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“Can one hear the shape of a drum?” was a question posed (and made famous) by mathematician

Mark Kac in the mid-1960s. It addresses whether a deeper connection exists between the resonance

modes (eigenmodes) of a drum and its shape. Here, we propose a numerical experiment, suitable

for advanced undergraduate physics students, on the calculation of the eigenmodes of a square

Koch fractal drum, for which experimental results do exist. This exercise is designed to develop

the students’ understanding of the vibrations of fractal drums, their eigenmodes, and potentially

their integrated density of states. The students calculate the lowest order eigenmodes of the fractal

drum, visualize these modes, and study their symmetry properties. As an extension, the students

may investigate the integrated density of states of the fractal drum and compare their findings to the

Weyl–Berry conjecture. # 2024 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0140853

I. INTRODUCTION

It is well known that a large drum has a lower fundamental
resonance frequency than a smaller drum. Hence, from the
tone that a drum makes, you can potentially say something
about its size (the area of the membrane). What now if the
area of the drum is the same but we change the shape of
the drum? Will this change of shape modify the tones of the
drum? In 1966, the Polish mathematician Mark Kac pub-
lished a seminal and influential paper related to this question
under the title Can one hear the shape of a drum?.1

Shortly after Kac published his famous paper, fractals
started to become a topic of interest.2 If the boundary of the
drum is fractal, and therefore not smooth, what will then hap-
pen? In the early 1990s, Sapoval and coworkers conducted a
series of elegant experiments to study the modes of fractal
drums.3 They observed modes localized to bounded regions
of the drum, labeled A, B, C, and D in Fig. 1(a). In fact,
Sapoval et al. were able to excite each mode separately.
Classic (or non-fractal) drums do not behave this way, as
striking any part makes the whole membrane vibrate. Why is
the fractal drum so different?

Sapoval et al. showed that the equation governing wave
motion has solutions with very large amplitudes at the
inward-facing corners of the drum (Fig. 1). These large-
amplitude regions generate a cascade of large-amplitude
vibrations that interfere with one another. This gives rise to
dissipation on many scales, so drums with fractal boundaries,
hereafter called fractal drums, exhibit very strong damping.
How does this explain the local vibrations of the fractal
drum? The narrow throat connecting region A to the rest of
the drum slows a wave traveling from A to B [Fig. 1(a)], and
the strong damping absorbs the wave before it can spread.
Experimental result for one of these local modes is shown in
Fig. 1(b). Any such local modes can be considered a linear
combination of the eigenmodes of the system, and the
numerical calculation of the possible eigenmodes of the frac-
tal drum is one of the main purposes of the numerical study
that we propose here.

In this paper, we introduce a numerical experiment allow-
ing students to study the vibrations of fractal drums, their
eigenstates, and potentially their density of states conjecture.

These problems have significant physical applications to the
study of porous media, diffusion, wave propagation in fractal
media or wave scattering from fractal surfaces. The tasks are
devoted to the numerical calculation of the eigenfrequencies
and related eigenmodes of fractal drums. As the perimeter of
the fractal drum, we have chosen the so-called square Koch
curve, the same structure used in the experiments by Sapoval
et al.3 The purpose of the numerical experiment that we pro-
pose is to enhance students’ learning by offering them a
means of experimenting with concepts that they may find
troublesome in class. Moreover, the experiment is suitable
for introductory or upper-level courses and as a modeling
exercise in upper-level physics courses. The experiment can
bring enthusiasm to a physics classroom.

The remaining part of this work is organized as follows:
In Sec. II, we present the numerical experiment, including its
background and the relevant theoretical framework for the
fractal drum problem. Then, we provide some implementa-
tion details on how to solve the problem and comment on
challenges that the students may face in doing so (Sec. III).
In Sec. IV, we present and discuss the results that were
obtained. Finally, Sec. V presents the conclusions we draw
from this work and gives some final remarks.

