
1. The cnot gate.

(a) We find straightforwardly (from implementing the cnot truth table)

Ucnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The “inverted” gate follows from implementing

|00〉 → |00〉 ,
|01〉 → |11〉 ,
|10〉 → |10〉 ,
|11〉 → |01〉 ,

and thus reads

Ũcnot =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

(b) As a first step we explicitly write the Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
.

The operation

on the two qubits can then be represented by the 4× 4 matrix

H1 ⊗H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

We now simply evaluate the matrix product (H1⊗H2)Ucnot(H1⊗H2) and find that it is
indeed equal to Ũcnot.
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2. Scattering matrix and transfer matrix.

(a) From writing out ŝŝ† = 1 explicitly, we get

rr† + t′(t′)† = 1,

rt† + t′(r′)† = 0,

tr† + r′(t′)† = 0,

tt† + r′(r′)† = 1,

where we see that the second and third equations are actually the same.

From the last equation we see that

tt† = 1− r′(r′)†.

We now insert 1 on the right,

tt† = 1− r′(t′)−1t′(r′)†,

and then use the second equation to write

tt† = 1 + r′(t′)−1rt†.

Multiplying from the right with (t†)−1 gives the result asked for.

(b) Straightforward solving of the four equations and using the result found at (a) yields

m̂ =

(
(t†)−1 r′(t′)−1

−(t′)−1r (t′)−1

)
.

3. Transmission and Landauer-Büttiker conductance.

(a) The stationary Schrödinger equation is[
− ~2

2m

d2

dx2
+ V0δ(x)

]
ψ(x) = εψ(x) . (1)

Let us first consider an incoming electron from the left. The wave function is

ψ(x) =

{
1√
2π~v

[
eikx + r e−ikx

]
, for x < 0,

1√
2π~v t e

ikx, for x > 0,

where v =
√

2ε/m is the electron’s velocity.

Continuity of the wave function at x = 0 gives

ψ(0+) = ψ(0−)
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1 + r = t .

By integrating the Schrödinger equation (1) across the scatterer located at x = 0, we find

− ~2

2m

[(
dψ

dx

)
x=0+

−
(
dψ

dx

)
x=0−

]
+ V0 ψ(0) = 0,

−~
2
iv [t− (1− r)] + V0 t = 0.

From these two equations we find that

t =
i~v

i~v − V0
, (2)

and

r =
V0

i~v − V0
. (3)

Furthermore, since the system is mirror symmetric around x = 0, the reflection and
transmission amplitudes associated with an incoming electron from the right are identical
to the ones for an incoming electron from the left, r = r′ and t = t′.

(b) We use that the transfer matrix reads in terms of the elements of the scattering matrix

m̂ =

(
1/t∗ r′/t′

−r/t′ 1/t′

)
,

see the previous problem Scattering matrix and transfer matrix. This yields straightfor-
wardly for the two transfer matrices associated to the potential barriers

m̂1,3 =

(
1 + α α
−α 1− α

)
,

where

α =
V0
i~v

.

For the middle region we find

m̂2 =

(
eika 0
0 e−ika

)
.

The top-left element of the total transfer matrix, m̂tot = m̂1m̂2m̂3, equals 1/t∗ of the total
scattering matrix. The matrices are easily multiplied, yielding

ttot =
t2eika

1− r2e2ika
,

in terms of the single-barrier t and r found at (a).
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Alternative:

We first consider the total transmission amplitude t12 through two scatterers connected
in series. We sum over all possible ways to get through the total scattering region from
the left to the right,

t12 = t1t2 + t1r2r
′
1t2 + t1r2r

′
1r2r

′
1t2 + . . .

= t1[1− r2r′1]−1t2,

where we have used that (1− x)−1 =
∑∞

i=0 x
i.

Similarly, we can find the reflection amplitude for an imcoming electron from the left

r12 = r1 + t1r2t
′
1 + t1r2r

′
1r2t

′
1 + . . .

= r1 + t1r2[1− r2r′1]−1t′1.

In the same way, we can find the reflection and transmission amplitudes associated with
an incoming electron from the right (r′12 and t′12) by interchanging r1 ↔ r′2, r2 ↔ r′1,
t1 ↔ t′2, and t2 ↔ t′1 with the result:

t′12 = t′2[1− r′1r2]−1t′1,
r′12 = r′2 + t′2r

′
1[1− r′1r2]−1t2.

Let us first concatenate the scattering matrices S1 and S2. Since r2 = r′2 = 0, we find

t12 = teika ,

r12 = r ,

t′12 = teika ,

r′12 = re2ika ,

where the transmission t and reflection amplitudes r are the ones found at (a).

Next, we concatenate the combined scattering matrix S12 with scattering matrix S3 to
find the total transmission amplitude ttot,

ttot = t12[1− r3r′12]−1t3

=
t2eika

1− r2e2ika
.

(c) Writing r =
√
R exp iθ, with θ = arctan ~v/V0, we find the transmission probability

Ttot = |ttot|2

=
|t2eika|2

[1−Re2ikae2iθ][1−Re−2ikae−2iθ]

=
T 2

1− 2R cos ξ +R2
,

with ξ = 2ka+ 2θ.
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(d) The maximum Ttot is achieved when the denominator attains its minimum, which is when
ξ = 0. In this case, we have

Ttot =
T 2

1− 2R +R2
=

T 2

(1−R)2
= 1.

Despite the fact that the transparancy of each scatterer is low, the total transmission
probability Ttot = 1, with an associated Landauer-Büttiker conductance that equals the
conductance quantum G = 2e2/h.

This is resonant tunneling and occors when the energy of the particle equals the resonant
state between the scatterers. For instance, in the limit of an infinite strength of the
scatterers V0 →∞, the condition ξ = 0 implies that

ka = nπ,

so that the wave function is a standing wave between the scatterers. When the energy of
the particle ε = ~2k2/2m is in resonance with one of the bound states between the two
scatterers

εn =
~2

2m

n2π2

a2
,

the transmission probability becomes equal to one.

4. Quantum Hall Effect.

(a) We have

T21 = N,

T12 = N − n,
T42 = n,

T14 = n− 1,

T64 = T16 = 1.

This yields the matrix

G =


N −N + n −n+ 1 −1
−N N 0 0

0 −n n 0
0 0 −1 1

 .

(b) We set V1 = 0 and disregard the equation for i1 (we can use that i1 ≡ i = −i4). This
yields the equations

i2 = NV2,

i4 = n(V4 − V2),
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i6 = V6 − V4.

We then make use of the fact that terminal 2 and 6 are voltage probes, causing i2 = i6 = 0,
and we easily find

V2 = 0,

V4 = − i/n,
V6 = V4 = −i/n.

The Hall resistance thus reads

RGH =
V2 − V6

I
=

h

2e2
1

n
.
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