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Problem 1: Weak Localization

(a) What is the origin of the weak localization effect ?

Solution

Weak localization arises from constructive quantum interference in a disordered solid.

This gives rise to a quantum mechanical correction to the classical theory of conduction,

the Drude formula. The origin is the enhanced quantum mechanical probability for an

electron to return to its initial position. This is because a particle can return to its

origin by following a clock-wise or counter-clock-wise loop. The quantum mechanical

phases acquired along these two loops are identical. Therefore, the quantum mechanical

probability for returning is twice the classical probability for return. As a consequence,

weak localization enhances the resistivity and makes the system slightly more localized.

(b) Why is the effect called ”weak” localization ?

Solution

The effects is a small correction to the resistivity that is a precursor to complete, or

strong [Anderson], localization. It is therefore called ”weak” localization.

(c) Why will a magnetic field affect the weak localization effect ?

Solution

Weak localization is caused by an increased probability for an electron to be back

scattered. This is because a particle that returns to its origin can originate in two

time-reversed paths that have exactly the same quantum mechanical phases. The

quantum mechanical probability of returning is therefore twice the classical probability

of returning. A magnetic field breaks time reversal symmetry, induces a phase difference

between the two time-reversed paths, reduces the return probability, and enhances the

conductivity.

Problem 2: The Quantum Hall Effect

Consider a two-dimensional electron gas in the x-y plane, where there is a transverse har-

monic potential of the form V (y) = mω2
0y

2/2 and a magnetic field B = Bz applied along

the z-direction. The Schrödinger equation is[
− h̄2

2m

(
∇+

ie

h̄
A

)2

+
1

2
mω2

0y
2

]
ψ(x, y) = Eψ(x, y) . (1)

Choose the Landau gauge where the electromagnetic vector potential is A = (−yB, 0, 0).
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(a) Use the Schrödinger equation (1) and the ansatz ψk,n(x, y) = ϕn(y) exp ikx to show

that the equation for ϕn is[
− d2

du2
+ (u−K)2 +R2u2

]
ϕn(u) = ϵk,nϕn(u) , (2)

where we have introduced the dimensionless variables u = y/lb, R = ω0/ωc, ϵ =

E/(h̄ωc/2), K = klB. Additionally, lB = (h̄/(eB))1/2 is the magnetic length, and

ωc = eB/m is the cyclotron frequency.

Solution

By using the Landau gauge, the Schrödinger equation (1) can be written as[
− h̄2

2m

(
∂

∂x
− iey

h̄
B

)2

− h̄2

2m

∂2

∂y2
+

1

2
mω2

0y
2

]
ψ(x, y) = Eψ(x, y) . (3)

With ψk,n(x, y) = ϕn(y) exp ikx, ∂/∂x→ ik so that(
∂

∂x
− iey

h̄
B

)2

→
(
ik − iey

h̄
B

)2

= −
(
k − ey

h̄
B

)2

. (4)

We also make use of

h̄2

2m

1

l2B
=

1

2
h̄
eB

m
=

1

2
h̄ωc . (5)

The first term in the Hamiltonian appearing in Eq. 3 is then

h̄2

2m

(
k − ey

h̄
B

)2

=
h̄2

2m

1

l2B

(
klB − y

lB

)2

=
1

2
h̄ωc

(
klB − y

lB

)2

. (6)

The second term is

− h̄2

2m

1

l2B

∂2

∂(y/lB)2
=

1

2
h̄ωc

∂2

∂(y/lB)2
(7)

and the third term is

1

2
mω2

0y
2 =

1

2
mω2

c l
2
b

(
y

lB

)2 ω2
0

ω2
c

=
1

2
h̄ωc

(
y

lB

)2 ω2
0

ω2
c

. (8)

With y = lBu and k = K/lB we find Eq. 2 with ϵ = E/(h̄ωc/2), qed.

