
PROBLEM 1

Observer in a rotating coordinate system experiences an effective force:

~Feff = ~F − 2m(~ω × ~vr) −m~ω × ~ω ×~r (1)

Let’s start from the general rule of thumb that Coriolis force causes deflection
on the right on the Northern hemisphere. However, we have to consider also
the vertical deflection due to Coriolis and remember the existence of
centripetal accelaration (latter term in the equation).

To make things easier, note that the distance in centripetal acceleration is
measured from Earth’s center and it does not change! This means that there is
no effect from this source.

One needs to consider the lateral (ey) and vertical deflection (ez) due to
Coriolis by writing out the cross-product −2m(~ω × ~vr). It is not necessary to
include gravitation (marginal effect).
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The components of ω are (−ωcosλ, 0, ωsinλ), velocity is ~vr = vrey, and the
determinant of the cross-product gives us the Coriolis force components while
shooting towards East

Fx = +2mωvrsinλ (2)
Fy = 0 (3)
Fz = +2mωvrcosλ (4)

The lateral deflection is towards right (South) and the shooter corrects it
correspondingly (adjustment to the left). Similarly, the vertical deflection is
up and the correction is down.

Consider next the reversed shooting direction with ~vr = −vrey:

Fx = −2mωvrsinλ (5)
Fy = 0 (6)
Fz = −2mωvrcosλ (7)
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The lateral deflection is now towards right as well (North) with the same
magnitude and the previous correction is valid! Note here that the target is in
the reversed direction, and the situation of the lateral trajectory component is
identical with the previous case.

The only thing that remains is the vertical deflection. It is negative (down)
while the previous correction deflects the trajectory even further downwards.
The vertical deflection doubles!

Time of flight: t = 100/600 s = 1/6 s, λ = 60◦, ω = 7.29 · 10−5 1/s

∆s = 2 ×
1
2

azt2 = −2ωvrcosλt2 = −1.215 · 10−3m (8)

As a summary, the systematic deflection is 1.2 mm downwards due to the
Coriolis effect. Surely, the magnitude is negligible in practice.
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PROBLEM 2

The Lagrangian is:

L =
1
2

m(ṙ2 + r2θ̇2) +
1
2

ma2φ̇2
−mgrcosθ (9)

Constraints are: (1) r = R + a and (2) (R + a)θ̇ = aφ̇. The first one is a
holonomic constraint f1 = r − (R + a) = 0 whereas the second one is
non-holonomic but integrable constraint f2 = −(R + a)θ̇ + aφ̇ = 0. The former
we describe with a multiplier λ (normal force) and the latter with µ
(tangential force required for rolling motion).

Generalized coordinates are now (r, θ, φ) and the Lagrange equations are:

d
dt

(
∂L
∂q̇j

)
−

(
∂L
∂qj

)
= λ

(
∂f1
∂qj

)
+ µ

(
∂f2
∂q̇j

)
(10)
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The equations of motion are:

mr̈ −mrθ̇2 + mgcosθ = λ (11)
mr2θ̈ + 2mrṙθ̇ −mgrsinθ = −µ(R + a) (12)

ma2φ̈ = µa (13)
(14)

The last equation results in that µ = maφ̈ = m(R + a)θ̈ (from constraint 2).

Assume next that the hoop stays on the surface, i.e. ṙ = 0. The second
equation reduces to:

θ̈ =
gsinθ

2(R + a)
(15)

Now multiply the equation with θ̇ and use the hint θ̈dθ = θ̇dθ̇. Integrate both
sides.
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θ̇2 =
g

(R + a)
(1 − cosθ) (16)

Use this now for the first equation, remember to keep ṙ = 0.

λ = −mrθ̇2 + mgcosθ (17)

= −m(R + a)
g

(R + a)
(1 − cosθ) + mgcosθ (18)

= mg(2cosθ − 1) (19)
(20)

In the beginning, while θ = 0, the constraint for normal force is λ = mg (as it
should!). The constraint will change its sign once the hoop leaves the surface,
i.e. λ ≤ 0. This occurs once λ ≥ 60◦.
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PROBLEM 3

The Lorentz transformations can be achieved directly from:

Ljk = δjk + (γ − 1)βjβk/β
2; Lj4 = iγβj; L4k = −iγβk; L44 = γ (21)

This results in the requested matrices

L =


1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ

 ;

L′ =


γ′ 0 0 iβ′γ′

0 1 0 0
0 0 1 0

−iβ′γ′ 0 0 γ′
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Now, it it is more efficient to consider each orthogonal transformation L and L′

separately rather than forming a new matrix L′′ for the overall transition.
Firstly,

x̄′ = L̄ · x̄ =


1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ




x
y
z

ict

 =


x
y

γ(z − vt)
iγ(ct − βz)

