Exam 18.12.02 in SIF4088 Nonlinear dynamics

Solutions

Problem 1

a) A permanent wave is of the form u(x — ct), with constant velocity c; it
propagates with a permanent shape.

A solitary wave is a localized permanent wave, in the sense that all essen-
tial changes of its shape occur over a finite interval of x.

Solitons are solitary waves that survive collisions with each other.

Different type solitons: (i) Pulseformed solitons, as for the KdV equation, (ii)
Envelope solitons, as for the cubic Schrédinger equation, (iii) Kink solitons,
whose gradient has pulse form, as for the sine-Gordon equation.

(Sketch omitted here)

b) and c): As lecture notes.

d) KdV applies to one-dimensional flow on shallow water, when the height
of the surface wave is much smaller, and the extension of the wave is much
longer, than the constant water depth.

Problem 2

a) Fixed points for
1- uxQ =z,

zt = (—1E£/1+4p)/(2u).

A fixed point z* of an iteration x, 1 = F'(z,) is stable when |F'(z*)| < 1.

In our case
F'(x*) = —2pz* = — (—1 +4/1 —i—4u> :

Clearly the negative fixed point is always unstable. The positive fixed point

ot = (=141 +4p)/(2) (1)

has the limiting value F'(z*) = —1 for /1 +4u = 2, i.e.

with solutions
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For p > py this fixed point is unstable, for 0 < p < p; the fixed point is
stable.



b) The period 2 values satisfy

z_ = 1—pa’ (2)
vy = 1—pz? (3)

By subtraction we obtain
ro—ze = plat —at) = e — 2@+ ).
Assuming x — x, # 0 this gives
1= p(z- +y),
as should be shown. Inserting v =1/ — 2 into (2) we obtain
pot—ag =1— pat,
and for z_ we obtain the same equation. Solving, we get

C14/Ap—3

T+ 2“
as should be shown.

c) The stability of period two requires |[dF(F(z))/dz| < 1 on the attractor.
Since
dF (F(wy))/de = F'(x_)F'(v,) = dp’v_z, =4 — 4p,

the maximum value of u corresponds to this derivative being —1, i.e.

U=l =

eSS

Superstability is when the derivative of F(F(zx)) vanishes, which occurs for

p=1

One could also have argued that the superstable orbit had to visit z_ = 0
where F' = 0, and therefore also 2, = F(0) = 1. Thus p=2_ + 2, = 1.

d) The Lyapunov exponent measures, on an exponential scale, the rate with
which two neighbouring initial values either separate (for A > 0) or come
closer (for A < 0) under iteration.

For our iteration the period-two attractor is stable in the interval p; <
i < pa, and consequently A < 0. The end points of the interval correspond to



marginal stability so that A = 0 here. At the superstable value the stability
is infinitely high, so that A = —oo for u = 1.
(Sketch omitted here.)

Problem 3

a) Our system is two-dimensional, and in two dimensions (for an autonomous
system) the only attractors are fixed points and limit cycles (Poincaré- Bendix
son). Thus no chaotic attractor can exist.

b) When b4 = bp = 0 the species develop independently. Since dn/dt < 0
for ny > ra/aa, and dns/dt > 0 for ny < ra/as, the population will
approach the fixed point r4/a4 from above or from below depending on the
initial value n4(0), as long as this is positive. Similarly with species B. Thus

na(o0) =ra/aq, and  ng(oo) =rg/ag.

c¢) By introducing ng = x r/as and ng =y r/ap and rt = 7 we have

dx
— = z(l—2x—1ybs/ap
55 ( yba/ag) n

A y(l —y —abp/aa)
-
Hence
a=bys/ap and B =bglax.
d) The fixed points correspond to the right-hand sides of (4) being zero:
r(l—z—ay) = 0 (5)
y(l—y—pz) = 0 (6)
There are four solutions, four fixed points. Three are on the axes:
F; =(0,0); F, = (0,1); F5 = (1,0).
The fourth, Fy = (2°,9°) corresponds to
1—2%—ay’ =0, 1—y°— B2’ =0.
The solution of these two linear equations with two unknowns is

0_ 1—« SO = 1-p
1—aB’ 1—af

X

The fixed point F} is in the physical relevant region when both 2° and ¢° are
nonnegative. This is the case when aa > 1, f>1ora <1, g <1.
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e) We linearize in each case the equations near the fixed point. We could
do it case by case, we see for instance that near the fixed point at the origin
linearization gives

de/dr = x, dy/dr =y,

with solution

The phase point is repelled along straight lines, the origin is consequently an
unstable (repelling) node.

Let us alternatively look at the eigenvalues of the Jacobian matrix. The
Jacobian for the dynamical system & = f(x,y), ¥ = g(z,y) is in our case

:<%£ %5>:<1—2x—ay —ax > (7)
oy oo By 1-2y—fBr

We must insert the fixed point coordinates, for the four fixed points:

Fy = (070)

Here

J = < (1) (1) > , with eigenvalues \; = 1, Ay = 1.

Two real positive eigenvalues correspond to an unstable node, as already
noted.

F2 = (0, ].)

At F, = (0,1) we have

1— . .
J = ( —5a _01 ) , with eigenvalues A\ =1 — a, Ay = —1.
Thus, for a < 1 there are two real eigenvalues of opposite sign, which implies
that F, is a saddle point. For o > 1, however, there are two real negative
eigenvalues, which implies that F, is a stable (attracting) node in this case.

F3 = (170)

At F3 = (1,0) we have

_]_ —« ‘ '
J = < 0 1-5 > ) with eigenvalues \; = —1, A\ =1 — (.
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Thus, for § < 1 there are two real eigenvalues of opposite sign, which implies
that F3 is a saddle point. For g > 1, however, there are two real negative
eigenvalues, which implies that Fj is a stable (attracting) node in this case.

— (l=a 1-8
Fo= (l—aaﬂ’ l—a,B)

a—1 _a(l—a)
— 1-a 1—a
J = ( IO )-

1—af 1—apf

Here we have

The eigenvalues are

A= (§a+§ﬁ— uﬁ(a—ﬁ)uaﬁ(l—a)(l—ﬁ)) /(1 - ap).

We found above that Fj is in the physical interesting region when both control
parameters are either less than 1 or both greater than 1.

When both o and (8 are [ess than unity, the two eigenvalues are both real
and negative, so that F{ is then a stable node.

When both a and (3 are greater than unity, the eigenvalues are real and
of opposite sign, so that Fj is a saddle point in this case.

f) For o = 8 = £ the fixed point F = (3, 2) is a stable (attracting) node.
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If both initial values are positive, the system ends up at the stable node Fj,
i.e. z(00) = y(oc0) = 2. There is coezistence between the two species.

g) For a = 3 = 2 the fixed point Fy = (é, %) is a saddle point. The diagonal
is the attracting direction, which can be seen directly from the equations:

d d

d—i{z%zx(l—?)m) for x =y,
and = = 5 is clearly attracting. Near (but not on) the diagonal the phase
point is repelled, and the only final possibility is one of the fixed points F,

or F3, depending on which side of the diagonal the initial point is located.
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The conclusion is as follows: If the initial densities should be ezactly
equal and nonzero the system ends up at the saddle point Fy. Otherwise,
and more realistically, the system ends up with either z(00) = 1, y(o0) =0 or
with z(oco) = 0, y(oo) = 1. In each case the minority species becomes extinct.



