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1. Various qualitative questions.

Use only a few sentences to answer each question.

a. What is the difference between Bloch states and surface states?

b. Weak localization in a diffusive conductor: Why does the conductivity increase when
a weak magnetic field is applied to the sample? How could one use weak localization
to estimate the phase coherence length lϕ?

c. Assuming isotropic conditions (i.e., there is no directional dependence of any relevant
property), how is the electron effective mass m∗ defined in terms of the electronic
dispersion E(k)?

2. Drude formula.

Derive the Drude formula relating the current density to the applied electric field,

j =
e2nτ

m∗
E, (1)

where n is the electron density and τ is the average time an electron has traveled freely
since its last scattering from an impurity.

3. Landauer-Büttiker formalism and the quantum Hall effect.

Consider the following ideal 4-terminal device:
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A strong uniform magnetic field B is applied perpendicular to the 2DEG and points out
of the plane.
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The Landauer-Büttiker equations,

Iα =
∑
β 6=α

Gαβ(Vα − Vβ), (2)

with conductances

Gαβ =
2e2

h
Tαβ, (3)

relate the net current entering into terminal α to the potentials at the various terminals.
Here, Tαβ denotes the “direct transmission sum” from terminal β to terminal α.

a. Assume that only the lowest Landau level lies below the Fermi energy EF in the
bulk region of the 2DEG. Express the relation between currents and potentials as

Iα =
2e2

h

4∑
β=1

γαβVβ, (4)

and write down the 4× 4 matrix γ.

b. Let terminals 1 and 3 be the “source” and the “drain” respectively, whereas terminals
2 and 4 are ideal voltage probes. Find the Hall resistance RH = R13,24 = (V2−V4)/I1
and the 2-terminal resistance R2t = R13,13 = (V1 − V3)/I1.

c. Interchange the roles of terminals 2 and 3 and find the 2-terminal resistance R2t =
R12,12 = (V1 − V2)/I1 and the longitudinal resistance RL = R12,34 = (V3 − V4)/I1.

d. Qualitatively: With terminals 1 and 3 as source and drain, and terminals 2 and 4
as voltage probes (as in b), explain how RH will change as we decrease the magnetic
field strength. Explain also how RL depends on B when terminals 3 and 4 are used
as voltage probes (as in c).

4. Fano factor of a diffusive conductor.

For a diffusive conductor (e.g. a wire with many impurities, causing many scattering
events, resulting in diffusive motion of the electrons in the wire) it turns out that the
distribution function of the transmission values P (x) does not depend on the details of
the design, and reads

P (x) =

〈∑
n

δ(x− Tn)

〉
=
〈G〉
2Gc

1

x
√

1− x
, (5)

where {Tn} is the set of transmission probabilities through the conductor and Gc = 2e2/h
is the contact conductance.
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a. Using this distribution function, show that 〈G〉 equals the expectation value of the
conductance at low temperatures kBT � eV .

b. Calculate the expectation value of the shot-noise power, which is the zero-temperature-
limit of the noise power,

〈Ssn〉 = 〈S(0)〉
∣∣
kBT→0

=

〈
2
〈〈Q2〉〉

∆t

〉 ∣∣∣∣
kBT→0

, (6)

where Q is the transmitted charge in the time interval ∆t.

c. What is the expected Fano factor

〈F 〉 =
〈Ssn〉
2e〈I〉

, (7)

for a diffusive conductor?

Hint: If you forgot the explicit expression for Ssn, you can derive it from the cumulant-
generating function

ln Λ(χ) = 2∆t

∫
dE

h

∑
n

ln
{

1 + Tn(E)[eiχ − 1]fS(E)[1− fD(E)]

+Tn(E)[e−iχ − 1]fD(E)[1− fS(E)]
}
. (8)

5. Weak antilocalization.

We consider electronic propagation in a diffusive metal with strong spin-orbit interaction.
To understand localization effects due to phase coherent propagation along closed loops,
we consider two time-reversed paths a1 and a2 along a closed loop that contribute to
exact backscattering, such as schematically sketched below.

We assume that all scattering is elastic, that the propagation along both paths is fully
phase coherent, and that there is no magnetic field applied.
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The spin-orbit interaction couples the momentum of an electron to its spin, and therefore
the spin state of the electrons is changed while they travel through the material. For an
electron traveling along a given closed loop (such as a1), its initial spin state

|s〉 =

(
a
b

)
with |a|2 + |b|2 = 1, (9)

is related to its final spin state |s′〉 through some unitary transformation,

|s′〉 = Ûr |s〉 , (10)

which we can interpret as a rotation in spin space and takes the form of a 2 × 2 matrix
in our spinor notation. Most generally, we can decompose this rotation as

Ûr = R̂z(α)R̂y(θ)R̂z(β), (11)

in terms of three angles α, β, and θ. The operator R̂k(φ) denotes a rotation of φ along
the k-axis in spin space, and from the lecture on electron spin we remember that

R̂k(φ) = e−
i
~φŜk , (12)

with

Ŝx =
~
2

(
0 1
1 0

)
, Ŝy =

~
2

(
0 −i
i 0

)
, and Ŝz =

~
2

(
1 0
0 −1

)
. (13)

a. Show that

R̂z(φ) =

(
e−iφ/2 0

0 eiφ/2

)
, (14)

R̂y(φ) =

(
cosφ/2 − sinφ/2
sinφ/2 cosφ/2

)
. (15)

Hints: (i) The explicit result of a matrix exponential is given by its power expansion.
(ii) The following two power expansions could be helpful:

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
, (16)

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
. (17)

b. Give the explicit 2× 2 matrix form of Ûr as a function of α, β, and θ.

c. Since the time-dependent electron’s momentum is exactly opposite along the time-
reversed path a2 (compared to a1), the spin rotation acquired along a2 is also exactly
opposite. Show that for the overlap of the two resulting spin states (after traveling
along a1 and a2) one finds

〈s′′|s′〉 = 〈s|Û2
r |s〉. (18)
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d. There are many localization loops in a mesoscopic sample, all resulting in a different
Ûr. We assume that the spin-orbit interaction is so strong that for each loop of
interest the actual α, β, and θ can be considered as being drawn randomly from a
uniform distribution. Calculate the expectation value for 〈s′′|s′〉.
Hint: sinx cosx = 1

2
sin 2x.

d. Explain qualitatively how this result reflects in the conductivity of the sample, as
compared to a similar sample without spin-orbit interaction.
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