
Solutions to examination in TFY4345 Classical mechanics
Saturday May 16, 2015

1a) The kinetic energy is

T =
1

2
m(ẋ2 + ẏ2 + ż2) .

Two dimensional polar coordinates recommend themselves, so we write

x = ρ cosϕ , y = ρ sinϕ ,

which gives that

ẋ = ρ̇ cosϕ− ρϕ̇ sinϕ , ẏ = ρ̇ sinϕ+ ρϕ̇ cosϕ ,

and
ẋ2 + ẏ2 = ρ̇2 + ρ2ϕ̇2 .

The constraint gives that
z = bρ , ż = bρ̇ ,

and we get the Lagrangian

L = T − V =
1

2
m((1 + b2)ρ̇2 + ρ2ϕ̇2)−mgbρ .

The Euler–Lagrange equations are:

d

dt

(
∂L

∂ρ̇

)
− ∂L

∂ρ
=

d

dt

(
m(1 + b2)ρ̇

)
−mρϕ̇2 +mgb = 0 ,

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
=

d

dt

(
mρ2ϕ̇

)
= 0 .

1b) Since ϕ is a cyclic coordinate, its Euler–Lagrange equation is a conservation law for its
conjugate momentum, which is the angular momentum `,

mρ2ϕ̇ = ` = constant .

Since the Lagrangian is not explicitly time dependent, the Hamiltonian

H = ρ̇
∂L

∂ρ̇
+ ϕ̇

∂L

∂ϕ̇
− L = T + V =

1

2
m((1 + b2)ρ̇2 + ρ2ϕ̇2) +mgbρ

is a constant of motion. This is the energy E. When we eliminate ϕ̇ the energy conser-
vation equation becomes an equation of motion for ρ alone,

1

2
m(1 + b2)ρ̇2 +

`2

2mρ2
+mgbρ = E .

Another way to derive this equation is to eliminate ϕ̇ between the two Euler–Lagrange
equations, this gives the equation

m(1 + b2)ρ̈− `2

mρ3
+mgb = 0 ,

with ` constant. Then we multiply by ρ̇ and integrate.
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1c) Assuming ρ to be constant we get from the last equation that

− `2

mρ3
+mgb = 0 , `2 = m2gbρ3 .

The period of the circular orbit is then

T =
2π

ϕ̇
=

2πmρ2

`
= 2π

√
ρ

gb
= 2π

(
`

m(gb)2

) 1
3

.

This is a good enough answer, but of course the distance to the origin, measured along
the conical surface, is not ρ but ρ

√
1 + b2.

An alternative approach to problem 1 is to introduce the quadratic constraint equation

f(x, y, z) = z2 − b2(x2 + y2) = 0 ,

a corresponding Lagrange multiplier λ, and then write the Lagrangian

L = T − V − λf(x, y, z) =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz − λ(z2 − b2(x2 + y2)) .

The Euler–Lagrange equation for λ is the constraint equation,

−∂L
∂λ

= z2 − b2(x2 + y2) = 0 .

Since this equation must hold at any time, its time derivative must also hold:

zż − b2(xẋ+ yẏ) = 0 .

The Euler–Lagrange equations for x, y, z are

mẍ− 2λb2x = 0 ,

mÿ − 2λb2y = 0 ,

mz̈ +mg + 2λz = 0 .

There are several ways to eliminate the Lagrange multiplier λ from these equations.
Multiplying the first equation by y, the second by x, and subtracting, we get that

m(xÿ − yẍ) =
d

dt
(m(xẏ − yẋ)) = 0 .

This equation says that the angular momentum is conserved:

m(xẏ − yẋ) = ` = constant .

Multiplying the first equation by ẋ, the second by ẏ, the third by ż, adding and using
the time derivative of the constraint equation, we get that

m(ẍẋ+ ÿẏ + z̈ż) +mgż = 0 .

