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Problem 1: Various

(a) What is a Shottky barrier between a metal and a semiconductor ?

Solution:

From Wikipedia: ”A Schottky barrier, named after Walter H. Schottky, is a potential

energy barrier for electrons formed at a metal-semiconductor junction. Schottky bar-

riers have rectifying characteristics, suitable for use as a diode. One of the primary

characteristics of a Schottky barrier is the Schottky barrier height, denoted by ΦB.

The value of ΦB depends on the combination of metal and semiconductor.

Not all metal-semiconductor junctions form a rectifying Schottky barrier; a metal-

semiconductor junction that conducts current in both directions without rectification,

perhaps due to its Schottky barrier being too low, is called an ohmic contact.”

(b) Derive the classical Drude formula for the electron conductivity σ based on Newton’s

second law:

σ =
e2nτ

m
, (1)

where τ is the typical scattering time between collisions, n is the electron density, e is

(minus) the electron charge, and m is the electron mass. You should also state what

the basic assumptions in deriving the Drude formula are.

Solution

In-between the scattering events, Newton’s 2. law states that the acceleration of the

electron at position r subject to an electric field E is

m
d2r

dt2
= −eE . (2)

As a consequence, the velocity v = dr/dt evolves in time as

v(t) = v(0)− t e
m
E , (3)

where v(0) is the position at the initial time t = 0 just after the last scattering event.

Our interest is in the average velocity obtained by averaging over many collisions

vavg(t) = 〈v(t)〉 (4)

= 〈v(0)〉 − 〈t〉 e
m
E . (5)
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Since the average initial velocity vanishes, 〈v(0)〉 = 0, and the typical scattering time

is τ , 〈t〉 = τ , we find

vavg = −τ eE
m

(6)

so that the average current density j = −nev is

j =
e2nτ

m
E , (7)

which identifies the Drude conductivity via Ohm’s law j = σE as

σ =
e2nτ

m
. (8)

(c) Consider a spin-degenerate (gs = 2) free electron gas and compute the density of states

as a function of energy ε, D(ε), when the system is three-dimensional with volume V .

Solution

We consider the system as a particle in a box with periodic boundary conditions.

Along each of the three directions (i=1,2, or 3), the wave function is then of the form

ψi ∼ exp ikiri. The periodic boundary conditions dictate that ki = 2πni/L, where ni

is an integral number. There is then 1 allowed k-point in volume (2π/L)3 in k-space.

Since the spin degeneracy equals 2, the density of states in k-space is

D(k) =
V

4π3
(9)

and the number of k-states with a magnitude of k-vector smaller than k is

N(k) = D(k)V3 (10)

where the associated volume V3 = 4πk3/3 so that

N(k) =
V

3π2
k3 . (11)

The relation between the momentum k and energy ε is ε = h̄2k2/2m so that the number

of states with an energy less than ε is

N(ε) =
V

3π2

(
2mε

h̄2

)3/2

. (12)

The density of states is then

D(ε) =
dN(ε)

dε
=

V

2π2

(
2m

h̄2

)3/2

ε1/2 . (13)
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Problem 2: Transmission and Landauer-Büttiker conductance

Consider a spin-degenerate one-dimensional system attached to a left and a right reservoir.

The Landauer-Büttiker conductance G is

G =
2e2

h
T , (14)

where e is (minus) the electron charge, h is Planck’s constant, and T = |t|2 is the transmission

probability in terms of the transmission amplitude t.

(a) We now assume a particle with mass m and energy ε moves in a one-dimensional

channel in the presence of a single scatterer with a potential

V (x) = V0δ(x) , (15)

where δ(x) is the Dirac-delta function [
∫∞
−∞ dxf(x)δ(x − y) = f(y)] and V0 is the

strength of the scatterer with dimension [V0] = Jm. We define a scattering matrix

consisting of reflection r (r′) and transmission amplitudes t (t′) for electrons coming

from the left (right) lead as

S =

 r t′

t r′

 . (16)

Show that the reflection amplitudes are

r = r′ =
V0

ih̄v − V0
(17)

and the transmission amplitudes are

t = t′ =
ih̄v

ih̄v − V0
, (18)

where the velocity v =
√

2E/m is the same in both leads since the potential vanishes

there.