(b) Demonstrate that Eq. 2 can be re-written into the form of an equation for a particle

in a harmonic potential and that the solution in terms of the original variables is

ψk,n(x, y) = eikxϕn(y − L2
Bk) , (9)

where ϕn(y) is a harmonic oscillator function that satisfies(
− h̄2

2m

d2

dy2
+

1

2
mΩ2y2

)
ϕn(y) = h̄Ω

(
n+

1

2

)
ϕn(y) , (10)
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L2
B =

ω2
c

ω2
c + ω2

0

l2B (11)

and the eigenenergy for the eigenstate ψk,n(x, y) is

Ek,n = h̄Ω(n+
1

2
) +

h̄2k2

2MB
, (12)

where Ω = (ω2
c + ω2

0)
1/2, and MB = mΩ2/ω2

0.

Solution

The potential energy increases at most as a quadratic function in the transverse coor-

dinate u, so we can re-write the potential terms as

(u−K)2 +R2u2 =
(
1 +R2

)(
u− K

1 +R2

)2

+K2 − K2

1 +R2
(13)

This corresponds to a displaced harmonic oscillator potential term (quadratic in coor-

dinate) with a re-defined energy:[
− d2

du2
+ (1 +R2)(u− K

1 +R2
)2
]
ϕn(u) =

(
ϵk,n − R2K2

1 +R2

)
ϕn(u) (14)

Let us now return to the original variables:

1 +R2 = 1 +
ω2
0

ω2
c

=
Ω2

ω2
c

, (15)

u− K

1 +R2
=

y

lB
− klB

Ω2
ω2
c =

1

lB

(
y − ω2

c

ω2
0 + ω2

c

kl2B

)
=

1

lB

(
y − L2

Bk
)
, (16)

1

2
h̄ωc

(
ϵ− ω2

0

ω2
c

ω2
c

Ω2
l”Bk

2

)
= E− 1

2
h̄
eB

m

h̄

eB

ω2
0

ω2
0 + ω2

c

k2 = E− h̄2

2m

ω2
0

ω2
0 + ω2

c

k2 = E− h̄2k2

2MB
.

(17)

This implies that the energy levels are

Ek,n = h̄Ω

(
n+

1

2

)
+
h̄2k2

2MB
, (18)

where n = 0, 1, 2, · · · and k is a continuum number. The harmonic oscillator functions

are displaced and have arguments y − L2
Bk.

(c) Compute the particle current density

j =
h̄

m
Im
(
ψ†∇ψ

)
+

e

m
A|ψ|2 (19)

for the eigenstate ψk,n that we found above. What is the sign of the current density

along the x-direction, jx ?
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Solution

Let us first consider the current along the y-direction. Since Ay = 0,

Im

(
e−ikxϕn(y − L2

Bk)
∂

∂y
eikxϕn(y − L2

Bk)

)
= 0 , (20)

and because the harmonic oscillator functions are real, we find that jy = 0.

Second, we consider the current along the x-direction. In this case we have Ax = −yB

and we make use of

Im

(
e−ikxϕn

∂

∂x
eikxϕn

)
= kϕ2n (21)

so that

jx =

(
h̄k

m
− eyB

m

)
ϕ2n(y) = −ωc

(
y − l2Bk

)
ϕ2n(y − L2

Bk) (22)

Since ϕ2n(y − L2
Bk) is always positive, jx ≤ 0 when y > l2Bk and jx ≥ 0 when y < l2Bk

irrespective of the quantum number n and the frequencies ωc and ω0.

Problem 3: The Landauer-Büttiker formalism

The Landauer-Büttiker formula for the conductance is

G =
e2

h

∑
n

Tn , (23)

where Tn is the transmission probability for transverse wave guide mode n and the sum is

over transverse wave guide modes.

(a) Consider a one-dimensional system (only one wave guide mode) with a left and right

reservoir with chemical potentials µL and µR, respectively, such that eV = µL − µR.

Find arguments for how the current should be expressed in terms of the velocity v(ϵ)

of an electron at energy ϵ, the density of states in one dimension N(ϵ) = 2/[hv(ϵ)], the

transmission probability T (ϵ), and the distribution functions in the left and the right

reservoirs f(ϵ−µL) and f(ϵ−µR). Derive from these arguments the Landauer-Büttiker

conductance in the linear response regime (the bias voltage is much smaller than the

Fermi energy) at zero temperature, Eq. 23 with only one transverse wave guide mode,

G = (e2/h)T .