Integrating this equation we get the energy conservation equation

1

2
m(ẋ2 + ẏ2 + ż2) +mgz = E = constant .

It seems that the Lagrange multiplier method is not very useful in this particular examp-
le, although we easily get these conservation laws.
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2a) The formula for r ≤ R and the formula for r ≥ R both give that

φ(R) = −4π

3
GρR2 .

For r ≤ R we have that

φ′(r) =
4π

3
Gρr → 4π

3
GρR as r → R− .

For r ≥ R we have that

φ′(r) =
4π

3r2
GρR3 → 4π

3
GρR as r → R+ .

2b) The mass inside the radius r is

M(r) =
4πr3ρ

3
for r ≤ R , M(r) = M(R) =

4πR3ρ

3
for r ≥ R .

The force on the mass m is radial. For r ≤ R it is

F = −mφ′(r) = −4π

3
Gρrm = −GM(r)m

r2
.

For r ≥ R it is

F = −mφ′(r) = − 4π

3r2
GρR3m = −GM(R)m

r2
= −GM(r)m

r2
.

2c) A circle of radius a is the same as an ellipse with semi-major axis a and eccentricity
zero. The period of the circular orbit is

Tc =
2πa3/2√
G(M +m)

.

When the two particles fall radially towards each other, the orbit is a degenerate ellipse
with semi-major axis a/2 and eccentricity one. This degenerate ellipse has a period of
Tc/2

3/2. The fall until the particles collide is only half of the full elliptical orbit. Hence
the free fall time is

Tf =
Tc

4
√

2
=

πa3/2

2
√

2G(M +m)
.

The alternative method of solution is to solve the equations of motion. Let the positions
of the two particles be x1 and x2, the distance between them x = x1 − x2 > 0, and the
masses m1 = m and m2 = M . Then

ẍ1 = −GM
x2

, ẍ2 =
Gm

x2
, ẍ = ẍ1 − ẍ2 = −G(M +m)

x2
.

Multiplying by ẋ and integrating, and using that ẋ = 0 when x = a, we get that

1

2
ẋ2 = G(M +m)

(
1

x
− 1

a

)
=
G(M +m)(a− x)

ax
.
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The free fall time is

Tf =

∫ Tf

0
dt =

∫ 0

a
dx

dt

dx
=

∫ a

0

dx

|ẋ|
=

√
a

2G(M +m)

∫ a

0
dx

√
x

a− x
.

We substitute for example x = a sin2u and get that∫ a

0
dx

√
x

a− x
= 2a

∫ π/2

0
du sin2u = a

∫ π/2

0
du (1− cos(2u)) =

πa

2
.

Thus we arrive at the same answer for Tf .

2d) We use the above formula for Tf . The mass M in the formula is the mass inside the
radius a,

M =
4π

3
a3ρ0 .

Here ρ0 is the mass density before the collapse, which is assumed constant in space. Of
course the density is not constant in time, it increases with time when the core collapses!
The mass m is the mass of the falling particle, which is negligible compared to M . Thus

Tf =
πa3/2

2
√

2GM
=

1

4

√
3π

2Gρ0
,

independent of a. One solar mass within a radius of 1000 km gives a density of

ρ0 =
3× 2× 1030 kg

4π × 1018 m3
= 4.77× 1011 kg/m3 ,

and a free fall time of
Tf = 0.096 s .

The whole core collapses within one tenth of a second.

Since all parts of the core take the same time to collapse, the density at one instant of
time is always constant in space, inside the core.

3a)

Sk =

∫ tk+τ

tk

dt

(
1

2
mv 2

k −
1

2
mω2(xk + vk(t− tk))2

)
=

1

2
m

(
v 2
k τ − ω2

(
x 2
k τ + xkvkτ

2 +
1

3
v 2
k τ

3

))
.

