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1. Various qualitative questions.

Use only a few sentences to answer each question.

a. Explain what distinguishes a metal, an insulator, and a semiconductor, in terms of
the electronic band structure.

b. Explain what a Schottky barrier is.

c. Describe the Aharonov-Bohm effect and explain qualitatively how it arises.

2. Chemical potential for a two-dimensional electron gas.

a. Calculate the density of states

D2(E) =
dN

dE
,

with N(E) the number of allowed states with energy E or smaller, for a two-
dimensional free electron gas contained in an area A.

b. Express the chemical potential µ at temperature T in terms of the total electron
density n.

Hint : ∫ ∞
0

dx
1

aex + 1
= ln

(
1 + 1

a

)

3. Statistics of rare electron transfers

We consider the statistics of electron transfers through a tunnel junction where all trans-
mission probabilities Tn � 1 are small. This means that we can assume all successful
electron transfers through the junction to be uncorrelated, which allows us to find a simple
expression for the characteristic function describing the transfers.

We start by considering a very short time interval dt, during which the chance for a
transfer is dt/τ � 1, where 1/τ is the transfer rate.
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a. Show that the characteristic function of the probability distribution PN,dt for count-
ing N transfers within time dt can be approximated

Λdt(χ) = 〈eiχN〉 ≈ exp
{
dt(eiχ − 1)/τ

}
.

b. Assuming all transfers to be uncorrelated, write down the characteristic function
Λ∆t(χ) for a larger time interval ∆t in terms of the average number of transfers
〈N〉 = ∆t/τ .

c. Show that the distribution function PN,∆t describing the probability to have N trans-
fers occurring in the time interval ∆t is a Poisson distribution,

PN,∆t = e−〈N〉
〈N〉N

N !
.

d. Find the probability to have no transfers in a time interval ∆t.

e. Calculate the second cumulant 〈〈N2〉〉∆t for the time interval ∆t.

f. Find the Fano factor

F =
〈〈N2〉〉∆t
〈〈N〉〉∆t

,

for a tunnel junction in this Poisson limit.

4. Joule heating in the Drude model.

The Drude model uses the assumption that all collisions between electrons and impurities
randomize the direction of motion of the electron, 〈vx,y,z〉 = 0 directly after a collision.
Another assumption, which we did not discuss in the lectures, is that the collisions are
inelastic: It is assumed that each collision reduces the kinetic energy of the electron to
the same value 1

2
mv2

i (which is related to the temperature of the sample). Indeed, if we
would have assumed elastic collisions, the kinetic energy of the electrons would constantly
increase in the presence of an electric field, growing almost indefinitely for large samples.

a. We assume an electric field Ex present, which points in the x-direction. As we know,
the effect of this field is to shift vx by an amount −eExt/m during a time t. Calculate
the gain in kinetic energy during time t

∆E(t) =
1

2
m
[
v(t)2 − v(0)2

]
,

if the initial velocity is v(0) = vi(sin θ cosφ, sin θ sinφ, cos θ). Show that assuming
the direction of v(0) to be random yields an average energy gain during time t

〈∆E(t)〉 =
e2E2

xt
2

2m
.

2



b. The Drude model assumes all collisions with impurities to be uncorrelated. This
means that the statistics of these collisions are exactly the same as those of the
electron transfers through a tunnel junction considered in problem 3, and we can
thus use the results we obtained there: If the probability for an electron to collide
with an impurity in an infinitesimal time interval dt is dt/τ , where 1/τ is the collision
rate, then the probability that a randomly picked electron has suffered no collisions
during the preceding time t is e−t/τ .

Argue why the probability density function for the time between two successive
collisions for a single electron reads

p(t) =
1

τ
e−t/τ .

Hint : In terms of actual probabilities, p(t)dt is the probability to find a time between
two collisions in the interval [t, t+ dt].

c. Calculate the average time between two collisions.

d. Use the results from (a) and (b) to calculate the average energy an electron gains
between two collisions.

e. Assuming that all this energy gained between two collisions is transfered to the lattice
at the second collision, show that the average energy transfer from the electrons to
the sample per volume per second reads

σE2
x,

where σ = ne2τ/m is the conductivity, with n being the electron density.

f. Show that this yields for the total energy dissipated per second in a conductive
sample of length L and cross section A the familiar result

P = I2R,

where R = L/σA is the total resistance of the sample.

5. Landauer-Büttiker formalism and the quantum Hall effect.

Consider the following 6-terminal Hall bar:
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The bar has a width W , but in the middle there is a constriction of width d. A uniform
magnetic field B is applied perpendicularly to the 2DEG and points out of the plane,
leading to N edge states in the wide regions of the device. Inside the constriction there
are only n < N edge states available at the Fermi level. We thus assume that there are n
channels with perfect transmission in each direction through the constriction; the other
N − n edge states in the left and right parts of the device are not connected.

The following zoom-in might help to visualize the configuration of the edge channels near
the constriction, where I picked N = 5 and n = 2:

} n

}N

The Landauer-Büttiker equations,

Iα =
∑
β 6=α

Gαβ(Vα − Vβ),

with conductances Gαβ = (2e2/h)Tαβ relate the net current entering into terminal α to
the potentials at the various terminals. Here, Tαβ denotes the “direct transmission sum”
from terminal β to terminal α.

a. Neglecting impurity scattering and tunneling processes, list all non-zero Tαβ and give
their magnitudes.

b. Let terminals 1 and 4 be the “source” and the “drain” respectively through which a
current I runs, whereas the other terminals are ideal voltage probes. Find

– the Hall resistance R14,35 = (V3 − V5)/I;

– the Hall resistance R14,26 = (V2 − V6)/I;

– the Hall resistance R14,25 = (V2 − V5)/I;

– the Hall resistance R14,36 = (V3 − V6)/I;

– the longitudinal resistance R14,23 = (V2 − V3)/I;

– the longitudinal resistance R14,65 = (V6 − V5)/I;

– the 2-terminal resistance R14,14 = (V1 − V4)/I.

For convenience you can set V4 = 0.

Advice: This looks like a lot of contacts to consider and resistances to calculate. But
don’t panic, just write down the correct equations for all the Iα and you will see that
everything is rather simple to solve.
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