
Department of physics, NTNU
TFY4340/FY8909 Nanophysics

Exam with solutions, June 7th, 2018

1. Various qualitative questions. (6 points)

Use only a few sentences to answer each question.

a. (2 points) Explain what distinguishes a metal, an insulator, and a semiconductor,
in terms of the electronic band structure.

SOLUTION:

Metal : The Fermi energy EF lies in the middle of a band (or at a level where multiple
bands overlap), leading to a large density of states at EF. When applying a small
bias voltage, there are many states available for electrons which want to flow from
source to drain, resulting in a large conductivity.

Insulator : The Fermi energy lies deep inside a band gap, where the density of states
is zero. A small bias voltage will thus not give rise to any current.

Semiconductor : The Fermi energy lies inside a band gap, but this gap is not too
large (∼ 1-3 eV). It is easy to excite electrons into the (otherwise empty) conduction
band, either by thermal activation or by doping. These excited electrons can give
rise to a finite conductivity.

b. (2 points) Explain what a Schottky barrier is.

SOLUTION:

From Wikipedia: “A Schottky barrier, named after Walter H. Schottky, is a poten-
tial energy barrier for electrons formed at a metal-semiconductor junction. Schottky
barriers have rectifying characteristics, suitable for use as a diode. One of the pri-
mary characteristics of a Schottky barrier is the Schottky barrier height, denoted
by ΦB. The value of ΦB depends on the combination of metal and semiconduc-
tor. Not all metal-semiconductor junctions form a rectifying Schottky barrier; a
metal-semiconductor junction that conducts current in both directions without rec-
tification, perhaps due to its Schottky barrier being too low, is called an Ohmic
contact.”

In the language of the lecture notes (see p. 35): A Schottky barrier is an effective
potential barrier created by a bending of the band structure close to the metal-
semiconductor interface due to charge transfers across the interface that occur in
order to “align” the work function of the metal and the electron affinity in the
semiconductor to the same vacuum level.
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c. (2 points) Describe the Aharonov-Bohm effect and explain qualitatively how it arises.

SOLUTION:

If a charged particle can travel, say, from A to B along two different paths, and
there is a finite magnetic field penetrating the “loop” enclosed by these two paths,
then there will be quantum interference in the probability PA→B to travel from A
to B depending on the strength of the magnetic field. This manifests itself as field-
dependent oscillations in PA→B, which is what we call the Aharonov-Bohn effect.

Indeed, a finite field corresponds to a position-dependent vector potential A(r),
which means that the wave function of the particle picks up a phase (−e/~)

∫
A · dl

that can be different along the two paths and depends on the magnitude of the
magnetic field B = ∇ × A. In fact, one finds that the interference effect depends
only on the flux Φ =

∫
B · dS penetrating the loop (where S is the area of the loop),

and the resulting oscillations in the probability are periodic in Φ with a period
Φ0 = h/e, the flux quantum.

2. Chemical potential for a two-dimensional electron gas. (4 points)

a. (2 points) Calculate the density of states

D2(E) =
dN

dE
,

with N(E) the number of allowed states with energy E or smaller, for a two-
dimensional free electron gas contained in an area A.

SOLUTION:

The number of electronic states N(k) with wave vector k or smaller is

N(k) = 2
A

4π2
πk2 =

Ak2

2π
,

where the first factor of 2 is for spin. In terms of energy E(k) = ~2k2/2m this yields

N(E) =
mA

π~2
E,

and the density of states thus reads

D2(E) =
mA

π~2
.

b. (2 points) Express the chemical potential µ at temperature T in terms of the total
electron density n.

Hint : ∫ ∞
0

dx
1

aex + 1
= ln

(
1 + 1

a

)
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SOLUTION:

The total electron density at temperature T reads

n =
1

A

∫ ∞
0

D2(E)f(E),

with

f(E) =
1

e(E−µ)/kBT + 1

being the Fermi function. Using the hint we find explicitly

n = kBT
m

π~2
ln
(
1 + eµ/kBT

)
,

which allows to solve for µ,

µ = kBT ln

[
exp

(
πn~2

mkBT

)
− 1

]
.