Solution

The probability of finding an electron at energy ϵ in the left (right) reservoir is deter-

mined by the Fermi-Dirac distributiuon function f(ϵ− µL) (f(ϵ− µR)).
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The current consists of right-going and lef-going particles. The probability that an

electron will move from the left reservoir to the right reservoir is

Pl→r(ϵ) = f(ϵ− µl) [1− f(ϵ− µR)]T (ϵ) . (24)

Similarly, the probability that an electron will move from the right reservoir to the

right reservoir is

Pr→l(ϵ) = f(ϵ− µr) [1− f(ϵ− µl)]T (ϵ) . (25)

The net current produced by electrons with energy ϵ is

I(ϵ) = N(ϵ)ev(ϵ) [Pl→r − Pr→l] . (26)

where N(ϵ) = 2/[hv(ϵ)] is the density of states in one dimension. The total curent is

then

I =
2e

h

∫
dϵ (f(ϵ− µr)− f(ϵ− µl))T (ϵ) (27)

We consider the linear response regime where eV = µl − µr is small. We may then

expand

f(ϵ− µl) ≈ f(ϵ− µ0) + (µl − µ0)

(
−∂f(ϵ− µ0)

∂ϵ

)
(28)

and

−f(ϵ− µr) ≈ f(ϵ− µ0) + (µr − µ0)

(
−∂f(ϵ− µ0)

∂ϵ

)
(29)

where µ0 is the equilibrium chemical potential.

At low temperatures (
−∂f(ϵ− µ0)

∂ϵ

)
= δ(ϵ− µ0) (30)

so that the total current becomes

I =
2e2

h
T (µ0)V (31)

and the conductance G = I/V is

G =
2e2

h
T (µ0) (32)

q.e.d.
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(b) We consider a narrow quantum wire that is created in a two-dimensional electron

gas such that the system is infinite in the x-direction, but has a finite width L in

the y-direction. The potential is assumed to be infinite outside the wire where the

wave function vanishes. We assume there is no scattering in the wire and transport is

ballistic. Show that the conductance is

G =
2e2

h

[
LkF
π

]
, (33)

where [· · ·] represents the integral part of the number, e.g. [2.1] = 2.

Solution The solution can be found as follows. The energy of the system has three

contributions arising from the motion along the x and y directions. The particle is

free to move along x and the energy associated with this motion is Ex. Along the

transverse direction y, the wave function must represent standing waves of the form

ψ(y) = A sinnπy/L, where A is a normalization constants and n = 0, 1, 2, 3, · · ·. The

total energy of the system is then

E = Ex +
h̄2

2m

(
π

L

)2

n2 . (34)

The wave guide modes are only propagating when Ex > 0. Transport is governed by

electrons at the Fermi energy EF = h̄2k2F /(2m). This implies that the propagating

modes are determined by

EF ≥ h̄2

2m

(
π

L

)2

n2 (35)

so that

n ≤
(
LkF
π

)
. (36)

Since transport is ballistic, the transmission probability Tn = 1 for all propagating

modes. Keeping in mind that the quantum number n is an integral number, the

Landauer-Buttiker condutance is therefore

G =
2e2

h

[
LkF
π

]
. (37)

Problem 4: Magnetoresistance

(a) What do the abbrevations AMR, GMR, and TMR mean ? What is the cause of AMR,

GMR, and TMR ?
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Solution

AMR - Anisotropic magnetoresistance. GMR - giant magnetoresistance. TMR - tunnel

magnetoresistance.

When a current passes through a ferromagnet, the resistance depends on the relative

direction of the current and the magnetization. This anistropic magnetoresistance is

caused by the spin-orbit coupling.

Giant magnetoresistance occurs in metallic hybrid systems of ferromagnets and normal

metals. The resistance depends on the relative orientation of two or more ferromagnets

and is caused by spin-dependent scattering in the ferromagnets. Electrons aligned

or anti-aligned to the magnetization experience different potentials and have different

conductances.

Tunnel magnetoresistance occurs in transport through tunnel junctions between ferro-

magnets. The current depends on the relative orientation of the ferromagnerts and is

caused by spin-dependent tunneling.