We get the given formula when we insert

vk =
xk+1 − xk

τ
.
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3b) Only Sk−1 and Sk depend on xk. The equations to be satisfied are, for k = 1, 2, . . . , N−1:

∂S

∂xk
=
∂Sk−1
∂xk

+
∂Sk
∂xk

= m

(
2xk − xk−1 − xk+1

τ
− ω2τ

6
(xk−1 + 4xk + xk+1)

)
= 0 .

3c) If x(t) = eεiλt with ε = ±1 then xk±1 = xk e±εiλτ , and we get the single equation

2− 2 cos(λτ)

τ
− ω2τ

6
(4 + 2 cos(λτ)) = 0 ,

which we rewrite as

cos(λτ) =
6− 2(ωτ)2

6 + (ωτ)2
.

3d) We may write the same equation as

(ωτ)2 =
6(1− cos(λτ))

2 + cos(λτ)
.

When τ is small we may use the series expansion

cos(λτ) = 1− (λτ)2

2
+

(λτ)4

24
+ · · ·

which gives that

6(1− cos(λτ))

2 + cos(λτ)
=

3(λτ)2 − (λτ)4

4 + · · ·

3− (λτ)2

2 + · · ·
=

(
(λτ)2 − (λτ)4

12
+ · · ·

)(
1 +

(λτ)2

6
+ · · ·

)

= (λτ)2 +
(λτ)4

12
+ · · · .

We see that we get λ = ω up to correction terms of order τ2. Thus our method is of
second order.

Not surprising, since the whole method is based on the linear approximation in equa-
tion (1) in the examination paper, and this has an error of second order. To get the
next term in the approximation we would assume constant acceleration ak and write

x(t) = xk + vk(t− tk) +
1

2
ak(t− tk)2 .

4a) Given two events A and B with space and time coordinates xA, tA and xB, tB. We use
the Lorentz transformation for the intervals ∆x = xB − xA and ∆t = tB − tA,

∆x′ = γ(∆x− V∆t) , ∆t′ = γ

(
∆t− V

c2
∆x

)
,

with V = 0.6 c and

γ =
1√

1− 0.62
=

1

0.8
= 1.25 .
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The inverse transformation is

∆x = γ(∆x′ + V∆t′) , ∆t = γ

(
∆t′ +

V

c2
∆x′

)
.

Let event A be the start of the space ship from the Earth, and event B be the arrival
at Sirius. Then obviously the observer on the Earth measures the distance to be

∆x = 9 light years ,

and the travel time to be

∆t =
∆x

V
=

9 light years

0.6 c
= 15 years .

It follows from the Lorentz transformation that ∆x′ = 0, this means that the observer
on the space ship does not move relative to his reference frame. Of course.

The travel time measured by the traveller is, by the Lorentz transformation,

∆t′ = γ

(
∆t− V

c2
∆x

)
= γ

(
∆t− V 2

c2
∆t

)
= ∆t

√
1− V 2

c2
= 0.8 ∆t = 12 years .

This is the time dilatation effect that the moving clock measures a shorter time than
the properly synchronized stationary clocks.

One student gives an interesting argument to derive the time dilatation. Let us describe
the process first in the inertial system where the Earth is at rest (or the solar system
is at rest, we neglect the relative velocities of the Earth and the Sun). Imagine a light
signal emitted at an angle θ from the direction between Earth and Sirius such that
cos θ = 0.6. This light signal has a velocity component along the direction from Earth
to Sirius which is c cos θ = 0.6c. While it travels 9 light years in this direction it travels
9 light years times tan θ = 0.8/0.6 = 4/3 in the orthogonal direction, that is 12 light
years. The distance it travels, as seen from this inertial system, is

√
92 + 122 = 15 light

years. Obviously, since the time is 15 years.

Now see the process from the inertial system of the space ship. In this system the light
travels a perpendicular distance which is the same, 12 light years. The direction of the
light signal in this system is perpendicular to the direction from Earth to Sirius, and the
speed of light in the direction it travels is c. Obviously, it takes the light signal 12 years
to travel 12 light years. Hence 12 years is the travel time of the space ship from Earth
to Sirius, as seen from the space ship.

