
PROBLEM 1 - Holonomic constrains and Poisson brackets

a. The definition of a holonomic constraint is *so* simple: fl(q1, ..., qn; t) = 0, i.e.
the constraint depends only on the generalized coordinates and possibly time.
Together with the assumption of a conservative potential, this enables us to
build the Lagrangian formalism from D’Alemberts principle (differential
principle). However, it is possible to use the Lagrangian approach also in
situations where the potential and constraints involve (generalized) velocities.
This is related to Hamilton’s principle (integral approach) that is valid for
monogenic systems. A semiholonomic constraint that includes velocities can
be written as fl(q1, ..., qn, q̇1, ..., q̇n; t) = 0, and in a more restricted form

fl =

n∑
k=1

al,kq̇k + al,t = 0, l = 1, 2, ...,m (1)

where we assume m contraint equations altogether. By multiplying by dt we
achieve a differential from of the constraint

n∑
k=1

al,kdqk + al,tdt = 0, l = 1, 2, ...,m (2)

which we have used in the case of a slipping contraint.
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The extended Lagrange equation with undetermined multipliers becomes
now

∂L
∂qk
−

d
dt
∂L
∂q̇k

= −

m∑
l=1

λl
∂fl
∂q̇k

= −

m∑
l=1

λlal,k = Qk, k = 1, 2, ...,n (3)

The nice feature is that this equation can also be modified for holonomic
constraints

∂L
∂qk
−

d
dt
∂L
∂q̇k

+

m∑
l=1

λl
∂fl
∂qk

= 0, k = 1, 2, ...,n (4)

This formulation is particularly relevant for constraint equations with an
inequality sign, and it enables us to calculate forces that are associated with
the constraints (generalized forces denoted as Qk). While using the method of
Lagrange’s undetermined multipliers, one has to keep the original n
generalized coordinates and have m equations for the constraints in addition.
Thereby, one starts the procedure with n + m equations and unknowns.
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b. The Hamiltonian is

H = T + V =
p2

2m
+ mgy (5)

Obviously, we have a particle falling under a (constant) gravitational field.
The total time derivative of kinetic energy is

dT
dt

= [T,H]q,p +
∂T
∂t

(6)

Since there is no explicit time-dependence of T, the partial derivative is zero
and it is enough to focus on the Poisson bracket. By definition, the relevant
relation is

[T,H] =

(
∂T
∂y
∂H
∂p
−
∂H
∂y

∂T
∂p

)
(7)

It is very easy to calculate each partial derivative

∂H
∂p

=
p
m
,
∂H
∂y

= mg,
∂T
∂p

=
p
m
,
∂T
∂y

= 0, (8)
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and the total derivative becomes

dT
dt

= [T,H]q,p = −gp (9)

Alternatively, let us consider the fact that we are dealing with a conservative
force field where H = E, i.e.

dE
dt

= 0 =
dT
dt

+
dV
dt

(10)

This leads to

dT
dt

= −
dV
dt

= −mgẏ = −gp (11)

Remember that p = mẏ! Note also the negative sign the result.
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PROBLEM 2 - Sliding particle with air resistance

a. The Lagrangian for frictionless sliding with air resistance is

L =
1
2

mẋ2
−mg(` − x) sinθ (12)

Where ` is the starting distance from the beginning of the slope. The Lagrange
equation with external force becomes

d
dt
∂L
∂ẋ
−
∂L
∂x

= −kmẋ (13)

The resulting equation of motion becomes

mẍ −mg sinθ = −kmẋ (14)

This is enough at this stage and rather than solving x, we shall focus on
velocity ẋ = v next.

b. The corresponding equation for v becomes

dv
dt
− g sinθ = −kmv =⇒

dv
kv − g sinθ

= −dt (15)
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Let us integrate on both sides∫
dv

kv − g sinθ
= −t + C′ =⇒

1
k

ln(kv − g sinθ) = −t + C′ (16)

=⇒ kv − g sinθ = e−kt+C =⇒ v =
g sinθ

k
+

e−kt+C

k
(17)

At time t = 0, velocity is zero v = v0 = 0, which leads to eC = −g sinθ and the
final equation for velocity

v =
g sinθ

k

(
1 − e−kt

)
(18)

The upper limit at t→∞ is v = g sinθ/k and called terminal velocity.

c. The particle reaches 90% of the terminal velocity

v =
g sinθ

k

(
1 − e−kt

)
= 0.9 ×

g sinθ
k

(19)
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=⇒ 1 − e−kt = 0.9 =⇒ t = −
ln(0.1)

k
(20)

Let us solve x next via another integration

x =

∫
vdt =

gt sinθ
k

+
g sinθ

k2
e−kt + D (21)

In the beginning x = 0 =⇒ D = −
g sinθ

k2 and

x =
gt sinθ

k
+

g sinθ
k2

(
e−kt
− 1

)
(22)

Let us now insert the time

x =
g sinθ

k2

(
ln(10) − 0.9

)
(23)

Fun fact: Consider θ = 90◦ and you will get the solution for a falling particle
with air resistance.
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PROBLEM 3 - Euler angles and a heavy spinning top

a. Euler angles are the natural generalized coordinates for a heavy spinning
top as φ describes precession around the z-axis, θ marks inclination with
respect to the vertical and ψ denotes rotation around the body axis z′.

