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Norwegian University of
Science and Technology,
Department of Physics

Contact during the exam:
Rita de Sousa Dias
Phone 47155399

EXAM I COURSE
TFY4310 MOLECULAR BIOPHYSICS

Friday, 30 November 2018
Time: kl. 09.00 - 13.00

All questions have the same weight. None of the questions require lengthy answers so answer
as precisely and concisely as possible. Good luck!

Exercise 1.

Justify six (6) of the following correct sentences:

1. A triple bond between carbon atoms (HC ≡ CH) consists of one sigma and two pi
molecular orbitals occupied with electrons.

2. Absorption of a polymer to a nanoparticle decreases the conformational entropy of the
polymer.

3. When performing molecular modeling of concentrated systems it is desirable to use
periodic boundary conditions.

4. Both Raman scattering and IR spectroscopy probe the vibrational states of molecules.
In Raman scattering however, one typically illuminates the sample with a laser beam
and does not need to scan all frequencies in the IR spectra to obtain a spectrum.

5. In a common transient electric birefringence set-up the analyser is oriented 90◦ rela-
tively to the polariser.

6. Spin-spin (T2) relaxation does not involve the flipping of spins between levels.

7. The 1H-NMR spectrum of CH3–CH2–Br possesses a quadruplet (intensities of 1:3:3:1)
and a triplet (intensities of 1:2:1) at the chemical shifts of 3.5 and 1.7 ppm (in relation
to TMS), respectively.

8. In the most usual configuration for light scattering, the incident and scattered beams
lie in the xy−plane, which is horizontal, and the incident beam is provided by a laser
source which is vertically polarized.

Exercise 2. Cationic surfactant X has 14 carbon atoms, X+-(CH2)13-CH3 Cl−, in the alkyl
chain and forms spherical micelles in aqueous solution above the critical micellar concentra-
tion. Assume that the bare radius of the headgroup is 0.32 nm.
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1. What is the hybridization of the carbons in the surfactant alkyl chain? Justify.

2. What is the driving force for micelle formation?

3. Calculate the radius of the micelle.

4. Calculate the root-mean-square (rms) of the end-to-end distance of the surfactant
assuming that the hydrophobic tail behaves as an ideal freely jointed chain. Assume
that the Kuhn length is 1 nm, corresponding to 7 CH2 units. Ignore the contribution
from the headgroup.

5. Draw a schematic representation of a spherical micelle. Discuss the results obtained
in questions 3 and 4 and consider them in your drawing.

6. Increasing the salt concentration of the solution leads to a change in the shape of the
micelle. Which shape do you predict it will form and why?

7. Calculate the potential energy between the headgroup of the surfactant and a water
molecule for the shorter possible separation. Assume a conformation that maximizes
the interaction. Consider water to be a dipole with a radius of 0.14 nm and a dipole
moment of 1.85 D (1 D = 3.336 ×10−30 Cm). Due to the proximity between water and
headgroup assume that ε = 1.

8. Is this interaction strong enough to orient the water molecule at room temperature
(T=20 ◦C)?

9. To learn more about the surfactant aqueous solution you performed dynamic light
scattering experiments were using light with a wavelength of 500 nm and a scattering
angle of 40◦ at 20 ◦C. Plotting the results as ln[g(2)(q, τ) − 1] as a function of τ gives
a straight line with a slope equal to −14, 423 s−1.

Calculate the hydrodynamic radius of the micelle. Comment the result taking into
account your previous answers.

Exercise 3.

Consider a mixture of two proteins of molecular weight M1 = 20, 000 g/mol and M2 =
200, 000 g/mol in water. Assume that both are unhydrated and have the same partial
specific volume of 0.74 cm3/g. Consider that the average viscosity of the medium is η = 1.5
×10−3 kg m−1s−1 and the density 1.05 g/cm3.

1. Show that, for a unhydrated mixture of proteins, the following relation is valid: s2/s1 =
(M2/M1)2/3.

2. Calculate the ratio of the sedimentation coefficients of the proteins.

3. Consider a sedimentation experiment where the two proteins are placed on top of a
centrifuge tube filled with aqueous buffer containing a linear sucrose gradient from 5%
to 20%, and then the tube is spun. The top of the tube is 4 cm from center, the bottom
is 8 cm from the center. When the larger protein has sedimented a distance of 3 cm,
how far has the smaller protein traveled (neglect any changes in viscosity and density
associated with the sucrose gradient)? Is this a good method to separate the proteins?
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4. Calculate the diffusion coefficients for each of the two proteins at 298 K. Note that a
simple relation between Di and Mi should also be valid in this case.

