
PROBLEM 1

A. Short answers to the questions. For more, see the lecture notes.

i. Holonomic constraints can be expressed as an implicit equation

f (q1, ..., qn, t) = 0. (1)

Note that there is no dependence on generalized velocities, only generalized
coordinates and time are considered. Example: A pendulum bob which
attached to a wire of length l, the distance r is constrained by r − l = 0.

ii. Monogenic forces can be derived from a general potential function that
may depend on the generalized velocities as well. This makes the formulation
of classical mechanics more general than the derivation via D’Alembert’s
principle (assuming conservative force field) since Hamilton’s principle is
valid for monogenic systems.

iii. Euler angles are a convention to achieve three independent angles
(generalized coordinates) and corresponding orthogonal transformations
(rotations) to describe the orientation/rotation of a rigid body. They enable
transformation between the laboratory and body coordinate systems. There
are twelve conventions for defining Euler’s angles.
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iv. The basic equation of the Hamilton-Jacobi theory is

H +
∂S
∂t

= 0; S = S(q1, ..., qn, α1, ..., αn, t) (2)

where S is the Hamilton’s principal function. It is a generating function of the
second type (F2) and provides a canonical transformation to cyclic coordinates
that are related to the initial constants of the physical problem (integration
constants). Not to be confused with Hamiltonian H or Hamilton’s
characteristic function W.

v. Coriolis effect is a fictitious force that a moving observer in a rotating
coordinate system experiences. It is the middle term of the total effective force

~Feff = ~F − 2m(~ω × ~vr) −m~ω × ~ω ×~r (3)

and it depends on velocity. One can observe it easily for fast moving objects,
such as projectiles, but it also shows up in the winds and ocean currents.
Because of the cross-product with ~ω, the effect has opposite signs on different
hemispheres.
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B. Two cylinders:

We have two rigid bodies. In the first place, their location is characterized by 3
translational and 3 rotational coordinates. Since we can project the situation in
2D, we are left with 2+1 coordinates (translations + rotation) for each cylinder,
thereby we have 3+3=6 generalized coordinates to start with. Adding 4
constraints, we shall have 6-4=2 degrees of freedom left. Correspondingly,
we can choose φ1 and θ as the final generalized coordinates (or x1 and θ).
Constraints:

y1 = R1 (4)
r = r1 − r2 (5)

x1 = R1φ1 or ẋi = R1φ̇1 (6)
r2φ2 = r1(φ1 + θ) or r2φ̇2 = r1(φ̇1 + θ̇) (7)

The slipping constrains (two latter equations) can be expressed either as
holonomic or semiholonomic. Further treatment via Lagrange’s
undetermined multipliers would result in the same equations of motion.
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PROBLEM 2

a) The puck may rotate in plane and the z-coordinate of the mass M
experiences a holonomic constraint z = r − l0. The Lagrangian is:

L =
1
2

(m + M)ṙ2 +
1
2

mr2θ̇2
−mg(r − l0) (8)

By applying Lagrange’s equation, the equations of motion become (r, θ):

(m + M)r̈ −mrθ̇2 + Mg = 0 (9)
2mrṙθ̇ + mrθ̈ = 0 (10)

b) Note based on Eq. (8) that θ is a cyclic coordinate. The associated
generalized momentum is conserved. Eq. (10) can be expressed also as

d
dt

(
mrθ̇

)
= 0; L = mrθ̇⇒ θ̇ =

L

mr
(11)
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One possible approach is to substitute this in Eq. (9):

(m + M)r̈ −
L

2

mr3
+ Mg = 0 (12)

Modify further to get an expression that matches with Newton II.

(m + M)r̈ = −
∂
∂r

(
L

2

2mr2
+ Mgr

)
= 0 (13)

We can see now based on ~F = −∇Veff that the effective potential is of the form

Veff =
L

2

2mr2
+ Mgr (14)

c) When there is a finite L, there exists some radius r0 where V′eff = 0.

V′eff = −
L

2

mr3
0

+ Mg = 0⇒ r3
0 =

L
2

mMg
(15)
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d) Use r = r0 + δ(t) in Eq. (12) for describing a small perturbation around the
potential minimum. Note that r̈ = δ̈.

