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QUESTION 1

a) Imagine contact between n–AlGaAs and GaAs is established with each material in separate
equilibria. Concentration gradients will result in diffusion of electrons from n–AlGaAs into
GaAs and diffusion of holes in the other direction. The resulting electric dipole causes a built–in
electric field E and potential V , and therefore band bending near the interface. The equilibrium
condition is a common Fermi level µ. Far from the interface, the situation is unchanged.
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b) Introduction of an undoped layer of AlGaAs will increase the distance between the 2DEG
and the donor impurities in n–AlGaAs. This will reduce the elastic scattering rate and increase
the mean free path for the electrons in the 2DEG. The mobility of the 2DEG will increase.

c) The Schrödinger equation for Φn(z) is, with potential V (z) = Fz,

−
h̄2

2m∗

d2Φn

dz2
+ FzΦn = EΦn.

Division by −F and multiplication with κ yields

1

κ2

d2Φn

dz2
− κzΦn = −

Eκ

F
Φn

when using the given definition of κ. Introduction of ξ = κz and Ẽ = Eκ/F then yields the
given equation

d2Φn

dξ2
− ξΦn = −ẼΦn.

d) Subband n starts at energy

En =
FẼn

κ
.

The constant 1/κ is a length with the value

(

(1.05 · 10−34)2

2 · 0.067 · 9.1 · 10−31 · 10 · 10−3 · 1.6 · 10−19/10−9

)1/3

= 3.837 nm.

Hence, subband 1 starts at energy

E1 = 10 · 2.34 · 3.837 = 90 meV,

and subband 2 starts at energy

E2 = 10 · 4.09 · 3.837 = 157 meV.
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With a Fermi level at µ = 100 meV, it is clear that only the lowest 2D subband will be occupied
by electrons.

e) Solution of the Schrödinger equation in 2D, with periodic boundary conditions (PBC), yields
plane–wave solutions

ψ(x, y) ∼ eik·r

with allowed values of the wave vector,

k = kxx̂+ kyŷ =
2π

L
(n1x̂+ n2ŷ) .

Hence, there is 1 allowed value of k in an area (2π/L)2 in k–space, and, because of spin
degeneracy gS = 2, there are 2 allowed states within this k–space area. Hence, the DOS in
k–space is constant,

D2(k) =
2

(2π/L)2
=

L2

2π2
.

f) The region of k–space with absolute value of the wave vector smaller than a given k is in 2D
a disk with area πk2. With the constant DOS derived above, the number of states within this
disk is

N2(k) = πk2 ·
L2

2π2
=
L2k2

2π
.

g) Since E(k) = h̄2k2/2m∗, i.e., k =
√

2m∗E/h̄2, the number of states with energy less than E
is

N2(E) =
L2

2π
·
2m∗E

h̄2
=
m∗L2

πh̄2
E.

Therefore, the 2D DOS is

D2(E) =
dN2

dE
=
m∗L2

πh̄2
,

a constant, independent of the energy.

h) −e has unit C, dE has unit J, ρ+
j (E) has unit 1/Jm, vj(E) has unit m/s, and Tj(E) is

dimensionless. Hence, the product of all of these factors has the unit C/s, i.e., A.

i) Contribution from right–going states in subband j:

I+

j = (−e)
∫ µ1

Et
j

dE ρ+

j (E) vj(E)Tj(E).

Contribution from left–going states in subband j:

I−j = −(−e)
∫ µ2

Et
j

dE ρ−j (E) vj(E)Tj(E).

The total 1D DOS pr unit length in subband j is

ρj(E) =
D1(E)

L
=

√
2m∗

πh̄
√
E
.
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This is distributed equally between right– and left–going states, so

ρ+

j (E) = ρ−j (E) =
1

2
ρj(E).

Therefore, the total current due to subband j is

Ij = I+

j + I−j = (−e)
∫ µ1

µ2

dE ρ+

j (E) vj(E)Tj(E).

The product of the 1D DOS pr unit length and the group velocity is simply a constant,

ρ+

j (E) vj(E) =

√
m∗

πh̄
√

2E
·
√

2E/m∗ =
1

πh̄
.

