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Problem 1: Weak Localization

(a) What is the origin of the weak localization effect ?

(b) Why is the effect called ”weak” localization ?

(c) Why will a magnetic field affect the weak localization effect ?

Problem 2: The Quantum Hall Effect

Consider a two-dimensional electron gas in the x-y plane, where there is a transverse har-

monic potential of the form V (y) = mω2
0y

2/2 and a magnetic field B = Bz applied along

the z-direction. The Schrödinger equation is[
− h̄2

2m

(
∇+

ie

h̄
A

)2

+
1

2
mω2

0y
2

]
ψ(x, y) = Eψ(x, y) . (1)

Choose the Landau gauge where the electromagnetic vector potential is A = (−yB, 0, 0).

(a) Use the Schrödinger equation (1) and the ansatz ψk,n(x, y) = ϕn(y) exp ikx to show

that the equation for ϕn is[
− d2

du2
+ (u−K)2 +R2u2

]
ϕn(u) = ϵk,nϕn(u) , (2)

where we have introduced the dimensionless variables u = y/lb, R = ω0/ωc, ϵ =

E/(h̄ωc/2), K = klB. Additionally, lB = (h̄/(eB))1/2 is the magnetic length, and

ωc = eB/m is the cyclotron frequency.

(b) Demonstrate that Eq. 2 can be re-written into the form of an equation for a particle

in a harmonic potential and that the solution in terms of the original variables is

ψk,n(x, y) = eikxϕn(y − L2
Bk) , (3)

where ϕn(y) is a harmonic oscillator function that satisfies(
− h̄2

2m

d2

dy2
+

1

2
mΩ2y2

)
ϕn(y) = h̄Ω

(
n+

1

2

)
ϕn(y) , (4)

L2
B =

ω2
c

ω2
c + ω2

0

l2B (5)

and the eigenenergy for the eigenstate ψk,n(x, y) is

Ek,n = h̄Ω(n+
1

2
) +

h̄2k2

2MB
, (6)

where Ω = (ω2
c + ω2

0)
1/2, and MB = mΩ2/ω2

0.
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(c) Compute the particle current density

j =
h̄

m
Im
(
ψ†∇ψ

)
+

e

m
A|ψ|2 (7)

for the eigenstate ψk,n that we found above. What is the sign of the current density

along the x-direction, jx ?

Problem 3: The Landauer-Büttiker formalism

The Landauer-Büttiker formula for the conductance is

G =
e2

h

∑
n

Tn , (8)

where Tn is the transmission probability for transverse wave guide mode n and the sum is

over transverse wave guide modes.

(a) Consider a one-dimensional system (only one wave guide mode) with a left and right

reservoir with chemical potentials µL and µR, respectively, such that eV = µL − µR.

Find arguments for how the current should be expressed in terms of the velocity v(ϵ)

of an electron at energy ϵ, the density of states in one dimension N(ϵ) = 2/[hv(ϵ)], the

transmission probability T (ϵ), and the distribution functions in the left and the right

reservoirs f(ϵ−µL) and f(ϵ−µR). Derive from these arguments the Landauer-Büttiker

conductance in the linear response regime (the bias voltage is much smaller than the

Fermi energy) at zero temperature, Eq. 8 with only one transverse wave guide mode,

G = (e2/h)T .

(b) We consider a narrow quantum wire that is created in a two-dimensional electron

gas such that the system is infinite in the x-direction, but has a finite width L in

the y-direction. The potential is assumed to be infinite outside the wire where the

wave function vanishes. We assume there is no scattering in the wire and transport is

ballistic. Show that the conductance is

G =
2e2

h

[
LkF
π

]
, (9)

where [· · ·] represents the integral part of the number, e.g. [2.1] = 2.

Problem 4: Magnetoresistance

(a) What do the abbrevations AMR, GMR, and TMR mean ? What is the cause of AMR,

GMR, and TMR ?


