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Q1 DTFT and DFT (25p)

1. Explain what is described by the term “discrete frequency”.

Answer: “discrete frequency” w is a frequency space used to de-
scribe the frequency spectrum of a discrete signal. w can be both
continues (as for aperiodic discrete signals and DTFT) or discrete
(as for periodic discrete signals and DFT). Discrete frequency is
connected to real frequency by €2 = wt,, where ¢4 is the sampling
time of the signal in the time domain.

2. Find DTFT of the following discrete time signal:

where u[n] is the discrete unit step function. Use ¢, = lms.
Answer:

o0

X(ejw) _ Z —]nw ian —jnw __ i ae jw ﬁ

n=-—o00 n=0 n=

We can for example, use the Euler formula to find the amplitude
and the phase:

. 1 1
X(e) = 1—ae v 1- acos(w) + aj sin(w) -
B 1 —acos(w) —ajsin(w)

(1 —acos(w))? — (jasin(w))?
B 1 — acos(w) — aj sin(w)
1 —2acos(w) + a2 cos?(w) + asin®(w)
1 —acos(w) —ajsin(w)
B 1 — 2a cos(w) + a?
X(e) 1

V(1 — 2acos(w) + a?)

3. Sketch the amplitude response for a = 0.8 using discrete frequency
on the x-axis.

Answer: See Figure

4. Sketch the amplitude response for a = 0.8 using frequency on the
X-axis.
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Figure 1: X(e?*) plotted for discrete frequency w between 0 and 27 and
frequency €2 between 0 and €2,.

Answer:
0 = wt,

so the frequency range should be Q € <0, %—:), Q € (0,9) or
Qe (—94/2,9,/2)

. What would you needed to be able to calculate DFT of the same

signal? What would be the main difference between DFT and
DTEFT? Please explain.

Answer: DFT is defined for signals which are discrete and pe-
riodic in the time domain. We therefore would need to define a
periodic signal

xoln] = a"uln] 0<n<N
xo[n + N| = xq[n]

For such signal, DF'T is defined as:

=2

X[k] = z[n] e TN )< k<N -1 (1)

n

I
=)

and the discrete frequency is now discrete and given by w, =
27k /N. DFT is discrete in the frequency domain, defined only for
integer values of k and periodic with periodicity of 27.

Q2 System output and frequency response. (25p)
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1. A LTI system is characterized by the impulse response function
given below. Calculate and plot the response of that system to a
unit step input z1(t) = £(¢) and to a delta impulse input z5(t) =
a(t).

h(t) = e(t)e ™" — 2e ¥e(t)

Also here, ¢(t) is the unit step function.

Answer:

. _Y(s) 1 2 s5+3-25-2 -5
(s) = X(s) s+1 s+3 (s+3)(s+1) (s+3)(s+1)

Y(s) = X(s)H(s)

Y (s) 1—s5 1 A+ B n C 1 1 n 2
S - - @ @ @ @ - - _
(s+3)(s+1)s s s+1 s+3 3s s+1 3(s+3)
1 2
y(t) = e(t) [g—e_t%—ge_ﬂ
0.3 :
0, -
0.2} |
= < o1 1
T 05 ) |
0, |
—0.1} 1
1} |
0 2 4 6 s 10 0 2 4 6 8 10

2. Calculate frequency response of this system for w = 0 and w =
27s~!. Explain how you would calculate the frequency response
for any given frequency.

Answer: Frequency response is given by

H(]W) = H(S) ‘s:jw

Where H(s) has been calculated above. To get an general expres-
sion for the frequency response, we need to substitute s = jw and
calculate H(jw). For the two frequencies given in the problem
text, one can use the simple expression for H(s) obtained above.