The transformation of the ω-vector between fixed and rotating coordinate
systems is achieved by decomposing the angular velocity vector in the
components of Euler angles, where ωφ = φ̇, ωθ = θ̇ and ωψ = ψ̇.

~ω = ~ωφ + ~ωθ + ~ωψ (24)

The interrelationship between the components of ~ω are the following:

ω1 = φ̇ sinθ sinψ + θ̇ cosψ (25)
ω2 = φ̇ sinθ cosψ − θ̇ sinψ (26)
ω3 = φ̇ cosθ + ψ̇ (27)

This leads to kinetic energy T = I
2 (θ̇2 + φ̇2 sin2 θ) + I3

2 (ψ̇ + φ̇ cosθ)2
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The Lagrangian becomes

L =
I
2

(θ̇2 + φ̇2 sin2 θ) +
I3

2
(ψ̇ + φ̇cosθ)2

−mgh cosθ (28)

Lagrangian reveals immediately that φ and ψ are cyclic (do not appear
explicitly), and therefore, the associated canonical momenta (pk = ∂L/∂q̇k) are
conserved. Correspondingly, the angular velocity component ω3 = φ̇ cosθ+ ψ̇
that corresponds to the "spin" around the third principal body axis is the
constant component of angular velocity.

b. By taking the partial derivatives of the Lagrange equation and applying the
short-hand notation for ω3, Lagrange equations become:

d
dt

(Iφ̇ sin2 θ + I3ω3 cosθ) = 0 (29)

Iθ̈ − Iφ̇2 cosθ sinθ + I3ω3φ̇ sinθ −mgh sinθ = 0 (30)
d
dt

(I3ω3) = 0 (31)
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The above forms for φ and ψ are more illustrative than carrying out the time
derivative explicitly, but both choices are valid, of course. Further, the explicit
forms of pφ and pψ can be seen inside the parentheses, respectively.

pφ = Iφ̇ sin2 θ + I3ω3 cosθ (32)

pψ = I3(φ̇ cosθ + ψ̇) = I3ω3 (33)

These correspond to the angular momenta that involve precession and
spinning of the top. Also, the fact that ω3 is a constant becomes more clear
through the latter equation.

Finally, the system is conservative meaning that total energy is conserved as
well.

Note: One has to justify why there is no torque component N3 if one wishes to
use the Euler equation to show that ω3 is a constant. Note that gravity causes
some torque!
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PROBLEM 4 - Relativistic collision

a. Let us start from the general properties that. According to the covariant
3+1 formulation, the 4-vector for an event is defined as

xµ = (x, y, z, ict) (34)

In order to get 4-velocity, one needs to take a derivative with respect to
propert time τ

uµ =
dxµ
dτ

=

(
dx
dτ
,

dy
dτ
,

dz
dτ
, ic

dt
dτ

)
= γ(v, ic) (35)

Further, moving on to 4-momentum is straigthforward

Pµ = muµ = γ(mv, icm) = γ(p, icm) = (γp, iE/c) (36)

where we have used that total energy is E = γmc2. The product PµPµ is
Lorentz invariant and most convenient to evaluate in the rest frame
Pµ = (0, imc)

PµPµ = −m2c2 (37)

This relation will appear very useful in the following.
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b. We have conservation of 4-momentum

Pπµ + Pn
µ = PK

µ + PΛ
µ (38)

Let us arrange the terms such that

PΛ
µPΛ

µ = (Pπµ + Pn
µ − PK

µ )2

= (γπpπ + γnpn − γKpK)2
− (Eπ/mπ + En/mn − EK/mK)2

= (γ2
πp2

π − E2
π/m

2
π) + (γ2

np2
n − E2

n/m
2
n) + (γ2

Kp2
K − E2

K/m
2
K)

−2EπEn/(mπmn) + 2EπEK/(mπmK) + 2EnEK/(mnmK)
+2γπγnpπ · pn − 2γπγKpπ · pK − 2γnγKpn · pK

= γ2
Λp2

Λ − E2
Λ/m

2
Λ = −m2

Λc2 (39)

Let us note that neutron is at rest upon collision, thereby pπ · pn = pn · pK = 0
and En = mnc2. Further, the angle between pion and kaon is 90 degrees, i.e.
pπ · pK = 0.