 =


x′

y′

z′

ict′


This will just result in the familiar Lorentz transformation (along z-axis) that
we have seen in the lectures. The second transformation follows

x̄′′ = L̄′ · x̄′ =


γ′ 0 0 iβ′γ′

0 1 0 0
0 0 1 0

−iβ′γ′ 0 0 γ′




x′

y′

z′

ict′

 =


γ′(x′ − vt′)

y′

z′

iγ′(ct′ − β′x′)

 =


x′′

y′′

z′′

ict′′
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Let us now collect the results to get the new coordinates in terms of the oldest
ones, i.e. corresponding to x̄′′ = L̄′′ · x̄

x′′ = γ′
[
x − v′γ

(
t −

vz
c2

)]
(22)

y′′ = y (23)
z′′ = γ(z − vt) (24)

t′′ = γ′
[
γ
(
t −

vz
c2

)
−

v′x
c2

]
(25)

The coordinates are now expressed with respect to the first coordinate system
and the individual velocities of the inertial moving frames.
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PROBLEM 4

This problem for coupled oscillations follows the lecture example closely, only
the masses and spring constants are being varied.

The Lagrangian of the system is

L =
1
2

m1ẋ1
2 +

1
2

m2ẋ2
2
−

1
2

k1x2
1 −

1
2

k2(x2 − x1)2
−

1
2

k3x2
2 (26)

= mẋ1
2 +

1
2

mẋ2
2
− 2kx2

1 −
1
2

k(x2 − x1)2
− kx2

2 (27)

The components of the secular determinant follow from the second
derivatives

mij =
∂2T
∂ẋi∂ẋj

(28)

Aij =
∂2V
∂xi∂xj

(29)

The secular determinant can be next formed as det(Aij − ω2mij). These are the
eigenfrequencies.
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This leads to ∣∣∣∣∣5k − 2mω2
−k

−k 3k −mω2

∣∣∣∣∣ = 0

and the solutions are ω2 = 7k/2m and ω2 = 2k/m.
Solve the eigenfrequencies by using the equation:∑

jk

(Ajk − ω
2
r mjk)ajr = 0 (30)

Implement here ω2
1 = 7k/2m and it results in the relation a1(1) = −2a2(1). This is

the interrelationship between the components in the eigenvector. After
normalization, the (out-of-phase) result is

~a1 =
1
√

5

[
1
−2

]
Similarly, ω2

2 = 2k/m results in that a1(2) = a2(2) and the normalised (in-phase)
eigenvector is

~a2 =
1
√

2

[
1
1

]
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PROBLEM 5

We consider the simple case of free fall in uniform gravitational field. The
motion occurs in y-direction and the corresponding Hamiltonian is

H =
p2

2m
+ mgy (31)

The basic equation of the Hamilton-Jacobi theory is:

H +
∂S
∂t

= 0; S = S(q1, ..., qn, α1, ..., αn, t) (32)

We replace now momentum with the partial derivative the Hamilton’s
principal function S and solve it. First, however, we note that

K = H +
∂S
∂t

=
p2

2m
+ mgy − α = 0 (33)

where α is now the total energy E, as suggested. Note also that the
momentum is

p =
√

2m(α −mgy) (34)
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The partial differential equation becomes(
∂S
∂y

)2

= 2m(α −mgy) (35)

Note that the Hamiltonian does not contain time explicitly. We can therefore
write (in general) S = W − αt where W is the Hamilton’s characteristic
function. We can replace S in the partial differential equation and integrate the
solution (

∂W
∂y

)2

= 2m(α −mgy) (36)

in this case leads to the solution

W(y) = −
1

3m2g

[
2m(α −mgy)

]3/2

+ C (37)

Correspondingly,

S(y) = −
1

3m2g

[
2m(α −mgy)

]3/2

+ C − αt (38)
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Next, we introduce the new coordinates via the relation

Qi =
∂
∂αi

S(q, α, t) = βi (39)

where α of concern is now related to time. Take a partial derivative with
respect to α

∂S(y, α, t)
∂α

= −
1

mg

[
2m(α −mgy)

]1/2

= t + β (40)

By applying the inside-out strategy, solve this with respect to y

y = −
1
2

g(t + β)2 +
α

mg
(41)

Consider here the initial conditions y0, p0, and t = 0. The total energy and
position become as

E = α =
p2

0

2m
+ mgy0 (42)

y0 = −
1
2

gβ2 +
p2

0

2m2g
+ y0 (43)
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From here one can solve β with respect to initial conditions

β =
p0

mg
(44)

Once this is inserted in the original equation for position (Eq. (41)), one
achieves the final result

y = −
1
2

gt2
−

p0

m
t + y0 (45)

which is the familiar basic equation for constant acceleration. Note that once β
is introduced it becomes implicitly clear from Eq. (41) that the solution is of
the form

y = −
1
2

gt2 + c1t + c2 (46)

The constants can be solved from the initial conditions, as shown above.
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