1 2

H(jw) = _
Ue) =150 " 357w
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For w =20
Hjw) =1 =

For w =27

1 2 1 =27; 6+4mj

14+27j 3+27j 1+4n2 9+ 4x2
= 0.0247 — 0.155j — 0.1238 + 0.2592j =

—  —0.0991 + 0.1040;
|H (27)| = 0.1436

H(2mj) =

Q3 Stochastic Signals (25p)

1. What is an “ergodic random process”™ What is a “stationary ran-
dom process™?
Answer: A stationary random process for which the time-averages
of each sample function are the same as the ensemble averages is
called ergodic random process.
A random process is stationary if its 2nd order expected values
only depend on the difference 7 between ¢; and t5, that is:

E{f (x(th), x(t2))} = E{f (x(t2), 2(t + 7))} (2)

2. Define auto-correlation function (ACF). Sketch ACF for two sig-
nals, for which few sample functions are shown below, assuming

that they are drawn on the same time scale.
random process A random process B

x1(1) Y1 *
U ‘ U m t t
x(1) y2(0)
iy p——
i u t

yi(® d
t

x;(1)

Y
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Answer:

Pua(tr, t2) = E{x(t)x(ts) } (3)

For a stationary process, this simplifies to

Paa(ti; l2) = @ao(7) = E{a(ty)z(ty +7)} (4)

In general ACF is a 2D function defined for any combination of ¢; and
ty. For stationary process, it becomes a 1D function of 7. Slower rate
of change for the process A, would result in slower decay of the ACF,
as illustrated on the figure below.

(pxx(t]rtZ) (pyy(f],lz)
AAAANAS “4\.
#]V f =
t2 tz

Q4 Filters. (25p)

1. For time-discrete systems, filters are often characterized as IIR or
FIR. Explain what is described by these terms.
Answer:
ITR: infinite impulse response, system described by a recursive
equation containing both z[k] and y[k] terms (input and output).
H(z) has both zeros and poles. h[k] is given by a recursive equa-
tion.

Zany[k' —n] = anx[k' —nl

ylk] = anx[k —n|— Zany[k: —nj

n=1
If we put z[k] = d[k], then we can see that
N

hlk] = Y badlk —n] =Y ayhlk — n]

n=1
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So, the impulse response function at time point k depends on
both by, coefficient (delta function in the first sum is not zero only
for k = n) , but also on previous values of the impulse response

function (hlk — 1], h[k — 2|, etc)
FIR: finite impulse response.

If we put x[k] = d[k], then we can see that

M

hik] = bpalk —n) = {bo, b1, by, ..., bus}

n=0

2. For which of these filter types, can we use discrete convolution to
calculate output for an input signal similar to z[n] = {1,1,1,1,1,1}7
Do not calculate but explain.

Answer: Only for FIR, as in as to do an exact calculation we

would need to include infinite number of terms for h[n] in the case
of IIR filter.

3. A low pass filters is described by the difference equation given
below. Use zeros/poles diagram on an appropriate frequency plane
to illustrate that this system is indeed a low pas filter.

yln] = azxfn] + (1 — a)y[n — 1]

where « is a constants and 0 < o < 1

Answer: To find zeros/poles of the transfer function we need to
take z-transform of the difference equation and calculate H(z).

az

A e )

This transform has a pole at z = 1 — o which is located on the
horizontal axis, on the right hand side of the z-plane and for «
approaching zero, the pole will be located close to the DC fre-
quency, resulting in a large amplitude of the transfer function for
these frequencies.

4. Is this a IIR or FIR filter? Please explain.
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Answer: It is an IIR filter. One can see it for example by calcu-
lating few terms of the impulse response function.

hl0] = «

Rl = a(l —a)
R[2] = a(l —a)?
R[2] = a(l —a)?

One could transfer this filter to FIR by setting
hin] =0 for n> N

Where N > 0.



