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QUESTION 1

a) The 6 corners of the 1BZ - the so-called K points - are located at ±(4π/3
√

3a)ŷ, ±(b2xx̂ +
(1/3)b2yŷ) = ±((2π/3a)x̂+(2π/3

√
3a)ŷ, and ±(b1xx̂+(1/3)b1yŷ) = ±((2π/3a)x̂− (2π/3

√
3a)ŷ.

Here, it is easiest to calculate E± at the corner point on the ky axis, where we have

cos

√
3kya

2
= cos

2π

3
= −1

2
.

Hence,

E± = E0 ± |γ|
√

1 + 4 · 1 ·
(

−1

2

)

+ 4 ·
(

−1

2

)2

= E0.

This shows that the valence band E− and the conduction band E+ have equal energies at the
six corners of the 1BZ. In other words, the bandgap is zero.

b) We take the given hint and look at e.g. E±(kx, 4π/3
√

3a) for small values of kx. We then
have

cos
3kxa

2
≃ 1 − 1

2

(

3kxa

2

)2

= 1 − 9k2
xa

2

8
,

and

E± ≃ E0 ± |γ|
√

√

√

√1 + 4 ·
(

1 − 9k2
xa

2

8

)

·
(

−1

2

)

+ 1

= E0 ± |γ|
√

9k2
xa

2

4

= E0 ±
3|γ||kx|a

2

Photons are massless particles, so the energy–momentum relation for photons is simply E = pc.
For electrons in a crystal, we know that the wavenumber, measured relative to the energy band
minimum, and multiplied by h̄, is the crystal momentum. More precisely, in our situation,

p = h̄kx,

so we may write for the graphene electrons at the Fermi level, near the conduction band
minimum,

E =
3

2
|γ|akx = vF p,

with Fermi velocity

vF =
3|γ|a
2h̄

.

The nearest neighbour distance in graphene is a ≃ 1.4 Å, so if γ ∼ 2 eV, the velocity of the
electrons is

vF ∼ 3 · 2 · 1.6 · 10−19 · 1.4 · 10−10

2 · 1.05 · 10−34
≃ 640 km/s.
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QUESTION 2

With zero applied magnetic field, the spin up and the spin down electrons both see one magnetic
layer with parallel and one with antiparallel magnetization. Hence, the resistance for both types
of spin is R+ + R−. In the two-current model, the total resistance R(H = 0) is obtained by
treating the two spins as separate and independent conducting channels, i.e., their individual
resistances are added as resistors in parallel:

R(H = 0) =

(

1

R+ + R−

+
1

R+ + R−

)−1

=
R+ + R−

2
.

With an applied magnetic field H > Hs, one half of the electrons sees two magnetic layers with
parallel magnetization, whereas the other half sees two layers with antiparallel magnetization.
Hence, the resistance for one half of the electrons is 2R+ and for the other half, it is 2R−. In
this case, the total resistance is therefore

R(H > Hs) =

(

1

2R+

+
1

2R−

)−1

=
2R+R−

R+ + R−

.

The ratio of the latter to the former is about 0.55, or 11/20, in the experiment by Baibich et
al. Hence, the opposite ratio is

R(H = 0)

R(H > Hs)
=

(R+ + R−)2

4R+R−

=
20

11
.

In terms of the ratio x = R+/R−, this yields the equation

x/4 + 1/4x + 1/2 − 20/11 = 0,

or
x2 − 58x/11 + 1 = 0,

which has the solution (x > 1 is specified in the exam question)

x = 29/11 +
√

(58/11)2 − 4/2 ≃ 5.1.

QUESTION 3

a) The bandgap in GaAs is smaller than in Al0.3Ga0.7As, by about 0.4 eV. The lattice constant
is almost the same in the two materials (they are ”lattice matched”), so thin layers (down to
a few atomic layers) of one of the materials can be grown on top of the other without causing
much strain at the interface. The different bandgaps result in a lower conduction band edge
(and a higher valence band edge) in GaAs than in Al0.3Ga0.7As. The DBS potential energy
profile represents the position dependent conduction band minimum, where the two potential
barriers are layers of Al0.3Ga0.7As and the rest is GaAs.
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b) To leading order when E ≪ V0 and κd ≫ 1, a number of simplifications may be done:
σ ≃ κ/k ≫ 1, δ ≃ κ/k ≃ σ ≫ 1, and sinh κd ≃ cosh κd ≃ exp(κd)/2. In the expression for t,
we may then neglect cosh κd in comparison with i(δ/2) sinh κd (since δ ≫ 1), and we obtain

T = |t|2 ≃ 4

δ2 sinh2 κd
≃ 16k2

κ2
e−2κd.

Since σ ≃ δ, it follows immediately that R = |r|2 ≃ 1 in the opaque barrier limit, as expected.

c) The amplitude of the path in the left figure is t·exp(ikL)·t, i.e., transmission through the left
barrier, free propagation across the well, and finally transmission through the right barrier. The
amplitude of the path in the right figure contains an additional factor r · exp(ikL) · r · exp(ikL),
due to reflection inside the well off the right barrier, free propagation across the well (to the
left), reflection off the left barrier, and free propagation across the well (to the right). The next
path involves four reflections inside the well, and hence yet another factor r2 exp(2ikL). And
so on! This is a geometric series:

tSD = t2eikL + t2eikLr2e2ikL + t2eikLr4e4ikL + . . .