For each particle: PµPµ = γ2p − E2/m2 = −m2c2
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This enables us to modify the equation above such that

−m2
Λc2 = −m2

πc2
−m2

nc2
−m2

Kc2 + 2mnEK/c2
− 2(mnc2

− EK)Eπ/c2 (40)

Eπ
c2

=
m2

Λ
c2
−m2

πc2
−m2

nc2
−m2

Kc2 + 2mnEK

2(mnc2 − EK)
(41)

The creation of kaon corresponds to a threshold EK = mKc2

Eπ
c2
≥

m2
Λ
−m2

π −m2
n −m2

K + 2mnmK

2(mn −mK)
(42)

Finally, let us note that total energy is E = T + mc2 and write for the kinetic
energy of pion

Tπ
c2
≥

m2
Λ
−m2

π −m2
n −m2

K + 2mnmK

2(mn −mK)
−mπ (43)

In conclusion, this is the kinetic energy requirement for the incoming pion to
create the aforementioned relativistic reaction.
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PROBLEM 5 - Coriolis effect as seen from outside

a. Note that we are looking at the situation from an inertial frame (fixed stars).

Let us consider the trajectory of the falling pellet as a general two-body
problem where Earth is considered as a point mass represented by its centre.
The corresponding trajectory of the pellet is naturally a conical intersection,
an ellipse (with eccentricity ε ∼ 1), and its location at the top of the tower
(beginning, rest) corresponds to the apoapsis (i.e. the farthest point from the
centre) with zero radial velocity (ṙ = 0). As the pellet drops, it naturally drops
down to Earth’s surface r = R while Earth has rotated by a certain amount.

The horizontal velocity and angular momentum ` of the pellet are related to
the rotation of Earth:

vhor = rω cosλ = (R + h)ω cosλ (44)
` = mrvhor = m(R + h)2ω cosλ (45)

Here ω is the angular momentum of Earth, λ is the latitude and h is the height
of the tower.
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b. The solution of the Kepler problem reads now (p is orbit parameter!)

p
r

= 1 − ε cosθ (46)

because we have chosen θ = 0 in the beginning (apoapsis). Let us take the
ratio of r and R + h and modify the corresponding equation such that

r =
(1 − ε)(R + h)

1 − ε cosθ
(47)

where θ corresponds to the orbit angle of any point on the elliptical orbit.

c. The constant areal velocity (Kepler II) is written as

1
2

r2 dθ
dt

=
`

2m
(48)

or ` = mr2θ̇ which is a constant and defined in a. Modifying the equation of
differential quantities, substituting ` and r and integration on both sides leads
to

t =
m
`

∫ θ

0
r2dθ =

m
m(R + h)2ω cosλ

∫ θ

0

(1 − ε)2(R + h)2

(1 − ε cosθ)2
dθ (49)
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=⇒ t =
1

ω cosλ

∫ θ

0

(1 − ε)2

(1 − ε cosθ)2
dθ (50)

d. Let us select the hitting point θ = θ0 =⇒ r = R and use the same relation as
above in b.

R + h
R

= 1 +
h
R

=
1 − ε cosθ0

1 − ε

=
1 − ε(1 − 2 sin2(θ0/2))

1 − ε
= 1 +

2ε
1 − ε

sin2(θ0/2) (51)

=⇒
h
R

=
2ε

1 − ε
sin2(θ0/2) ≈

εθ2
0/2

2(1 − ε)
(52)

where we have used a simple Taylor expansion in the last step.

e. Similarly, expand the integral in c and apply the Taylor expansion:

=⇒ t =
1

ω cosλ

∫ θ

0

dθ
[1 + 2ε/(1 − ε) sin2(θ/2)]2

(53)
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=⇒ t ≈
1

ω cosλ

∫ θ

0

dθ
[1 + εθ2/(2(1 − ε))]2

(54)

Substitute the result from d for ε/2(1 − ε) and denote the time for reaching the
landing point as t(θ0) = T

=⇒ T ≈
1

ω cosλ

∫ θ0

0

dθ
[1 + (hθ2/Rθ2

0)]2
(55)

This was the result that one was suppose to derive here. Further, as a bonus,
by taking another Taylor expansion and integrating, we get

=⇒ T ≈
1

ω cosλ

∫ θ0

0

(
1 −

2h
Rθ2

0

θ2
)
dθ =

1
ω cosλ

(
1 −

2h
3R

)
θ0 (56)

f. Based on the latest result, it is straightforward to convince ourselves that

θ0 ≈
ωT cosλ

1 − 2h/3R
≈ ωT cosλ

(
1 +

2h
3R

)
(57)
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where we have taken a Taylor approximation once more. This the starting
point of the last step in our journey. Let us not forget that Earth rotates an
angle ωT toward East while the pellet is travelling on its elliptical orbit. A
point on Earth’s surface moves thereby Rω cosλ. On the other hand, the
particle is being deflected toward East by an amount Rθ0 on its orbit. Thus,
the net devitiation becomes

d = Rθ0 − Rω cosλ =
2
3

hωT cosλ (58)

As a final step, we can approximate the falling time based on the standard
description of free fall in a non-rotating frame of reference T ≈

√
2h/g.

Substititute this for deflection, and voilà, we shall reach the ultimate goal!

d ≈
1
3

hω cosλ

√
8h3

g
(59)

The deflection is toward East and the result is exactly the same as derived
previously via applying the equation for Coriolis force. Note that we have
made some approximations with both methods.

Jaakko Akola (NTNU Trondheim) December 14, 2021 18 / 18