Solution

The stationary Schrödinger equation is[
− h̄2

2m

d2

dx2
+ V0δ(x)

]
ψ(x) = εψ(x) . (19)

Let us first consider an incoming wave from the left. The wave function is

ψ(x) =


1√
k

[exp ikx+ r exp−ikx] x < 0

1√
k
t exp ikx x > 0

(20)
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where k =
√

2mε/h̄ is the wavevector which is related to the velocity via v = h̄k/m.

Continuity of the wave function gives

ψ(x = 0+) = ψ(x = 0−) (21)

1 + r = t . (22)

By integrating the Schrödinger equation (19) across the scatterer located at x = 0, we

find

− h̄2

2m

[(
dψ

dx

)
x=0+

−
(
dψ

dx

)
x=0−

]
+ V0ψ(x = 0) = 0 (23)

− h̄
2
iv [t− (1− r)] + V0t = 0 (24)

From Eqs. (22) and (24) we find that

t =
ih̄v

ih̄v − V0
(25)

and

r =
V0

ih̄v − V0
(26)

Furthermore, since the system is mirror symmetric around x = 0, the reflection and

transmission amplitudes associated with an incoming electron from the right are iden-

tical to the ones for an incoming electron from the left, r = r′ and t = t′.

(b) Imagine that we have two scatterers in series with scattering matrices S1 and S2,

respectively. These two scatterers together define a total scattering matrix S12.

Show that the reflection and transmission amplitudes of the total scattering matrix are

t12 = t1[1− r2r′1]−1t2 (27)

r12 = r1 + t1r2[1− r2r′1]−1t′1 (28)

t′12 = t′2[1− r′1r2]−1t′1 (29)

r′12 = r′2 + t′2r
′
1[1− r′1r2]−1t2 (30)

in terms of the reflection and transmission amplitudes of the scattering matrices S1

and S2. It may be useful to know that (1− x)−1 =
∑∞

i=0 x
i.

Solution

Let us first consider the total transmission amplitude t12. We sum over all possible

ways to get through the scatterer from the left to the right:

t12 = t1t2 + t1r2r
′
1t2 + t1r2r

′
1r2r

′
1t2 + . . . (31)
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t12 = t1[1− r2r′1]−1t2 (32)

where we have used that (1−x)−1 =
∑∞

i=0 x
i. Similarly, we can find that the reflection

amplitude for an imcoming electron from the left is

r12 = r1 + t1r2t
′
1 + t1r2r

′
1r2t

′
1 + . . . (33)

r12 = r1 + t1r2[1− r2r′1]−1t′1 (34)

In the same way, we can find the reflection and transmission amplitudes associated with

an incoming electron from the right (r′12 and t′12) by interchanging r1 ↔ r′2, r2 ↔ r′1,

t1 ↔ t′2, and t2 ↔ t′1 with the result:

t′12 = t′2[1− r′1r2]−1t′1 (35)

r′12 = r′2 + t′2r
′
1[1− r′1r2]−1t2 (36)

(c) We now consider two identical scatterers in the one-dimensional channel located at

x = −a/2 and x = a/2 with a total potential

V (x) = V0δ(x+ a/2) + V0δ(x− a/2) . (37)

As a scattering problem, we can now view the system as consisting of three scattering

matrices in series where the leftmost and rightmost scattering matrices are identical to

the one in problem a), S1 = S3 = S, and in the middle of the system (−a/2 < x < a/2),

there is no reflection, but the transmission amplitude acquires a phase ka so that its

scattering matrix is

S2 =

 0 exp ika

exp ika 0

 . (38)

What is the total transmission amplitude for the whole system (consisting of scattering

matrices S1, S2, and S3) ? Show that the total transmission probability is

T123 =
T 2

1− 2R cos θ +R2
(39)

where θ = 2 [ka+ arctan h̄v/V0].

Solution

Let us first concatenate the scattering matrices S1 and S2. Since r2 = r′2 = 0, Eq. (27)

gives

t12 = t exp ika , (40)



6

r12 = r , (41)

t′12 = t exp ika , (42)

r′12 = r exp 2ika , (43)

where the transmission t and reflection amplitudes r are defined in Eqs.(18) and (17),

respectively.

