
PROBLEM 1. Rotation of Earth

A. The discussion could be started by asking if the person making such silly
claims has ever jumped on a conveyor belt? This is of course for linear
motion, and we extend it here to rotations. Felix had the same radial velocity
as the ground while he started his journey upwards. In principle, this velocity
changes (centripetal motion) as a result of conservation of *his* angular
momentum, while the distance from the origin (Earth’s center) changes upon
ascend. However, the order of magnitude of h in comparison to R is so small
that the effect becomes negligible. On the other hand, the Coriolis effect is
dependent on velocity, and it is very small for this part of the journey. One
can also take into account that the radial velocity of atmosphere is, on
average, the same as that of the ground.

B. Felix starts the free fall from 39 km (checkpoint 1) and reaches the
maximum velocity at checkpoint 2 (no air resistance). Let us first calculate
how much time it takes and what is the altitude of checkpoint 2. It is
elementary to calculate that t = vmax/g = 38.45 s and ∆h = v2

max/(2g) = 7253 m,
which leads to altitude of 31.7 km.
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Next, we calculate the acceleration in the rotational frame as = ar − 2ω × vr.
Assume that lateral velocities ẋ ≈ 0 and ẏ ≈ 0, while ż = −gt. The angular
velocity of Earth is (−ω cosα, 0, ω sinα) in the local coordinate system (see the
figure in the problem set). Let us write the cross-product ω × vr as a
determinant and it leads to

ω × vr = −ωgt cosαej (1)

Going back to the relation between accelerations, the acceleration components
become (ar)x = ẍ = 0, (ar)y = ÿ = 2ωgt cosα, and (ar)z = z̈ = −gt. Integrate the
middle one twice by assuming y(0) = ẏ(0) = 0 and take into account that
t =

√
2∆h/g. This leads to our final outcome

y(t) = d =
1
3
ω cosα

√
8∆h3/g (2)

Insert the values of initial conditions and ∆h, and the result becomes 11.5 m
deflection in East. In total, one can deduce that the deflection caused by the
Coriolis effect is well below 100 m for the whole experiment.
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PROBLEM 2. True of false

i. TRUE. We can use the method of Lagrange’s undetermined multipliers for
solving non-holonomic constraints with velocities (semi-holonomic
constraints) and cases where there is an inequality in the constraint equation
that would otherwise be holonomic / semi-holonomic.

∂L
∂qk
−

d
dt
∂L
∂q̇k

= −

m∑
l=1

λl
∂fl
∂q̇k

= −

m∑
l=1

λlal,k = Qk, k = 1, 2, ...,n (3)

The nice feature is that this equation can also be applied for holonomic
constraints in case we want to know the forces of constraints..

ii. FALSE. The Lagrangian function can be transformed to another Lagragian
via the transformation

L′ = L +
dF(q, t)

dt
(4)

In the same context, remember also that the potential energy zero-level is
arbitrary.

iii. FALSE. In general, a bound orbit is not the same as a closed orbit. Also
other central potentials result in bound orbits but they are not closed.
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iv. FALSE. Hamilton’s characteristic function W applies for cases where the
Hamiltonian itself does not depend on time. We must solve the
Hamilton-Jacobi equation some other way. (For those interested, it goes via an
ansatz function S(x, t) = f (t)x + g(t). We did not learn this technique in this
course.)

v. FALSE. Starting from the classical mechanics point of view, diatomic
molecules do not have transversal vibrational modes which are necessary for
IR activity (moving center of charge) and absorption of light (heat). N2 and O2
are far more abundant than CO2 in the atmosphere. It is true that the CO2
concentration exceeds greatly those of larger molecules such as CH4 which are
even worse in their ability to absorb light. Actually, the most abundant green
house gas (GHG) is H2O. The H2O and CO2 levels are coupled, and thereby
emissions of the latter affect also the former (clouds). One can of course argue
about the definition of GHG in the context of water.
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PROBLEM 3. Particle in cylinder cavity with water

a Let us start by identifying the analogy with the problem of simple
pendulum. The kinetic energy and potential energy will have similar
expressions in the two cases. For treating this problem, the obvious choice is
polar coordinates, where R (radius) is fixed. Thereby, a convenient
generalized coordinate of treating this problem is the angle θ, measured from
the bottom of cavity. The corresponding Lagrangian becomes

L =
1
2

mR2θ̇2
−mgR(1 − cosθ) (5)

There is a dissipative force due to liquid with respect to the radial velocity
v = Rθ̇ which corresponds to the generalized force on the other size of the
Lagrange equation (note the sign)

∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
= kmRθ̇ (6)

After taking the derivatives and dividing by common factors, the equation of
motion becomes

θ̈ +
k
R
θ̇ +

g
R

sinθ = 0 (7)
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b Let us now introduce the new (auxiliary) constants δ = k/(2R) and
ω0 =

√
g/r. We also assume small oscillations where sinθ ∼ θ. The

differential equation becomes

θ̈ + 2δθ̇ + ω2
0θ = 0 (8)

We observe that the equation above is a second order homogeneous
differential equation. The solution of this achieved via the roots of the
characteristic equation

r2 + 2δr + ω2
0 = 0 (9)

where r = −δ ±
√
δ2 − ω2

0. Further, let us denote α =
√
δ2 − ω2

0.

