{array}{l} \text{Delay} \\ x(t-\tau) \end{array}$	$e^{-s\tau}X(s)$	not affected
$ Modulation \\ e^{at}x(t) $	X(s-a)	$Re\{a\}$ shifted by $Re\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-rac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$\operatorname{ROC}_{\operatorname{ROC}\{X\}}$
Integration $\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ \begin{array}{l} \operatorname{ROC} \supseteq \operatorname{ROC}\{X\} \\ \cap \{s : \operatorname{Re}\{s\} > 0\} \end{array} $
$\begin{array}{c} \text{Scaling} \\ x(at) \end{array}$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

	x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$	
	$\delta(t)$	1	
	1	$2\pi\delta(\omega)$	
	$\dot{\delta}(t)$	$j\omega$	
	$\frac{1}{T}$ $\perp \perp \perp \left(\frac{t}{T}\right)$	$\bot \amalg \left(\frac{\omega T}{2\pi}\right)$	
	arepsilon(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
4	rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$	
	si(at)	$\frac{\pi}{ a } \operatorname{rect}\left(\frac{\omega}{2a}\right)$	
	$\frac{1}{t}$	$-j\pi { m sign}(\omega)$	
	$\operatorname{sign}(t)$	$\frac{2}{j\omega}$	
	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
	$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
	$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
	$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
	$e^{-a^{2}t^{2}}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$	

Appendix B.4 Properties of the Fourier Transform

Ioim		
	x(t)	$X(j\omega)=\mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	$x(t - \tau)$	$e^{-j\omega\overline{\tau}}X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-\frac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right]$ = $\frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in \mathrm{I\!R}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega)\cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Duality	$x_1(t)$ $x_2(jt)$	$x_2(j\omega) \ 2\pi x_1(-\omega)$
Symmetry relations	$x(-t) \ x^*(t) \ x^*(-t)$	$X(-j\omega)$ $X^*(-j\omega)$ $X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2d\omega$

Appendix B.6 Properties of the *z*-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC} \{X_1\} \cap \operatorname{ROC} \{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	ROC{ x }; separate consideration of $z = 0$ and $z \to \infty$
Modulation	$a^k x[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC} = \left\{ z \left \frac{z}{a} \in \text{ROC}\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$\operatorname{ROC}{x};$ separate consideration of z = 0
Time inversion	x[-k]	$X(z^{-1})$	$\operatorname{ROC} = \{ z \mid z^{-1} \in \operatorname{ROC}\{x\} \}$
Convolution	$x_1[k] \ast x_2[k]$	$X_1(z) \cdot X_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC}\{x_1\} \cap \operatorname{ROC}\{x_2\}$
Multiplication	$x_1[k] \cdot x_2[k]$	$\frac{1}{2\pi j}\oint X_1(\zeta)X_2\Big(\frac{z}{\zeta}\Big)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided *z*-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in {f C}$
$\varepsilon[k]$	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon[-k-1]$	$\frac{z}{z-a}$	z < a
$k \varepsilon[k]$	$\frac{z}{(z-1)^2}$	z > 1
$ka^k \varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k)\varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\cos(\Omega_0 k)\varepsilon[k]$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	z > 1