II. NUMERICAL EXPERIMENT

A. Fractal drums

The problems presented in this work were part of the
course Computational Physics taught at the Norwegian
University of Science and Technology (NTNU). The aim of
the fractal drum problem is to numerically calculate the
vibrational resonance frequencies of the square Koch drum
and obtain the corresponding eigenmodes. This is the same
problem that Sapoval and co-workers3 studied experimen-
tally in the early 1990s. These authors presented some
numerical results for a few eigenmodes of the drum and their
results were obtained by a relaxation method (see Ref. 3 for
details). Here, a different numerical approach is used that
allows one to obtain all the lower eigenmodes. The physics
used in the fractal drum problem, although not explored in
this work, extends to applications in the study of porous
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media, diffusion, wave propagation in fractal media and
wave scattering from fractal surfaces.

To state the problem, let D denote the region inside the
square Koch drum. The oscillation of the membrane (in D) is
determined by the wave equationr2u ¼ ð1=c2Þ@2u=@t2 (c is a
velocity) subjected to (Dirichlet) boundary condition u¼ 0 for
all times on the boundary @D. Here uðr; tÞ represents the verti-
cal displacement of the membrane at position r in the plane at
time t. Performing the Fourier transform of the wave equation
with respect to time leads to the Helmholtz equation,4,5

�r2Uðr;xÞ ¼ x2

c2
Uðr;xÞ; in D; (1a)

Uðr;xÞ ¼ 0 on @D; (1b)

where x denotes the angular frequency. Equation (1a) states
that x2=c2 is an eigenvalue, x is the corresponding eigenfre-
quency, for the negative Laplacian operator [�r2], and the
function Uðr;xÞ is the eigenmode corresponding to the
eigenfrequency x.

A classic approach to solving Eq. (1) inside D is to use a
finite difference approximation to the unknown function
Uðr;xÞ in this domain. This is achieved by defining a rectan-
gular grid of lattice constants h in the domain of interest. If
rmn ¼ ðxm; ynÞ represents an arbitrary lattice point in a region
of the plane containing the square Koch drum, we let
UðrmnÞ ¼ Umn denote the vertical displacement of the mem-
brane at this point.

When the standard five-point stencil,6,7 defined by the
point itself and its four nearest neighbors, is applied to the
Laplacian operator that appears on the left-hand side of Eq.
(1a), we are led to

� 1

h2
Umþ1;n þ Um�1;n þ Um;nþ1 þ Um;n�1 � 4Umn½ �

¼ x2

c2
Umn: (2)

The vertical displacement vanishes [Umn¼ 0] for lattice
points that are outside, or on the boundary, of the square
Koch drum. Hence, it is only the set of displacements fUmng
that correspond to lattice points that are inside the square
Koch drum that we need to determine. We call these points
internal lattice points. When Eq. (2) is applied to all internal
lattice points, a set of linear eigenequations is obtained,
which determines the eigenfrequencies and the correspond-
ing eigenmodes of the square Koch drum.

III. IMPLEMENTATION DETAILS

In this section, we will outline some of the implementation
details required to numerically calculate the eigenfrequen-
cies and eigenmodes of the fractal square Koch drum using
the finite difference approximation.

A. Constructing the fractal drum

The fractal that we will be concerned with is constructed
on the basis of the generator presented in Fig. 2(b). This gen-
erator is constructed from an initial (‘ ¼ 0) line segment of
length L [Fig 2(a)] by (i) dividing it into four equal segments
of length L=4; (ii) raising the second element (from the left)
a distance L=4 from the base; and (iii) lowering the third ele-
ment a distance L=4, while the elements connected to the
end points are not moved. It is customary to treat the central
vertical part of the generator as two separate line segments
instead of one, in order to make each of the 8 line segments
the same length. The structure in Fig. 2(b) is the generator of
the fractal and is represented by generation level ‘ ¼ 1. To
obtain the structure at level ‘ ¼ 2, this generator is applied
subsequently to each of the line segments of length L=4 from
the previous generation level. In this way, the ‘ ¼ 2 structure
presented in Fig. 2(c) is obtained. The structures correspond-
ing to higher levels are generated recursively in the same
fashion by applying the generator from Fig. 2(b) to the
smaller-and-smaller line segments from the previous level.
In the limit ‘!1, the true fractal structure is obtained;
when ‘ has a finite value, the structure is said to be a pre-
fractal. Therefore, the drums used in this experiment are
technically not a fractal but a pre-fractal.