(m + M)δ̈(t) = −Mg +
L

2

m
(r0 + δ(t))−3 (16)

L
2

m
(r0 + δ(t))−3 =

L
2

mr3
0

(
1 +

δ(t)
r0

)−3

= Mg
(
1 +

δ(t)
r0

)−3

≈Mg
(
1 − 3

δ(t)
r0

)
(17)

δ̈ = −
3Mg

(M + m)r0
δ ≡ −ω2

δδ (18)

Since ωδ is positive, we are dealing with an oscillatory motion around the
equilibrium distance r0. The circular orbit at r0 is stable based on this analysis.
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PROBLEM 3

The displacement along the ring is given by rθ for each particle. The
Lagrangian of the system becomes

T =
1
2

mR2(θ̇1
2

+ θ̇2
2

+ θ̇1
2) (19)

V =
1
2

kR2[(θ1 − θ2)2 + (θ2 − θ3)2 + (θ3 − θ1)2] (20)

L =
1
2

mR2(θ̇1
2

+ θ̇2
2

+ θ̇1
2) − kR2(θ2

1 + θ2
2 + θ2

3 − θ1θ2 − θ2θ3 − θ3θ1)(21)

The components of the secular determinant follow from the second
derivatives

mij =
∂2T
∂θ̇i∂θ̇j

(22)

Aij =
∂2V
∂θi∂θj

(23)

The secular determinant can be next formed as det(Aij − ω2mij).
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This leads to ∣∣∣∣∣∣∣∣
R2(2k −mω2) −kR2

−kR2

−kR2 R2(2k −mω2) −kR2

−kR2
−kR2 R2(2k −mω2)

∣∣∣∣∣∣∣∣ = 0

and the solutions of the corresponding polynomial equation

R6[−m3ω6 + 6km2ω4
− 9k2mω2] = 0 (24)

are ω2 = 0 and ω2 = 3k/m (double degenerate).

Solve the eigenfrequencies by using the equation:∑
jk

(Ajk − ω
2
r mjk)ajr = 0 (25)

Implement here ω2
1 = 0 and it results in the relation a1(1) = a2(1) = a3(1). After

normalization, the result is

~a1 =
1
√

3

111
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This corresponds to a trivial solution where the whole ring rotates (no
vibration→ ω1 = 0).

Next, ω2
2 = 3k/m eigenvalue is double degenerate and leads to a solution

−θ1 − θ2 − θ3 = 0 (26)

where the two eigenvectors ~a2 and ~a3 are in plane but not uniquely
determined. Any given pair of eigenvectors whose components satisfy this
while being orthogonal with respect to each other (and ~a1) are valid solutions.
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PROBLEM 4

From the Lorentz transformations we can see immediately:

x′ = x (27)
y′ = y (28)
z′ = γ(z − vt) (29)

t′ = γ(t −
vz
c2

); γ =
1√

1 − v2/c2
(30)

Let us differentiate:

u′x =
dx′

dt′
=

dx
dt′

=
dx

γ(dt − vdz
c2 )

=
dx/dt

γ(dt/dt − v(dz/dt)
c2 )

=
ux

γ(1 − vuz
c2 )

(31)

u′y =
dy′

dt′
=

dy
dt′

= ... =
uy

γ(1 − vuz
c2 )

(32)

As one can see, also the x and y velocity components change.
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What remains is the z-component

u′z =
dz′

dt′
=
γ(dz − vdt)
γ(dt − vz

c2 )
=

dz/dt − v(dt/dt)

dt/dt − v(dz/dt)
c2

=
uz − v
1 − vuz

c2

(33)

This completes the velocity transformation. The results is know as the
Einstein’s velocity addition formula (general case). It ensures that the new
velocity does not exceed the speed of light. In this case, the ux and uy
components are affected although there is movement between S and S′ along
the z-axis only.
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PROBLEM 5

a) D is a constant of motion. This means that its total time-derivative is zero.
Mathematically speaking, this relation is expressed as

dD
dt

= [D,H]q,p +
∂D
∂t

= 0 (34)

where

[D,H]q,p =

n∑
i=1

(
∂D
∂qi

∂H
∂pi
−
∂H
∂qi

∂D
∂pi

)
(35)

Collect the partial derivatives

∂D
∂q

=
p
2
,

∂D
∂p

=
q
2
,

∂D
∂t

= −H (36)

∂H
∂q

=
1
q3
,

∂H
∂p

= p (37)

dD
dt

=
∂D
∂q

∂H
∂p
−
∂D
∂p

∂H
∂q

+
∂D
∂t

=
p2

2
−

1
2q2
−H = H −H = 0 ⇒ OK! (38)
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b) We have the partial derivatives with respect to the generating function

q = −
∂F3(p,Q)

∂p
, P = −

∂F3(p,Q)
∂Q

(39)

Now :
∂F3(p,Q)

∂p
= −q = tan Q ⇒ F3(p,Q) = −p tan Q + f (Q) (40)

P = p(1 + q2) + q2 = p sec2 Q + tan2 Q = −
∂F3(p,Q)
∂Q

(41)

F3(p,Q) = −

∫
(p sec2 Q + tan2 Q)dQ (42)

= −p
∫

sec2 QdQ −
∫

tan2 QdQ (43)

= −p tan Q − tan Q + Q + C′ = −(p + 1) tan Q + Q + g(p) (44)

Comparing Eqs. (40) and (44) ⇒ F3(p,Q) = −(p + 1) tan Q + Q + C
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