5. As the proteins sediment, the concentrated layer of protein will spread out due to
diffusion. If the distance over which the molecules spread is larger than the distance
separating the two proteins, then it will not be possible to use this method to separate
the two proteins, because they will overlap. Calculate the average (root-mean-square)
distance the two proteins move due to diffusion at 298 K if the experiment lasts 12
hours. Is this spreading distance due to diffusion significant, compared to the separa-
tion of the two proteins due to sedimentation?

————————————

The following formulas and data may or may not be of use in answering the preceding
questions. You do not need to derive any of the formulas but all parameters must be
defined, if used.

Electron charge: e = 1.602× 10−19 C

Avogadro constant: NAv = 6.022× 1023 mol−1

Boltzmann constant: kB = 1.380 × 10−23 JK−1

Permitivitty in vacuum: ε0 = 8.854 × 10−12 C V−1 m−1

Relative dielectric permitivitty of air: ε = 1.0

Properties of water at 20 ◦C: ε = 78.4; η = 1.0 ×10−3 kg m−1s−1; ρ = 1.02 g/cm3

Properties of polyethylene: Kuhn length: 14 Å ; θ = 110◦ ; 〈cosφ〉 = 0.26

Temperature: [K] = [◦C] + 273.15

Atomic orbitals: H: 1s1 ; C: 1s22s22p1
x2p

1
y ; O: 1s22s22p2

x2p
1
y2p

1
z

Atomic weights: Ar(H) = 1.0 ; Ar(C) = 12.0

Thermodynamics ∆G = ∆H − T∆S S = kB lnW

µ1 − µ0
1 = NAv

(
∂∆G
∂n1

)
T,P

Π =
µ1−µ01
V

(M)
1

Potential energies

V (r) =
z1z2 e

2

4πε0εr
V (r) =

z1z2 e
2

4πε0εr
exp

(
− r

λD

)
V (r, θ) = −(ze)u cos θ

4πε0εr2

V (r, θ1, θ2, φ) = − u1u2

4πε0εr3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ]
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V (r) = − (ze)2u2

6(4πε0ε)2kBTr4
for kBT >

Qu

4πε0εr2

V (r) = − u2
1u

2
2

3(4πε0ε)2kBTr6
for kBT >

u1u2

4πε0εr3

λ2
D =

ε0εkBT∑
i(eZi)2 ni∞

u = ql = zel

CPP= v/a0lc

lc ≤ lmax ≈ (0.154 + 0.1265n) [nm]

v ≈ (27.4 + 26.9n)× 10−3 [nm3]

Statistical chain molecules
〈
R2

ee

〉
= CnQ

2n

Cn = 1 ; Cn =
1− cos θ

1 + cos θ
; Cn =

1− cos θ

1 + cos θ

1 + 〈cosφ〉
1− 〈cosφ〉

Scaling
〈
R2

ee

〉1/2
∼ Qnα ; α = 1/2 ; α = 3/5

For ideal chains
〈
R2

ee

〉
= 6

〈
R2
G

〉
Overlap concentration (in molar concentration of monomers)

C? = 3Np

4πNAv

10−3

R3
G

Polymer molecular weights

〈M〉n =
∑

i
NiMi∑
i
Ni

〈M〉w =
∑

i
NiM

2
i∑

i
NiMi

Regular solution model
∆Gmix

N
= B x1 x2 +RT (x1 lnx1 + x2 lnx2)

Flory-Huggins theory
∆Gmix

N
= RT

(
v1 ln v1 + v2

x
ln v2 + χ v1 v2

)

For dilute solutions: W2 =
(
Z−1
n

)n2(x−1)
n!

(n−n2 x)!n2!

Critical composition, temperature and interaction (χ) parameter

v1,c =
√
x

1+
√
x

⇒ v2,c = 1
1+
√
x

Tc ∼ 1
Rχc

χc = χs(v1 = v1,c) = 1
2

+ 1
2x

+ 1√
x
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Swelling of networks

∆G = kBT
[
(n1 ln v1 + χn1v2) + 3

2
n(v

−2/3
2 − 1 + 1

3
ln v2)

]
Equilibrium swelling ratio

qm ∼=
[
V0
n

1/2−χ
V

(M)
1

]3/5

Swelling of charged networks

Πtot = −RT
[

1

V
(M)
1

(ln(1− v2) + v2 + χv2
2) + (n/V0)(v

1/3
2 − v2/2)−∆C

]

∆C =
∑
i(ci,n − ci,l)

Planck’s law E = hν =
hc

λ
= hcν̃

Particle distribution in therm. equil.
nA

nB
= exp

[
−∆EAB

kBT

]
Beer-Lambert law A(λ) = ε(λ)cl

IR spectroscopy µ10 =
∑
i

(
∂µ̂
∂qi

)
qi=0

∫
N?