4b) So what is the travel distance as measured by the traveller? From the point of view of
the space ship the rest of the Universe moves with a speed of V = 0.6 c in the negative
x′ direction. During the 12 years of travel time the rest of the Universe, including the
Earth, moves a distance of

0.6 c× 12 years = 7.2 light years .

This is the distance from the Earth to Sirius as measured by the observer on the space
ship. It is 9 light years Lorentz contracted by the factor 0.8.
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A more formal deduction using the Lorentz transformation may go as follows. We con-
sider two events A on the Earth and B at Sirius, thus ∆x = xB −xA = 9 light years, as
before. But now we require that A and B are simultaneous as seen from the space ship,
that is, ∆t′ = 0. Then by the inverse Lorentz transformation we get ∆x = γ∆x′, or

∆x′ =
∆x

γ
= 0.8× 9 light years .

To find the length of the meter stick on the space ship as measured by observers at rest
relative to the Earth, we reason in a similar way. Now we require that ∆x′ = 1 meter
and ∆t = 0. Then by the Lorentz transformation we get ∆x′ = γ∆x, or

∆x =
∆x′

γ
= 0.8 meter .

These two results together look very much like a paradox. The earthly observer sees
the space ship observer measuring a distance of 9 light years with a meter stick which
is only 0.8 meter. The result of the measurement is 9 light years times 0.8, not 9 light
years divided by 0.8, as one would expect.

4c) Now we take event A to be the emission of the light from Sirius and B to be the
observation of the light on the Earth. Then ∆x = xB − xA = −9 light years, and the
travel time for the light, according to the observer on the Earth, is

∆t =
−9 light years

−c
= 9 years .

By the Lorentz transformation, the travel time for the light, according to the observer
on the space ship, is

∆t′ = γ

(
∆t− V

c2
∆x

)
= γ

(
∆t− V

c2
(−c∆t)

)
= γ

(
1 +

V

c

)
∆t

=

√√√√1 + V
c

1− V
c

∆t =

√
1 + 0.6

1− 0.6
∆t = 18 years .

Another way to calculate the same answer is to note that to the observer on the space
ship the distance between the light signal and the Earth decreases with a speed of
c− 0.6c = 0.4c. According to the observer on the space ship, when the light starts from
Sirius the distance to the Earth is 7.2 light years. Hence the travel time of the light
signal is

∆t′ =
7.2 light years

0.4c
= 18 years .

We may check the result once more as follows. The light takes 18 years to catch up
with the Earth, because during that time the Earth moves another 0.6 c × 18 years =
10.8 light years away.

Finally, we take event A to be the emission of the light from the Sun and B to be the
arrival of the light at Sirius. Then ∆x = xB − xA = 9 light years, and the travel time
for the light, according to the observer on the Earth, is

∆t =
9 light years

c
= 9 years .
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By the Lorentz transformation, the travel time for the light, according to the observer
on the space ship, is

∆t′ = γ

(
∆t− V

c2
∆x

)
= γ

(
∆t− V

c2
(c∆t)

)
= γ

(
1− V

c

)
∆t

=

√√√√1− V
c

1 + V
c

∆t =

√
1− 0.6

1 + 0.6
∆t = 4.5 years .

Another way to calculate the same answer again is that to the observer on the space
ship the distance between the light signal and the Earth decreases with a speed of
c+ 0.6c = 1.6c. Hence the travel time of the light signal is

∆t′ =
7.2 light years

1.6c
= 4.5 years .

We check this result also. According to the observer on the space ship, Sirius rushes to
meet the light. During the 4.5 years the light is on its way, Sirius moves 0.6 c×4.5 years =
2.7 light years closer, so that the light has to travel only 4.5 light years and not 7.2 light
years.
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