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Problem 1: Various

(a) Define the following length scales that are relevant in discussing transport in nano-scale

systems: 1) Fermi wavelength λF , 2) elastic mean free path le, and 3) phase coherence

length lφ.

Solution

1) The Fermi wavelength is the wavelength of the electrons at the Fermi energy. In

a free electron gas, it is defined via EF = h̄2k2
F /2m, where EF is the Fermi energy,

kF = 2π/λF is the Fermi wavevector in terms of the Fermi wavelength λF and m is

the electron (effective) mass. In linear response, the net current is mostly carried by

electrons at the Fermi energy, so the typical electron wavelength for transport electrons

is the Fermi wavelength.

2) The elastic mean free path is the average distance an electron travels between elastic

collisions (collisions where the electron’s momentum changes but not its energy).

3) The phase coherence length is the average distance traveled while the electron main-

tains a well-defined quantum mechanical phase. The quantum mechanical phase is ran-

domized by inelastic scattering arising e.g. from electron-electron or electron-phonon

scattering.

(b) We consider a 1D channel and define a scattering matrix consisting of reflection r (r′)

and transmission amplitudes t (t′) for electrons coming from the left (right) lead as

S =

 r t′

t r′

 . (1)

Imagine that we have two scatterers in series with scattering matrices S1 and S2,

respectively.

Make the assumption that there is incoherent scattering in the 1D channel so scattering

by the two potentials is incoherent. What is the total transmission probability through

the system in terms of the elements of the scattering matrices S1 and S2 in this case?

Solution

There are two incoherent scatterers in the system with transmission (reflection) prob-

abilities T1 = |t1|2 (R1 = |r1|2) and T2 = |t2|2 (R2 = |r2|2), respectively. Since the

system is incoherent, we should now sum the probabilities, and not the amplitudes, for
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all possible trajectories an electron can take when it is transmitted through the system.

The total (incoherent) transmission probability is then

T
(i)
12 = T1T2 + T1R2R1T2 + T1(R2R1)2T2 + . . . (2)

=
T1T2

1−R2R1
=

1

T−1
1 + T−1

2 − 1
. (3)

Problem 2: The Landauer-Büttiker formula

The Landauer-Büttiker formula for the relation between currents Ii and voltages Vj in a

many-terminal system reads

Ii =
∑
j

[GjiVi −GijVj ] , (4)

where the sum is over the terminal indices j = 1, 2, 3, . . . N and i = 1, 2, 3 etc., N is the

number of terminals, and Gij are elements of a conductance matrix.

(a) Prove that
∑
j Gji =

∑
j Gij .

Solution

In equilibrium, all potentials are equal, Vi = V , and all currents must vanish, Ii = 0.

This requires that

0 = V
∑
j

[Gji −Gij ] (5)

for any voltage V so that

∑
j

Gji =
∑
j

Gij . (6)

(b) In the remainder of the problems, we will assume that Gij = Gji. Which physical

condition must be fulfilled to justify this assumption?

Solution

This assumption is fulfilled when there is time-reversal symmetry, e.g. no orbital mag-

netic field effects so that there is an equal probability to go from terminal i to terminal

j as vice versa.

(c) Consider a three-terminal device, where a current I = I1 = −I2 passes from terminal

1 at voltage V1 to terminal 2 at voltage V2. In response to the current I, there is a

voltage V3 at the terminal 3 where there is no current, I3 = 0.
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Consider first (and here only) that the conductance element G23 is much bigger than

all the other elements of the conductance matrix. In this limit, what is the voltage

difference V3 − V2 ?

Solution When the conductance G23 is much bigger than all the other elements of

the conductance matrix, it implies that there is a strong electrical connection between

terminals 2 and 3 so that the voltage difference V3 − V2 will approach zero.

(d) Compute the potential difference V3 − V2 as a function of the current I and the con-

ductance matrix Gij of the system.

Solution

We have three equations for the three currents in the system:

I1 = G12(V1 − V2) +G13(V1 − V3) (7)

I2 = G12(V2 − V1) +G23(V2 − V3) (8)

I3 = G23(V3 − V2) +G13(V3 − V1) (9)

where we have used that Gij = Gji.