= t2eikL
∞
∑

j=0

(

r2e2ikL
)j

=
t2eikL

1 − r2e2ikL
,

which is what we were asked to show.

d) If we neglect the phase of the reflection amplitude, the transmission probability of the DBS
may be written (using R = 1 − T where necessary)

TSD = |tSD|2 ≃
T 2

|1 − Re2ikL|2

=
T 2

(1 − R cos 2kL)2 + R2 sin2 2kL

=
T 2

1 − 2R cos 2kL + R2

=
T 2

1 − 2(1 − T ) cos 2kL + (1 − T )2

=
T 2

1 − 2 cos 2kL + 2T cos 2kL + 1 − 2T + T 2

=
T 2

2(1 − T )(1 − cos 2kL) + T 2

≃ T 2

2(1 − cos 2kL) + T 2

The first term in the denominator disappears when cos 2kL = 1, giving resonant tunneling
TSD = 1 for 2kL = n · 2π (n = 1, 2, . . .), i.e., for electron waves with λ = 2π/k = 2L/n. This is
precisely the condition for standing waves inside the well of width L.
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e) The current is essentially given by an integral of the transmission probability, over energies
corresponding to states that are occupied in the source contact and empty in the drain contact.
When the applied voltage V is increased from zero, the resonances are typically all located
above the Fermi level, and the resulting current is small (figure 1 below). At a certain value
of V , a resonance falls below the Fermi level of the source contact, and the current increases
significantly due to the large transmission probability at resonance (figure 2 below). A further
increase in V brings this resonance below the conduction band edge of the source contact, and
the current drops (figure 3 below). In this region, dI/dV is negative, and we have an I(V )
curve with a region of negative differential resistance.

1

2

3

QUESTION 4

a) Classically, the electrons in the 2DEG will move in circular orbits with radius r = rc =
v/ωc = mv/eB (the cyclotron radius). With B pointing out of the plane, the electrons will
be deflected to the left. Far from the edges of the 2DEG, the electrons are able to complete
the circular orbit, and they will not contribute to the net current I along the channel (between
terminals 1 and 4). Electrons located near the upper or lower edge of the 2DEG will not be able
to complete the circular orbit. They will collide with the edge and move in ”skipping orbits”
along the edge - to the left near the lower edge and to the right near the upper edge:

5



B

b) An electron entering the 2DEG in terminal 3 will move along the upper edge and end up in
terminal 4. The edge states near the lower edge are far away, so the probability of an electron
being scattered from a right-going edge state near the upper edge to a left-going edge state
near the lower edge is very small. (Deviations from this idealized situation are discussed in d
below.) Hence, only elements Tj+1,j (and T15) will be non-zero, and with N edge states at the
Fermi level near each of the two edges we have

T21 = T32 = T43 = T54 = T15 = N.

All the other elements of the transmission matrix are zero.

c) The terminals 2, 3, and 5 are voltage probes, so I2 = I3 = I5 = 0. From the Büttiker–
Landauer equations we then have

I1 = G15(V1 − V5) = I,

I2 = G21(V2 − V1) = 0,

I3 = G32(V3 − V2) = 0,

I4 = G43(V4 − V3) = −I,

I5 = G54(V5 − V4) = 0.

The 2. and 3. of these equations immediately yield V3 = V2 = V1 = V . The 5. equation yields
V5 = V4 = 0. Hence,

RH = R14,25 =
V2 − V5

I
=

V

I
=

1

G15

=
h

2e2

1

N

RL = R14,23 =
V2 − V3

I
= 0

d) The results obtained in c) are valid as long as the Fermi level EF lies well above the energy
(N−1/2)h̄ωc of the N -th Landau level in the bulk region of the 2DEG, and well below the energy
(N + 1/2)h̄ωc of the N − 1-th Landau level in the bulk region. In that case, back-scattering
is negligible, and the Hall resistance is quantized, whereas the longitudinal resistance is zero.
This is clearly observed in the experiment. For example, when 8 < B < 9.5 T, there is a Hall
plateau with

ρxy(B) =
Ey

jx

=
VH

I
= RH(B)

at a value slightly below 13 kΩ. This corresponds well with the value of the ”resistance quan-
tum” h/2e2 ≃ 12.9 kΩ. In this magnetic field range, we see that

ρxx(B) =
Ex

jx

=
V2 − V3

I

W

L
= RL(B)

W

L
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is zero, in agreement with c). For such a strong magnetic field, only one bulk-region Landau
level lies below the Fermi level, giving rise to electron transport via a single edge state. Re-
duction of B to about 4 T brings a second Landau level below EF , transport takes place via
two edge states, and the Hall resistance is reduced to about 6.4 kΩ. Again, we see that the
longitudinal resistance is essentially zero.
In the transition between two Hall plateaus, the highest occupied Landau level will at some
stage have an energy very close to the Fermi level. This state will then be extended across
the whole sample in the transverse direction, and the probability of back-scattering increases
severely. This explains why the longitudinal resistance RL, or the longitudinal resistivity ρxx,
increases significantly. The oscillations in RL as a function of B are called Shubnikov - de
Haas oscillations. Disorder (e.g. impurities) introduces localized states within the 2DEG, and
scattering from one edge to the other becomes more effective than in a perfect sample.
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