TFY4280 Signal Processing 2018 page 8 of |§|

Appendix B.1 Bilateral Laplace Transform Pairs

(1) X(s) = L{z(8)} ROC
a(t) 1 seC
£(t) é Ref{s} >0
i 3 i i Laplace
() 1 Refs} > Re{—a} Appendix B.2 Properties of the Bilateral Lapla
sta Transform
_emtte(—p) - Jlr - Re{s} < Re{—a}
2(t) X(s) = £{z(t)} | ROC
1
t=(t) = Re{s} >0 Lincarity ROC 2
AXi(s) + BXa(s) | ROC{X1}
]
me(t) = Re{s} >0 Az (t) + B (1) AROC{Xs}
1 Delay e TX (s) not affected
te="te(t) TR Re{s} > Re{-a} z(t - 7)
nl Modulation X(s—a) Re{a} shifted by
tremete(t) 7 ﬂ-)nﬂ Re{s} > Re{-a} eta(t) Re{a} to the right
. - wo ‘Multiplication by ¢’,
sin(wot)e(t) 52+ wd Re{s} >0 Differentiation in the d
. frequency domain —HYSX(S) not affected
s
cos(wot)e(t) g Re{s} >0 ta(t)
- N T
e~ cos(wot)e(t) ﬁ(s +Sa)2(1 = Re{s} > Re{—a} ]t)i:::rng:;fn in the ROC >
— o(t) sX(s) ROC{X}
~at sin(s —_— Re{— at
e~ sin(wot)e(t) GrarTa? Re{s} > Re{—a} Idt :
2 —wl ntegration 1 ROC D ROC{X
t e (t o Re(s} >0 t 1 2 {x}
cos(wot)e(t) (ErR)? e{s} / o(D)de sX(s) s : Re{s} > 0}
2wps Sad
tsin(wot)=(t) s Re{s} >0 .
(wot) (2 +wp)? Sealing 1, (f) Eggrsg?led by a
z(at) a] a .

Appendix B.3 Fourier Transform Pairs Appendix B.4 Properties of the Fourier Trans-

form
«(0) X(jw) = Fla®)} _
(t) X(jw) = Fla(t)}
a(t) 1
Linearity Az, (t) + Baa(t) AX;(jw) + BX3(jw)
1 2m6(w)
Delay z(t— ) eTITX (jw)
5(t) Jw
Modulation elwoty(t) X(j(w —wo))
L ( ! ) (“’T)
= — o ‘Multiplication by ¢ .
2
T T ul Differentiation in the ta(t) _aXGw)
. (t) 5 (u)) + ]% frequency domain d(jw)
o Differentiation in the da(t) X ()
I (hadll time domain dt
rect(at) \aLSl (2(1)
A (@ ‘ X(jw) [mﬁ'(w) + _iJ
si(at) fal rect (ga) Integration / z(z)dz 1 s
1 = = —X(jw)+7X(0)d(w)
N Jw
h —jmsign(w)
2 Scaling 2(at) ‘%‘X (%’) . aeR\{0}
sign(t) 7w
3 Convolution 1 (t) * z2(t) X1(jw) - Xa(jw)
edwot 276 (w — wo)
Multiplication 21 (t) - m2(t) %Xl (jw) * X2 (jw)
cos(wot) 7[5 (w +wo) + 8(w — wo)]
Duality Tl(t) 2(jw)
i ¢ 2y (—
cineot) 7150+ ) — 50 — wo)] @2(jt) 2 (—w)
z(—t) X(=jw)
oy 2 Symmetry relations z*(t) X*(—jw)
€ ,a>0 it z*(=t) X*(jw)
e VE Parseval theorem / leF e o [ IxGeyPas
p - o
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Appendix B.6 Properties of the z-Transform

Property [k] X(2) ROC
N . ROC 2
Linearity axy [k]+bxa[k] aX(z) 4+ bX2(2) ROC{;(l JAROC{X,}
ROC{z}; separate
Delay [k — K] 277X (2) consideration of
z=0and z = o
Modulation akalk] x(2 ROC= {z Z eROC(z}}
a a
T . ROC{z}; separate
Multiplicat; dX(z
b Yuk . kalk] —ZJ consideration of
Y dz =0
Time inversion z[~k] Xz ROC={z |2~ 'eROC{a}}
. ROC 2
Convolution 1 [k] * 22 [k] X1(2) - Xa(z) ROC{;I)mROC{TQ)
RTRI . 1 2\ 1, .| multiply the
Multiplication | a1[k]-a2lk] | 5 f X1(0)Xa( 4) R

limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

(k] X(2) = Z{a[k]} ROC

d[k] 1 zeC
<lk] . = - 2 >1
a*elk) = 2| > lal
—abe[—k - 1] P Z - 2 < |al
kelk] ﬁ lz] > 1

az
kaFelk] G—ar |z] > a]
; zsin
sin(Qok)z[k] m Jz| >1
2(z — cos
cos(Qok)elk] W lz| >1