Only the relative voltage differences matter and we may choose V2 = 0 so that V3

represents the voltage difference V3−V2. Since there is no current flowing into terminal

3, I3 = 0 determines that

V3 =
G13

G23 +G13
V1 . (10)

We then find that

V1 − V3 =
G23

G23 +G13
V1 . (11)

The current I = I1 is then

I =

(
G12 +

G13G23

G23 +G13

)
V1 (12)

=
G12 (G23 +G13) +G13G23

G13
V3 (13)

so that the potential is

V3 − V2 =
G13

G12 (G23 +G13) +G13G23
I . (14)

In the limit that G23 � G12 and G23 � G13, we find that V3 → V2 because the

terminals 2 and 3 are strongly coupled, as we found in the previous problem.
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Problem 3: The Quantum Hall effect

(a) Give a physical explanation of what Landau levels are.

Solution

Classically, electrons in a two-dimensional electron gas form cyclotron orbits in the

presence of a magnetic field in a perpendicular direction. Landau levels are the quan-

tization of these classical cyclotron orbits. The energy separation is determined by the

classical cyclotron frequency multiplied by Planck’s constant.

(b) Give a physical explanation of what semi-classical skipping orbits is as well as what

their quantum mechanical analogue are.

Solution

As stated above, electrons in a two-dimensional film in the presence of a perpendicular

magnetic field form cyclotron orbits. These orbits do not acquire a drift velocity in

the presence of an electric field. However, at the edges of the film, skipping orbits are

formed by the bouncing off of the electrons from the interface. These skipping orbits

lead to a net motion of the electrons along the wall, in opposite directions on opposite

walls. The quantum mechanical analogues are edge states, quantum confined states

close to the interface can carry currents while the bulk of the system is insulating.

Problem 4: Spintronics

(a) Explain what the following spintronics phenomena are: i) giant magnetoresistance

(GMR) and 2) spin-transfer torques.

Solution

1) Giant magnetoresistance occurs in layered normal metal-ferromagnet systems and

was first seen in a superlattice made by a repetition of this system. For specific thick-

nesses of the normal metal layers, the ferromagnets align in an anti-parallel configu-

ration like a synthetic macroscopic anti-ferromagnet. The relative orientation of the

magnetizations of adjacent ferromagnets sandwiched via normal metals can be changed

by applying an external magnetic field. As a result, a change of resistance also follows.

This is a consequence of spin-dependent transport in the ferromagnets. The conduc-

tances differ for spin-up and spin-down electrons. When the ferromagnets are paral-

lel, the conductances associated with one spin-channel is large and the other small,
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whereas for the anti-parallel orientation both spin-channels have a relatively small

conductance. This causes the conductance for the anti-parallel configuration to be

considerably smaller than the one for the parallel configuration, which gives rise to a

magneto resistance. This magneto resistance is called ”giant” since it was much bigger

than other known effects (in 1988). The resistance change was roughly a factor of 2.

2) When an electron flows between two magnetic domains (regions with uniform mag-

netization direction) its spin direction changes because the strong exchange interaction

forces the electron spin to align to the magnetization direction of the new domain.

Even when driven by an electric field, the magnetic moments of majority and minority

spins remain parallel and antiparallel to the magnetization, respectively. By conserva-

tion of spin angular momentum, the change of the electron spin on entering the new

domain yields a small change of the magnetization direction of this domain, which

can be viewed as arising from a torque. This central concept of spin-transfer torque

(STT) requires non-collinear magnetization configurations and has been the focus of

spintronics research for the past fifteen years.

(b) We consider the Pauli equation for spin 1/2 electrons in a one-dimensional channel along

the x-direction and disregard the spin-orbit interaction. We assume that there is a weak

magnetic field B applied along the z-direction confined to a length −L/2 < x < L/2

and include its effect on the spin degrees of freedom only. The Hamiltonian is then

H =

 −
h̄2

2m
d2

dx2
I + geh̄

2mBσz ;−L/2 < x < L/2

− h̄2

2m
d2

dx2
I ; |x| ≥ L/2

, (15)

where the unit matrix I and the Pauli-matrix σz are defined as

I =

 1 0

0 1

 (16)

and

σz =

 1 0

0 −1

 . (17)

We may define a Zeeman energy

EZ =
geh̄

2m
B (18)

and assume that EZ > 0 throughout this exam.
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Consider an electron with energy 0 < E < EZ . Assume (in this question only) that the

system is much longer than any other possible length scale, L → ∞. Argue, without

explicit calculations, what the reflection probability R↑ is for an incoming spin-up

electron. For your information, the spin-up electron sees a larger potential barrier than

the spin-down electron in the barrier region −L/2 < x < L/2.

