
Classical Mechanics TFY4345 - Exam 2016

1.
(1a)
Position of the center of the wheel:

X = bθ (1)

Y = b (2)

Position of point mass m:

x = bθ − b sin θ (3)

y = b− b cos θ (4)

Velocity of mass M:
V 2 = Ẋ2 + Ẏ 2 = b2θ̇2 (5)

Velocity of mass m:

v2 = ẋ2 + ẏ2 = b2θ̇2(1− cos θ)2 + b2θ̇2 sin2 θ = 2b2θ̇2(1− cos θ) (6)

(1b)
Lagrangian:

L =
1

2
mv2 +

1

2
MV 2 −mgy (7)

= mb2θ̇2(1− cos θ) +
1

2
Mb2θ̇2 −mgb(1− cos θ) (8)

(1c)
Lagrange equation:

d

dt

∂L

∂θ̇
=
∂L

∂θ
(9)

Inserting equation (8) into (9) gives the equation of motion:

2mbθ̈(1− cos θ) +Mbθ̈ +mbθ̇2 sin θ +mg sin θ = 0 (10)

(1d)
Linearising equation (10) gives:

θ̈ +
mg

Mb
θ = 0 (11)

which gives harmonic oscillations with frequency:

ω =

√
mg

Mb
(12)

2a)

L = T − V =
1

2
m
(
ṙ2 + r2θ̇2

)
+
K

r6
(13)

2b) The Lagrangian does not depend on θ:

∂L

∂θ
= 0 (14)

1



This implies the conservation law:
∂L

∂θ̇
= constant (15)

mr2θ̇ = constant = ` (16)

The conserved quantity is the angular momentum of the particle.
2c) We may derive the equation of motion from the conservation of angular momentum and from the
Lagrange equation:

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 (17)

It is however easier to derive the equation of motion from conservation of total energy (as in the
Kepler problem). The total energy is:

E = T + V =
1

2
m
(
ṙ2 + r2θ̇2

)
− K

r6
(18)

We can eliminate θ̇ by using Eq. (16) on conservation angular momentum conservation:

E =
1

2
mṙ2 +

`2

2mr2
− K

r6
(19)

Solving for ṙ and using the angular momentum law once more gives:

dr

dθ
=
mr2

`

√
2E

m
− `2

m2r2
+

2K

mr6
(20)

2d) We may express the left term in Eq. (20) as dr
dθ

= 1
2r

d
dθ

(r2). Inserting r2 = c2 cos 2θ in Eq. (20)
we find after some algebra that:

(c4`2 − 2Km)− 2c6mE cos3 (2θ) = 0 (21)

This implies that r = c
√

cos 2θ is a solution provided that

E = 0 (22)

c4 =
2mK

`2
(23)

i.e. the total energy is E = 0.
2e) Combining the solution r = c

√
cos 2θ with the equation of conservation of angular momentum

gives:

` = mr2
dθ

dt
⇒ `dt = mc2 cos (2θ)dθ (24)

Integrating this equation gives
`t = mc2 sin (2θ) (25)

Which gives:

θ(t) =
1

2
arcsin

(
2`

mc2
t

)
(26)

2f) At time t = 0 the particle starts in the position r = c and θ = 0. The particle moves towards the
origin, corresponding to the position r = 0, which implies θ = π

4
. Therefore 0 < θ < π

4
corresponds

to a quarter of a orbit (orbital period τ) This implies

2`

mc2
τ

4
= 1 (27)
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according to Eq. (26). The total orbital period is:

τ =
2mc2

`
=

2m

`2

√
2mK (28)

3.
3a)

The Euler equation free body (no torque):(
d~L

dt

)
body

+ ~ω × ~L = 0 (29)

From Eq. (29) we find the Euler equation on component form:

I1ω̇x′ + ωy′ωy′(I3 − I2) = 0 (30)

I2ω̇y′ + ωx′ωz′(I1 − I3) = 0 (31)

I2ω̇z′ + ωx′ωy′(I2 − I1) = 0 (32)

Angular velocities in body frame:

ωx′ = ϕ̇ sin θ sinψ + θ̇ cosψ (33)

ωy′ = ϕ̇ sin θ cosψ − θ̇ sinψ (34)

ωz′ = ϕ̇ cos θ + ψ̇ (35)

3b) When I1 = I2 Eq. (32) implies that ωz′ = constant. This again implies that the angular
momentum around z’ axis body frame is constant, i.e. L′z = L cos θ = constant, which implies

θ = constant (36)

, i.e. θ̇ = 0. Eq. (30) and (31) can now be expressed as:

ω̇x′ = −Ωωy′ (37)

ω̇y′ = Ωωx′ (38)

with Ω = I3−I1
I1

ωz′ = constant. This implies 1 that ω2
x′ + ω2

y′ = constant. Which in turn implies:

ω2
x′ + ω2

y′ = (ϕ̇ sin θ sinψ)2 + (ϕ̇ sin θ cosψ)2 = ϕ̇2 sin θ = constant (39)

We thus find that:
ϕ̇ = c1 (40)

where c1 is a constant. Inserting Eq. (33) and (34) into Eq. (37) and (38) gives

ϕ̇ψ̇ sin θ cosψ = −Ωϕ̇ sin θ cosψ (41)

−ϕ̇ψ̇ sin θ sinψ = Ωϕ̇ sin θ sinψ (42)

This implies that

ψ̇ = −Ω = −(I3 − I1)
I1

ω′z =

(
1

I3
− 1

I1

)
L cos θ (43)

1Using Eq. (37) and (38) we find: d
dt

[
ω2
x′ + ω2

y′

]
= 2ωx′ ω̇x′ + 2ωy′ ω̇y′ = −2Ωωx′ωy′ + 2Ωωy′ωx′ = 0 which shows

that ω2
x′ + ω2

y′ does not change with time.
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Inserting Eq. (43) into Eq. (35) gives

φ̇ =
L

I1
(44)

3c)
ϕ̇

ω′z
=

ϕ̇

L cos (θ)/I3
=

L/I1
L cos (θ)/I3

=
I3

I1 cos θ
≈ I3
I1

= 2 (45)

4a)
Using the Lorentz transformation for the endpoints of the rod gives:

z′2 − z′1 = γ(z2 − vt)− γ(z1 − vt) = γ(z2 − z1) (46)

Which implies

L =
L′

γ
= L′

√
1− v2

c2
(47)

4b)

Lz =
L′z
γ

=
L′

γ
cos θ0 (48)

Ly = L′y = L′ sin θ0 (49)

L2 = L2
y + L2

z = L′2
(

1− v2

c2
cos2 θ0

)
(50)

4c)
L′y
L′z

=
Ly
γLz

= tan θ0 (51)

which implies:

tan θ =
Ly
Lz

= γ tan θ0 =
tan θ0√
1− v2/c2

(52)
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