Hence, in the linear response limit µ1 ≃ µ2 ≃ EF , we obtain

Ij = (−e)(µ1 − µ2)Tj(EF )/πh̄ = (−e)(−eV )Tj(EF )/πh̄ =
2e2

h
Tj(EF )V,

with V = (µ1 − µ2)/(−e) the applied voltage between S and D. If several 1D subbands have
their bottom below the Fermi level EF , we must sum up the current contribution from each of
them. Consequently,

G =
I

V
=

∑

j Ij
V

=
2e2

h

∑

j

Tj(EF ).

j) The DOS pr unit area of the 2DEG is

D2(E)

L2
=

m∗

πh̄2
,

where we used the result in 1g). With a constant DOS pr unit area, we have simply

n2 =
D2

L2
·EF ,

so the Fermi level in the 2DEG is

EF =
n2πh̄

2

m∗

=
3.56 · 1015 · π · 1.052 · 10−68

0.067 · 9.1 · 10−31
≃ 13 meV.

k) From the figure, we read off a conductance of 6 · 2e2/h at a gate voltage -1.5 V. This means
that 6 1D subbands have energy below the Fermi level EF . (However, subband nr 7 has higher
energy than EF .) The energy levels in a 1D potential box of width W are

Ej =
p2

j

2m∗

=
h̄2k2

j

2m∗

=
h̄2(2π/λj)

2

2m∗

=
2h̄2π2

m∗λ2
j

.

The boundary condition on the wave functions, ψj = 0 at both ends of the 1D box, gives us
the possible wavelengths as

λ1 = 2W, λ2 = W, . . . λj =
2W

j
,
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and the energy levels

Ej =
h̄2π2j2

2m∗W 2
(j = 1, 2, 3, . . .).

If we take Ej = EF , we find the channel width

W =
h̄πj

√
2m∗EF

=
1.05 · 10−34πj

√
2 · 0.067 · 9.1 · 10−31 · 13 · 10−3 · 1.6 · 10−19

≃ 21j nm.

In our case, EF lies somewhere between E6 and E7, so the channel width W lies somewhere
between 126 and 147 nm, e.g., at about 135 nm.

QUESTION 2
a) With the given information, we have the following transmission sums:

T21 = T15 = T43 = N

T52 = T34 = N − n

T32 = T54 = n

and all the others are zero. (Actually, we should perhaps have interchanged all these indices,
since negatively charged electrons will be deflected to the right, with the given direction of the
magnetic field.)

b) We write down the Büttiker–Landauer equations (with iα = hIα/2e
2 and i = hI/2e2, to

save some typing):

i = i1 = T15(V1 − V5) = N(V1 − V5)

0 = i2 = T21(V2 − V1) = N(V2 − V1)

0 = i3 = T32(V3 − V2) + T34(V3 − V4) = n(V3 − V2) + (N − n)(V3 − V4) = −nV2 +NV3

−i = i4 = T43(V4 − V3) = N(V4 − V3) = −NV3

0 = i5 = T52(V5 − V2) + T54(V5 − V4) = (N − n)(V5 − V2) + n(V5 − V4) = −(N − n)V2 +NV5

From the 2. equation, we have V2 = V1, which, when inserted into the 3. equation yields
V3 = nV1/N , and when inserted into the 5. equation yields V5 = (N −n)V1/N . The 4. equation
gives I = (2e2/h)NV3 = (2e2/h)nV1. The various resistances are now

R14,23 =
V2 − V3

I
=

h

2e2
1 − n/N

n
=

h

2e2
(1/n− 1/N)

R14,25 =
V2 − V5

I
=

h

2e2
1 − (N − n)/N

n
=

h

2e2
(1/N)

R14,35 =
V3 − V5

I
=

h

2e2
n/N − (N − n)/N

n
=

h

2e2
(2/N − 1/n)

R14,14 =
V1 − V4

I
=

h

2e2
1 − 0

n
=

h

2e2
(1/n)
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QUESTION 3
a) The system is in the diffusive but phase–coherent regime, i.e., L ≫ le and L ≪ lφ. Here,
L is the system size, le is the average distance between elastic scatterers, and lφ is the phase
coherence length. In zero magnetic field, there will now be an increased probability of pre-
cise back–scattering, since a given (diffusive) path that results in precise back–scattering and
its time–reversed counterpart will interfere constructively. High probability of back–scattering
means high resistance.

b) If we turn on a weak magnetic field, the constructive interference described in a) will be
destroyed, the resistance will go down, and the conductance (or conductivity) will increase.

c) The argument in a) requires phase–coherent transport. Increasing the temperature will
reduce the phase–coherence length, and eventually wipe out the weak localization effect.
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