3. Statistics of rare electron transfers. (6 points)

We consider the statistics of electron transfers through a tunnel junction where all trans-
mission probabilities Tn � 1 are small. This means that we can assume all successful
electron transfers through the junction to be uncorrelated, which allows us to find a simple
expression for the characteristic function describing the transfers.

We start by considering a very short time interval dt, during which the chance for a
transfer is dt/τ � 1, where 1/τ is the transfer rate.

a. (1 point) Show that the characteristic function of the probability distribution PN,dt
for counting N transfers within time dt can be approximated

Λdt(χ) = 〈eiχN〉 ≈ exp
{
dt(eiχ − 1)/τ

}
.

SOLUTION:

We have

Λdt(χ) = 〈eiχN〉 =
∑
N

PN,dte
iχN

≈ (1− dt/τ) + (dt/τ)eiχ

= 1 + dt(eiχ − 1)/τ

≈ exp
{
dt(eiχ − 1)/τ

}
.
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b. (1 point) Assuming all transfers to be uncorrelated, write down the characteristic
function Λ∆t(χ) for a larger time interval ∆t in terms of the average number of
transfers 〈N〉 = ∆t/τ .

SOLUTION:

For uncorrelated events we simply have

Λ∆t(χ) = Λdt(χ)(∆t/dt) = exp
{

∆t(eiχ − 1)/τ
}

= exp
{
〈N〉(eiχ − 1)

}
.

c. (1 point) Show that the distribution function PN,∆t describing the probability to
have N transfers occurring in the time interval ∆t is a Poisson distribution,

PN,∆t = e−〈N〉
〈N〉N

N !
.

SOLUTION:

Λ∆t(χ) and PN,∆t are each other’s Fourier transform. We thus evaluate

PN,∆t =

∫ 2π

0

dχ

2π
Λ∆t(χ)e−iχN

=

∫ 2π

0

dχ

2π
exp

{
〈N〉(eiχ − 1)

}
e−iχN

= e−〈N〉
∫ 2π

0

dχ

2π
e−iχNe〈N〉e

iχ

= e−〈N〉
∫ 2π

0

dχ

2π
e−iχN

∞∑
k=0

〈N〉keikχ

k!

= e−〈N〉
∞∑
k=0

〈N〉k

k!

∫ 2π

0

dχ

2π
eiχ(k−N)

= e−〈N〉
∞∑
k=0

〈N〉k

k!
δk,N

= e−〈N〉
〈N〉N

N !
.

d. (1 point) Find the probability to have no transfers in a time interval ∆t.

SOLUTION:

P0,∆t = e−〈N〉 = e−∆t/τ .

e. (1 point) Calculate the second cumulant 〈〈N2〉〉∆t for the time interval ∆t.

SOLUTION:
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The n-th cumulant follows from the generating function as

〈〈Nn〉〉∆t =
∂n

∂(iχ)n
ln Λ∆t(χ)

∣∣∣∣
χ→0

.

The moment-generating function Λ∆t(χ) for the Poisson distribution reads

ln Λ∆t(χ) = 〈N〉(eiχ − 1),

and we immediately see that all cumulants are equal,

〈〈N2〉〉∆t = 〈〈N3〉〉∆t = 〈〈Nn〉〉∆t = 〈N〉.

f. (1 point) Find the Fano factor

F =
〈〈N2〉〉∆t
〈〈N〉〉∆t

,

for a tunnel junction in this Poisson limit.

SOLUTION:

From (e) we see that F = 1.