The square Koch fractal (of type 2) is generated by start-
ing from a square of sides L [Fig. 3(a)] (level ‘ ¼ 0), and
recursively applying the fractal generator from Fig. 2(b)
to each of its sides. The fractal structure at level ‘ ¼ 1 and
‘ ¼ 2 is obtained and the resulting structures are presented in
Figs. 3(b) and 3(c), respectively. In Fig. 3, the points that are
added at each level are presented in different colors. It
should be noticed from the way that the structure is gener-
ated that the total area inside the structure is L2 and indepen-
dent of the generation level. Furthermore, the smallest line
segment of the structure at level ‘ is

Fig. 1. (a) The boundary of the (square Koch) fractal drum (‘ ¼ 3) that is

investigated. The limiting curve has fractal (box-counting) dimension

ln ð8Þ= ln ð4Þ ¼ 3=2. (b) Experimental result of Sapoval et al. (Ref. 3) show-

ing localized vibrations (reprinted with permission of APS).
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d‘ ¼
L

4‘
: (3)

B. Discretize

The next step is to introduce a square lattice to which all
the corners of the square Koch fractal at level ‘ belong. For
this to be the case, the discretization interval d‘ cannot be
independent of the initial width L of the square from which
one started the generation (level ‘ ¼ 0). From the structures
depicted in Fig. 3, it should be apparent that the widths of the
structures grow with generation level ‘. From the way the
square Koch fractal is generated, one finds that its size (width
and height) at level ‘ is given as L‘ ¼ Lþ 2

P‘
n¼1 dn or as

L‘
L
¼ 1þ 2

X‘
n¼1

4�n: (4)

By discretizing a square region of sides L‘ and using a
discretized interval d‘ ¼ L=4‘, all corners of the square
Koch curve at level ‘ are guaranteed to fall onto the lat-
tice. If we assume that lattice points coincide with the end
points of this square region, a general lattice point is
given as

rmn ¼ xmx̂þ ynŷ; (5a)

where the coordinate system used is indicated in Fig. 3(a)
and a caret over a vector indicates that it is a unit vector. In
writing Eq. (5a) we have defined

xm ¼ �
L‘
2
þ ðm� 1Þd‘ (5b)

yn ¼ �
L‘
2
þ ðn� 1Þd‘; (5c)

with m ¼ 1; 2;…;N‘ þ 1 and n ¼ 1; 2;…;N‘ þ 1. Here the
integer

N‘ ¼
L‘
d‘

� �
¼ 4‘ 1þ 2

X‘
n¼1

4�n

 !$ ’
; (6)

denotes the number of line segments (of size d‘) needed to
cover the width (or height) of the square region L‘ � L‘ that
fully contains the square Koch curve (the symbol b�e means
the nearest integer). The total number of points in the lattice
is ðN‘ þ 1Þ2 and the fraction of lattice points that are inside
the square Koch curve (internal lattice points) can be approx-
imated by the area ratio ðL=L‘Þ2 [cf.. Eq. (4)].

Fig. 2. The process of constructing the fractal. (a) The initial line segment of

length L (level ‘ ¼ 0); (b) the “generator” of the fractal (level ‘ ¼ 1); (c) the

structure at level ‘ ¼ 2 of the construction. The different nodal colors are

used to represent the nodes added at each level of the generation process.

Fig. 3. The process of constructing the square Koch fractal. (a) The initial

square region (level ‘ ¼ 0) from which the square Koch fractal is generated;

(b) level ‘ ¼ 1 of the fractal construction (added points shown in blue); (c)

level ‘ ¼ 2 of the construction (added points shown in red). The vertical

dashed lines represent the initial width (and height) of the square region from

which the square Koch curve is constructed. Notice that the width and height

of the structure increase with the generation level ‘, but the area inside the

curve remains the same at all generation levels. The coordinate system that we

use is indicated in Panel (a) and its origin is located at the center of the square.
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C. Classification of lattice points

To facilitate the implementation of the finite difference
expression in Eq. (2), it will be beneficial to know which set
of lattice points are internal, external, and boundary points
for the square Koch curve. To keep track of the classification
of the lattice points, we define a square matrix of integers
that has a dimension that is identical to the lattice and whose
values determine if the lattice point is inside (positive value),
outside (negative value), or on the boundary (zero value) of
the square Koch drum. In the following, we will refer to this
matrix as the classification array (or matrix) and it will later
be used as a look-up table. Since the corners of the square
Koch curve at level ‘ > 0 coincide with some of the lattice
points if a lattice constant h ¼ d‘ is used, one can readily
identify the boundary points and set the value of the classifi-
cation array to zero for such points.