We have now three scenarios, where the first one corresponds to δ2 > ω2
0. This

leads to

θ = Aer1t + Ber2t = e−δt
(
C1eαt + C2e−αt

)
(10)

where A, B, C1 and C2 are undetermined constants. This form of solution
clearly describes a decaying overdamped case of oscillation.
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Similarly, δ2 = ω2
0 leads to critical damping θ = e−δt(C1 + C2t).

For δ2 < ω2
0 we will introduce another parameter ω =

√
ω2

0 − δ
2 and the

solution of the differential equation becomes

θ = e−δt
(
C1eiωt + C2e−iωt

)
(11)

The first part of the equation is a decaying function, while the parentheses
describe oscillation. This is the underdamped case of oscillation.

Note: The solution of this problem essentially the same as for the damped
simple pendulum.
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PROBLEM 4. Inertia tensor of a cube

a. The cube is fixed in the middle of one of its edges while the sides are
aligned with the cartesian coordinate axes. The integration limits are therefore
[0, a], [0, a] and [−a/2, a/2] for x1, x2 and x3, respectively. The inertia tensor is
defined as

Iij =

∫
V
ρ(r)

(
δijr2
− rirj

)
dV (12)

The density is a constant and we can write out the first tensor component

I11 = ρ

∫
V

(
r2
− x2

1

)
dV = ρ

∫ a/2

−a/2
dx3

∫ a

0
(x2

2 + x2
3)dx2

∫ a

0
dx1 (13)

= ... =
5
12
ρa5 =

5
12

Ma2 (14)

by taking into account that M = ρa3. Let us remember that the inertia tensor is
Hermitian. This results in that the off-diagonal component are I21 = I12,
I31 = I13 and I32 = I23.
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The remaining components to calculate are

I12 = −ρ

∫ a

0
x1dx1

∫ a

0
x2dx2

∫ a/2

−a/2
dx3 = ... = −

1
4

Ma2 (15)

I13 = −ρ

∫ a

0
x1dx1

∫ a/2

−a/2
x3dx3

∫ a

0
dx2 = ... = 0 (16)

I22 = ρ

∫ a/2

−a/2
dx3

∫ a

0
(x2

1 + x2
3)dx1

∫ a

0
dx2 = ... =

5
12

Ma2 (17)

I23 = −ρ

∫ a

0
x2dx2

∫ a/2

−a/2
x3dx3

∫ a

0
dx1 = ... = 0 (18)

I33 = ρa
∫ a

0
dx1

∫ a

0
(x2

1 + x2
2)dx2 = ... =

2
3

Ma2 (19)

The corresponding final matrix can now be written by using the short hand
notation b = Ma2.
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b. The determinant of the inertia tensor is simple to solve and results in a
polynomial (2

3
b − I

)[( 5
12

b − I
)( 5

12
b − I

)
−

(1
4

b
)2]

= 0 (20)

We see immediately that one of the roots is I = 2
3 b. What is left is the

polynomial in square-brackets, which becomes

I2
−

5
6

bI +
1
9

b2 = 0 (21)

The remaining roots can be calculated from the general solution of a second
order polynomial, and they become I = 2

3 b and I = 1
6 b. Obviously, we have

two degenerate eigenvalues.

The task did not include computing the eigenvectors, i.e. principal axesof
inertia, but let us give them here as well: [-1,1,0], [1,1,0] and [0,0,1]. One can
add a constant 1/

√
2 for the two former ones for normalization.
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PROBLEM 5. Meson decay

The task can be solved by considering the conservation of energy and linear
momentum. For energy conservation, we can use the relativistic dispersion
relation E2 = m2c4 + p2c2 and the fact that linear momentum is conserved, that
is pµ = −pν. We can denote the magnitude of each linear momentum simply as
p. The equation for energy conservation Eπ = Eµ + Eν becomes

mπc2 =
√

m2
µc4 + p2c2 + pc, (22)

where we have the initial meson on the lefthand side and products on the
righthand side. Note that the initial meson has only rest mass, and neutron
has no mass, Eν = pc. Let us next solve p in this equation. After some steps

p =
m2
π −m2

µ

2mπ
c. (23)

Insert this in the total energy of µ-meson

Eµ =
√

m2
µc4 + p2c2 = ... =

c2

2mπ
(m2

π + m2
µ). (24)
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Kinetic energy of µ-meson is simply the difference between total and rest
energies

Tµ = Eµ −mµc2 =
c2

2mπ
(m2

π + m2
µ) −mµc2 = ... =

(mπ −mµ)2

2mπ
c2 (25)
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