4. Joule heating in the Drude model. (6 points)

The Drude model uses the assumption that all collisions between electrons and impurities
randomize the direction of motion of the electron, 〈vx,y,z〉 = 0 directly after a collision.
Another assumption, which we did not discuss in the lectures, is that the collisions are
inelastic: It is assumed that each collision reduces the kinetic energy of the electron to
the same value 1

2
mv2

i (which is related to the temperature of the sample). Indeed, if we
would have assumed elastic collisions, the kinetic energy of the electrons would constantly
increase in the presence of an electric field, growing almost indefinitely for large samples.

a. (1 point) We assume an electric field Ex present, which points in the x-direction. As
we know, the effect of this field is to shift vx by an amount −eExt/m during a time
t. Calculate the gain in kinetic energy during time t

∆E(t) =
1

2
m
[
v(t)2 − v(0)2

]
,

if the initial velocity is v(0) = vi(sin θ cosφ, sin θ sinφ, cos θ). Show that assuming
the direction of v(0) to be random yields an average energy gain during time t

〈∆E(t)〉 =
e2E2

xt
2

2m
.

SOLUTION:
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With an initial velocity v(0) = vi(sin θ cosφ, sin θ sinφ, cos θ) we find

v(t) = vi(sin θ cosφ− eExt/m, sin θ sinφ, cos θ).

We then see that

v(t)2 − v(0)2 = −2
eExt

m
sin θ cosφ+

e2E2
xt

2

m2
,

and thus

∆E(t) = −eExt sin θ cosφ+
e2E2

xt
2

2m
.

Assuming the initial direction to be random, we see that the first term averages out,

〈∆E(t)〉 =
e2E2

xt
2

2m
.

b. (1 point) The Drude model assumes all collisions with impurities to be uncorrelated.
This means that the statistics of these collisions are exactly the same as those of the
electron transfers through a tunnel junction considered in problem 3, and we can
thus use the results we obtained there: If the probability for an electron to collide
with an impurity in an infinitesimal time interval dt is dt/τ , where 1/τ is the collision
rate, then the probability that a randomly picked electron has suffered no collisions
during the preceding time t is e−t/τ .

Argue why the probability density function for the time between two successive
collisions for a single electron reads

p(t) =
1

τ
e−t/τ .

Hint : In terms of actual probabilities, p(t)dt is the probability to find a time between
two collisions in the interval [t, t+ dt].

SOLUTION:

(i) The probability for an electron to collide with an impurity within the tiny time
interval dt is dt/τ . (ii) The probability for an electron to travel without collisions
for a time t is e−t/τ . Therefore, the probability that an electron travels freely for a
time t and then collides in the tiny time interval [t, t + dt] is the product of these
two probabilities: (dt/τ)e−t/τ . The corresponding probability density function for
the times t between two collisions is thus

p(t) =
1

τ
e−t/τ .

c. (1 point) Calculate the average time between two collisions.

SOLUTION:

This can simply be done with the probability density function found above:

〈t〉 =

∫ ∞
0

dt t p(t) =
1

τ

∫ ∞
0

dt te−t/τ = τ
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d. (1 point) Use the results from (a) and (b) to calculate the average energy an electron
gains between two collisions.

SOLUTION:

The energy gained as a function of the time between two collisions is e2E2
xt

2/2m, so
the expectation value for this energy reads

e2E2
x

2m
〈t2〉 =

e2E2
x

2mτ

∫ ∞
0

dt t2e−t/τ =
e2E2

xτ
2

m

e. (1 point) Assuming that all this energy gained between two collisions is transfered
to the lattice at the second collision, show that the average energy transfer from the
electrons to the sample per volume per second reads

σE2
x,

where σ = ne2τ/m is the conductivity, with n being the electron density.

SOLUTION:

The average collision frequency per volume in the sample is n/τ , where n is the
electron density, and on average each collision transfers an energy e2E2

xτ
2/m from

the electrons to the lattice. The total rate of energy transfer per volume is thus

ne2τ

m
E2
x = σE2

x,

where σ = ne2τ/m is the conductivity

f. (1 point) Show that this yields for the total energy dissipated per second in a con-
ductive sample of length L and cross section A the familiar result

P = I2R,

where R = L/σA is the total resistance of the sample.