1 qiN0 dτn

Raman scattering

P = α0E0 cos 2πν0t+
1

2

(
∂α

∂qi

)
0

qi0 [cos(2π(ν0 + νm)t) + cos(2π(ν0 − νm)t)]

Nuclear spin ~m = γ~L, (~m)2 = γ2h̄2`(`+ 1), mz = m` γ h̄

Gyromagnetic ratio
Nucleus 1H 2H 13C 14N 19F 31P

γ
(
107 rad/s

T

)
26.753 4.107 6.728 1.934 25.179 10.840

Larmor frequency ω =
γ

2π
B0

Pulses β = ω1 τrf

Local magnetic field Blocal = B0(1− σ)

Friction coefficients ~F = −f~v, ~M = −ξ~ω

Stokes formula f = 6πηRh, ξ = 8πηR3
h

Hydrodynamic volume vh,1 =
(
V

(S)
1 + δV

(S)
0

)
M1

NAv



page 6 of 7

Specific volume (per mass)V
(S)

1 = v1

(
NAv

M1

)

Fick’s laws
∂c

∂t
= −~∇ · ~J, ~J = −DT

~∇c, ∂c

∂t
= DT

∂2c

∂x2

Nernst-Einstein relations fDT = kBT, ξDR = kBT

Diffusion 〈r2〉1/2 =
√

2DTt

Lamm-equation
∂c(r, t)

∂t
= DT

(
∂2c(r, t)

∂r2
+

1

r

∂c(r, t)

∂r

)
− sω2

(
r
∂c(r, t)

∂r
+ 2c(r, t)

)

Sedimentation

centrifugation: s =
ln (c0/cp(t))

2ω2t
; s =

ln (r2/r1)

ω2(t2 − t1)

Svedberg equation s =
(

1− V (S)
1 ρ

)
M1

NAvf

Equilibrium

centrifugation: m1(r) = m1(rm) exp

M1(1− V (S)

1 ρ)ω2(r2 − r2
m)

2RT


Electrically-induce birefringence

I(t) =
I0

4
δ2

0 exp(−12DRt)

Raman spectroscopy

P = α0E0 cos 2πν0t+
1

2

(
∂α

∂qi

)
0

qi0 [cos(2π(ν0 + νm)t) + cos(2π(ν0 − νm)t)]

Nuclear spin ~m = γ~L, (~m)2 = γ2h̄2`(`+ 1), mz = m` γ h̄

Gyromagnetic ratio
Nucleus 1H 2H 13C 14N 19F 31P

γ
(
107 rad/s

T

)
26.753 4.107 6.728 1.934 25.179 10.840

Larmor frequency ν =
γ

2π
B0

Scattering 〈IS(q)〉 =
E2

0

R2

〈
N∑
j=1

N∑
k=1

bj(q)b∗k(q) exp [−iq · (Rj −Rk)]

〉

E ′x =
Ex(t)αk

2

4πεε0

sin θ1

R
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q =
4π

λ
sin

(
θ

2

)
, λ =

λ0

n0

, ξ = 2πRs/λ

Identical particles 〈Is(q)〉 = Nb2(0)P (q)S(q)

Guinier approximation Is(q) = I0 exp
(
−1

3
q2R2

G

)

RGD regime (ξ � 1)
〈IS(q)〉
I0

R2 = cMκ,

For larger particles
κc

Rθ

=
1

M

[
1 +

16π2

3λ2
R2

G sin2 θ

2

]
· [1 + 2B2c],

Incoming light Rayleigh ratio Optical constant
direction of polarization

x-direction Rθ = 〈IS(q)〉
I0 cos2 θ

R2 κ = 1
NAv

4π2n2
0

λ40

(
dn0

dc

)2

z-direction Rθ = 〈IS(q)〉
I0

R2 κ = 1
NAv

4π2n2
0

λ40

(
dn0

dc

)2

unpolarized Rθ = 〈IS(q)〉
I0 (1 + cos2 θ)

R2 κ = 1
NAv

2π2n2
0

λ40

(
dn0

dc

)2

Dynamic light scattering

Siegert relation g(2)(q, τ) = 1 + [g(1)(q, τ)]2

g(1)(q, τ) = exp(−q2DT τ)

Scattering length density
Substance H2O D2O proteins nucleic acids lipids
ρ (10−4 nm−2) -0.55 6.36 3.11 4.44 -0.01