Next, we concatenate the combined scattering matrix S12 with scattering matrix S3 to

find the total transmission amplitude t123 using Eq. (27):

t123 = t12[1− r3r′12]−1t3 (44)

t123 = t exp ika[1− rr exp 2ika]−1t (45)

Making use of r =
√
R exp iθ with θ = arctan h̄v/V0, we find the transmission proba-

bility

T123 = |t123|2 (46)

T123 =
|t exp ika|4

[1−R exp (2ika+ 2iθ)][1−R exp (−2ika− 2iθ)]
(47)

T123 =
T 2

1− 2R cos θ +R2
. (48)

(d) Consider that the transmission probability T for each scatterer is very small T � 1.

What is the maximum transmission probability T123 and the associated Landauer-

Büttiker conductance G for an arbitrary energy ε ? Comment on the physical inter-

pretation of this result.

Solution

The maximum transmission probability

T123 =
T 2

1− 2R cos θ +R2
(49)

is achieved when the denominator attains its minimum which is when θ = 0. In this

case, we have

T123 =
T 2

1− 2R+R2
(50)

T123 =
T 2

(1−R)2
(51)

T123 = 1 (52)
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Despite the fact that the transparancy of each scatterer is low, the total transmission

probability T123 = 1 with an associated Landauer-Büttiker conductance that equals

the conductance quantum G = 2e2/h.

This is resonant tunneling and occors when the energy of the particle equals the reso-

nant state between the scatterers. For instance, in the limit of an infinite strength of

the scatterers V0 →∞, the condition θ = 0 implies that

ka = nπ (53)

so that the wave function is a standing wave between the scatterers. When the energy

of the particle ε = h̄2k2/2m is in resonance with one of the bound states within the

scatterers

εn =
h̄2

2m

n2π2

a2
, (54)

the transmission probability becomes equal to one.

Problem 3: Single-electron tunneling

Consider a junction that has a capacitance C and a large resistance R due to weak tunneling.

Assume there is a charge Q to the left of the junction and a charge −Q to the right of the

junction. This charge may depend on time.

(a) Demonstrate that an energy EC = Q2/2C is required to charge the capacitor from a

zero charge to a charge Q.

Solution

For a capacitor, the charge Q is related to the voltage difference V (Q) across the

junction as Q = CV (Q). The work to move one infinitesimal charge dq across the

junction is dqV (Q).

The energy cost associated with charging the capacitor from a zero charge to a charge

Q is therefore

Ec =

∫ Q

0
dqV (q) =

∫ Q

0
dq
q

C
=
Q2

2C
. (55)

(b) At what thermal energies with respect to EC do we expect single-electron tunneling

effects to become important and why ?

Solution
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At high temperatures kBT � Ec, the effect of one extra electron on the capacitor is

negligible as compared to the typical thermal energy fluctuations. The effect of the

tunneling of a single electron can then not be seen.

When the temperature is low, kBT � EC , the energy change caused by tunneling of

a single electron dominates. If this energy cannot be supplied by other parts of the

circuit, there is no flow of electrons across the junction.

(c) Assume the junction (with capacitance C and tunnel resistance R) is an open circuit.

Demonstrate that the typical decay time of the charge Q is τ = RC.

Solution

The system is an open circuit. We define the potential so that it vanishes to the left

of the junction and equals V to the right of the junction. The rate of change of the

charge to the left of the junction is then

dQ

dt
= −V (t)/R = −Q(t)

RC
(56)

so that the typical time constant is τ = RC and the evolution of the charge as a

function of time is

Q(t) = Q(0) exp−t/τ , (57)

where Q(0) is the charge at t = 0.

(d) Find a condition using the tunnel conductance G = 1/R when quantum flucutations

can be avoided so that single-electron tunneling effects can be clearly seen.

Solution

The classical charging energy associated with the tunneling of one electron is Ec =

e2/2C. From Heisenberg’s uncertainty relation, we have

∆ε∆t ≥ h̄/2 , (58)

where ∆ε is the energy uncertainty and ∆t is the lifetime uncertainty. Since we know

that the decay time is τ = RC, we find that

∆ε ≥ h̄

2τ
. (59)

In order to clearly see single-electron tunneling effects these energy fluctuations must

be smaller than the typical charging energy associated with a single electron, ∆ε� EC .
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This implies that

h̄

2τ
� Ec . (60)

Using τ = RC and EC = e2/2C for a single-electron, we also find

G� 2e2

h
. (61)

In other words, the tunneling resistance must be large.