Solution

For a spin-up electron, the energy of the electron is less than the Zeeman energy that

acts as a barrier. Since the system is infinitely long, the electron will then not propagate

through the system and will be completely reflected, R↑ = 1.

(c) Consider still an electron with energy 0 < E < EZ , but the barrier region has now a

finite length L. Compute the transmission probability for the passage of an electron

through the one-dimensional channel for both a spin-up state and a spin-down state.

Solution

In the leads, when |x| > L/2, the wave function is ψ(x) ∼ exp±ikx for electrons

propagating to the right (+) and left (−). The eigenenergy is E = h̄2k2/2m, where k

is the wave vector.

Inside the channel, we must treat the evolution of the amplitude of the spin-up and

spin-down electrons differently since only the spin-down electrons can propagate.

We define the wavevector of the spin-down electron inside the system as q↓ =√
2m(E + EZ)/h̄ and similarly the decaying length scale for spin-up electrons is defined

as q↓ =
√

2m(EZ − E)/h̄.

We consider an incoming electron with spin-down from the left. The wave function can

then be expressed as

ψ↓(x) =


exp ik(x+ L/2) + r↓ exp−ik(x+ L/2) x ≤ −L/2

A exp iq↓x+B exp−iq↓x −L/2 < x < L/2

t↓ exp ik(x− L/2) x ≥ L/2

(19)

Continuity of the wave function and its derivative determine at x = −L/2 and x = L/2

that

1 + r↓ = A exp−iq↓L/2 +B exp +iq↓L/2 , (20)

ik(1− r↓) = iq↓ [A exp−iq↓L/2−B exp +iq↓L/2] , (21)

t↓ = A exp iq↓L/2 +B exp−iq↓L/2 , (22)
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ikt↓ = iq↓ [A exp iq↓L/2−B exp−iq↓L/2] . (23)

Dividing Eq. (21) by ik and adding Eq. (20) gives

2 = A
k + q↓
k

exp−iq↓L/2 +B
k − q↓
k

exp +iq↓L/2 (24)

Similarly, dividing Eq. (23) by ik and subtracting Eq. (23) from Eq. (22) gives

0 = A
k − q↓
k

exp iq↓L/2 +B
k + q↓
k

exp−iq↓L/2 . (25)

We then find that

A = −Bk + q↓
k − q↓

exp−iq↓L . (26)

Inserting this result into Eq. (24) gives

B =
2k(k − q↓)

(k − q↓)2 exp i2q↓L− (k + q↓)2
exp i(3/2)q↓L (27)

A = − 2k(k + q↓)

(k − q↓)2 exp i2q↓L− (k + q↓)2
exp iq↓L/2 (28)

From this, we can finally find the transmission coefficient from Eq. (23):

t↓ =
2ikq↓

2ikq↓ cosLq + (k2 + q2
↓) sinLq

. (29)

The transmission probability is then

|t↓|2 =
4k2q2

↓
4k2q2

↓ cos2 Lq + (k2 + q2
↓)

2 sin2 Lq
. (30)

As a check, consider the limit of no Zeeman splitting, q↓ → k, where we find

t↓ → exp ikx (31)

which corresponds to the phase acquired as the electron passes through the system so

that, in this case, |t↓|2 → 1.

The result for the transmission coefficient of Eq. (29) can be directly carried over to

the spin-up electron case with the substitution q↓ → iq↑. Since we then also have

cos q↓L→ cosh q↑L and sin q↓L→ i sinh q↑, we find

t↑ =
2ikq↑

2kiq↑ coshLq + (k2 − q2
↑) sinhLq

(32)

so that

|t↑|2 =
4k2q2

↑

4k2q2
↑ cosh2 Lq + (k2 − q2

↑)
2 sinh2 Lq

(33)

In the limit that Lq � 1, the transmission probability for the spin-up electron is then

exponentially small, as expected since the energy of the spin-up electron is smaller than

the Zeeman potential barrier.