SOLUTION:

The total energy dissipated per second is thus

P = ALσE2
x,

where AL (cross section times length) is the volume of the sample. The current
density (along the direction of the field) is

j = σEx,

and the total current reads therefore

I = AσEx.

Inserting Ex = I/Aσ and using that R = L/σA one easily finds

P = I2R.
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5. Landauer-Büttiker formalism and the quantum Hall effect. (6 points)

Consider the following 6-terminal Hall bar:

1

3

4

2

W
d

56

The bar has a width W , but in the middle there is a constriction of width d. A uniform
magnetic field B is applied perpendicularly to the 2DEG and points out of the plane,
leading to N edge states in the wide regions of the device. Inside the constriction there
are only n < N edge states available at the Fermi level. We thus assume that there are n
channels with perfect transmission in each direction through the constriction; the other
N − n edge states in the left and right parts of the device are not connected.

The following zoom-in might help to visualize the configuration of the edge channels near
the constriction, where I picked N = 5 and n = 2:

} n

}N

The Landauer-Büttiker equations,

Iα =
∑
β 6=α

Gαβ(Vα − Vβ),

with conductances

Gαβ =
2e2

h
Tαβ,

relate the net current entering into terminal α to the potentials at the various terminals.
Here, Tαβ denotes the “direct transmission sum” from terminal β to terminal α.
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a. (2 points) Neglecting impurity scattering and tunneling processes, list all non-zero
Tαβ and give their magnitudes.

SOLUTION:

We have

T21 = T16 = T43 = T54 = N,

T62 = T35 = N − n,
T32 = T65 = n.

b. (4 points) Let terminals 1 and 4 be the “source” and the “drain” respectively through
which a current I runs, whereas the other terminals are ideal voltage probes. Find

– the Hall resistance R14,35 = (V3 − V5)/I;

– the Hall resistance R14,26 = (V2 − V6)/I;

– the Hall resistance R14,25 = (V2 − V5)/I;

– the Hall resistance R14,36 = (V3 − V6)/I;

– the longitudinal resistance R14,23 = (V2 − V3)/I;

– the longitudinal resistance R14,65 = (V6 − V5)/I;

– the 2-terminal resistance R14,14 = (V1 − V4)/I.

For convenience you can set V4 = 0.

Advice: This looks like a lot of contacts to consider and resistances to calculate. But
don’t panic, just write down the correct equations for all the Iα and you will see that
everything is rather simple to solve.

SOLUTION:

We start by writing down the Büttiker-Landauer equations (where for convenience
of notation we introduce i = hI/2e2):

i = N(V1 − V6),

0 = N(V2 − V1),

0 = N(V3 − V5) + n(V5 − V2),

−i = −NV3,

0 = NV5,

0 = N(V6 − V2) + n(V2 − V5),

where we already have set V4 → 0. We see: (i) V5 = 0 and (ii) V2 = V1, leading to

i = N(V1 − V6),

0 = NV3 − nV1,

−i = −NV3,

0 = N(V6 − V1) + nV1,
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so we find

V1 = V2 =
hI

2e2

1

n
,

V3 =
hI

2e2

1

N
,

V4 = V5 = 0,

V6 =
hI

2e2

(
1

n
− 1

N

)
.

This yields straightforwardly

R14,35 =
V3 − V5

I
=

h

2Ne2
,

R14,26 =
V2 − V6

I
=

h

2Ne2
,

R14,25 =
V2 − V5

I
=

h

2ne2
,

R14,36 =
V3 − V6

I
=

h

2e2

(
2

N
− 1

n

)
,

R14,23 =
V2 − V3

I
=

h

2e2

(
1

n
− 1

N

)
,

R14,65 =
V6 − V5

I
=

h

2e2

(
1

n
− 1

N

)
,

R14,14 =
V1 − V4

I
=

h

2ne2
.
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