
Norwegian University of Science and Technology
Department of Physics

Contact: Jacob Linder
Phone: 735 918 68

Suggested solution for Exam TFY4345: Classical Mechanics

NOTE: The solutions below are meant as guidelines for how the problems may be solved and
do not necessarily contain all the detailed steps of the calculations.

PROBLEM 1

(a) Alternative ii).

(b) Alternative iii).

(c) Alternative ii).

(d) Alternative iv).

(e) Alternative iii).

(f) Alternative iv).

(g) From Hamilton’s equations, we find that

q̇ = p/α−bqe−αt (1)

so that p = α(q̇+ bqe−αt). The Lagrangian is given by L = pq̇−H, which upon insertion and after cleaning up some terms
gives:

L = αq̇2/2− kq2/2+bα(qq̇e−αt −αq2e−αt/2). (2)

An equivalent Lagrangian is one that differs only by an extra term dF/dt where F =F(q, t). We see that if F(q, t) = bαq2e−αt/2,
then the last term in the Hamiltonian above is exactly dF/dt. Thus, L′ = αq̇2/2− kq2/2 is an equivalent Lagrangian describing
the same physics, and we may thus conclude that the original Hamiltonian describes a harmonic oscillator.
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PROBLEM 2

(a) The potential energy is V = k/(2r2) = ku2/2 can be inserted into the equation for ṙ stemming from conservation of energy:

ṙ =

√
2
m
[E−V − l2/(2mr2)]. (3)

We eliminate dt via θ̇ = l/(mr2) and obtain:

θ = θ0−
∫ u

u0

du√
2mE

l2 −
(

1+ mk
l2

)
u2

(4)

upon integration and substituting r = 1/u. This integral can be solved analytically similarly to how we treated the Kepler problem
in the lectures (can be looked up in Rottmann), and we find the solution:

u(θ) =

√
8mE

l2

(
1+

mk
l2

)
cos
[√

1+
mk
l2 (θ−θ0)

]
(5)

(b) The Lagrangian for the planet as it is in orbit reads L = 1
2 mṙ2 + 1

2 mr2θ̇2 + k/r where the attractive Kepler-potential as usual
is V (r) = −k/r. Note that the angular velocity θ̇ for the circular orbit is related to the period of the orbit τ via τ = 2π/θ̇. The
general equation of motion is

mr̈ = µrθ̇
2− k/r2. (6)

For a circular orbit, we find the radius of the orbit r0 by setting r̈ = 0 so that r0 = (kτ2/4π2m)1/3. Now, after we remove the
planet’s kinetic energy the equation of motion simplifies to:

mr̈ =−k/r2. (7)

Multiplying this equation with 2ṙ we can rewrite it as:

d
dt
(ṙ2) =

d
dt
(2k/mr) (8)

so that the solution is ṙ2 = 2k/mr+C where C is an integration constant. Since we know that ṙ = 0 at t = t0, it follows that
C =−2k/mr0. Reinstating this into the equation, we find

ṙ =

√
2k
µ

(1
r
− 1

r0

)
. (9)

We can now evaluate the time required for the planet to fall a distance r0 to the center of gravity. The time required is:

tc =
∫ 0

r0

dr · (dt/dr) =
∫ 0

r0

dr · (dr/dt)−1 =
∫ 0

r0

dr(ṙ)−1. (10)

Using our expression for ṙ above and evaluating the integral, we arrive at

tc =
τ

4
√

2
. (11)

(c) See discussion in compendium. Head-on collisions are favorable compared to firing at stationary targets in order to reduce
the threshold energy.

(d) It was derived in the lectures (see also compendium section Relativistic Kinematics for details) that the threshold kinetic
energy is given by (set c = 1):

Kπ/mπ = M2
final−M2

before/(2mπmn) (12)
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where Mfinal = mK +mΛ and Mbefore = mπ +mn.

(e) There are two degrees of freedom since the length l is fixed: these are the angles describing the movement on a sphere, i.e. φ

and θ. The kinetic and potential energies are:

T = ml2
θ̇

2/2+ml2 sin2
θφ̇

2/2, V = mgl cosθ. (13)

Constructing the Lagrangian and deriving the equations of motion, we find:

d
dt

(
φ̇sinθ

2
)
= 0, θ̈+ sinθ(g/l− cosθφ̇

2) = 0. (14)

(f) Use the conservation of 4-momentum, in particular the third and fourth components, to obtain the following two equations
relating momentum and energy before and after the collision:

γ1m1v1− γ2m2v2 = γ3m3v3 (15)
γ1m1c+ γ2m2c = γ3m3c. (16)

The above equations may be manipulated to yield both the mass and the velocity of the produced particle:

m3 = (γ1/γ3)m1 +(γ2/γ3)m2 (17)

v3 =
γ1m1v1− γ2m2v2

γ1m1 + γ2m2
. (18)

It follows from the equation for m3 that we can only have m3 = 0 and non-zero m1 and m2 if γ3 → ∞. To investigate if this is
possible, we can find an expression for γ2

3 = 1/[1− (v3/c)2]:

γ
2
3 =

(γ1m1 + γ2m2)
2

m2
1 +m2

2 +2γ1γ2m1m2(1− v1v2/c2)
. (19)

Since the denominator consists of three terms which all are greater than zero, we cannot obtain γ3 → ∞. as the denominator
never goes to zero.

(g) See lecture notes and compendium for detailed discussion. For full score, the student must have elucidated the role of cyclic
coordinates, canonical momenta, and the existence of a conservation law in the presence of a continuous symmetry.