It still remains to be determined if the remaining points are
inside or outside of the (closed) square Koch curve. The way
to do this was not specified in the description of the problem
that was handed out. Instead, the students were asked to iden-
tify and implement at least one method of doing so, and sev-
eral methods were proposed, implemented, and tested by the
students. Here, we briefly describe a few such methods.

The (closed) square Koch curve can be seen as a simple
polygon since it is defined by its corners. Therefore, our
point classification problem is equivalent to the well-known
point-in-polygon problem from computer graphics.8–10 This
is an old problem, and numerous algorithms exist to solve it.
Here we briefly mention a few that were suggested by stu-
dents. The ray casting algorithm11 that keeps track of the
number of intersections for a ray (or line) passing from a
starting point that is outside (or exterior of) the polygon to
the point in question one is investigating; if the number of
such intersections is odd, the investigated point is located
inside the polygon, if it is even, the point is outside the poly-
gon. In the winding number algorithm the investigated
point’s winding number with respect to the polygon is calcu-
lated.9 This number, which is an integer, is zero if the point
is outside the polygon, and non-zero if it is inside. The more
mathematically inclined students may appreciate that the
point-in-polygon problem can be addressed by Cauchy’s res-
idue theorem from complex analysis. By defining z ¼ xþ iy
and letting z0 denote the point of interest, the complex inte-
gral ð2piÞ�1Þ

cdz=ðz� z0Þ, where c ¼ @D is the square Koch
curve, will vanish if z0 is outside @D and should equal 1 (the
residue of the integrand at z0) if it is inside. By numerically
calculating the contour integral it can be determined if a
point is inside or outside the square Koch curve. It should be
remarked that Cauchy’s residue theorem can be used to
define the winding number algorithm since the winding num-
ber is just an alternate form of the Cauchy integral given
above.12

To fill the whole classification array, we start from the
upper left corner of the lattice, a point that corresponds
to lattice point r11, and traverse the lattice column-by-
column.13 For each lattice point, one of the methods outlined
above (or others) is used to determine if the lattice point is
inside or outside of the square Koch curve. For the calcula-
tions that we present in this paper, we used the winding num-
ber algorithm. If the lattice point is outside the square Koch
curve, we set the value to –1 (or any other negative value).
On the other hand, for lattice points that are classified as
being inside, the classification array is given a strictly

positive integer value. The classification value of the first
internal point that we encounter is set to 1, the second one to
2, and so on. This way of labeling the internal lattice points
will be convenient when we later set up the eigensystem (see
the next subsection). When the lattice is traversed column-
by-column starting from the upper left corner, as we have
assumed here, the classification of the first internal lattice
points is detailed in Fig. 4(b).

D. Constructing the eigensystem

Equation (2) is the starting point for setting up the eigen-
system that determines the eigenmodes and corresponding
eigenfrequencies of the drum. However, we want the eigen-
frequencies that we calculate to be independent of the width
and height, L, of the square from which the square Koch
drum was generated. Therefore, we multiply both sides of
Eq. (2) by L2 and define the dimensionless eigenfrequency,

X ¼ x
c

L; (7)

of the square Koch drum. From the equation that is obtained
in this way, we construct the eigensystem Av ¼ kv. Here A is
the coefficient matrix representing the finite difference
approximation to the negative of the Laplacian (times L2), v is
the eigenvector, and k ¼ X2 is the corresponding eigenvalue.
First, one needs to adopt a storage convention that maps onto
a vector the set of the matrix elements Umn that correspond to
internal lattice points. We adopt the convention

v ¼ Um1n1
; Um2n2

; Um3n3
; � � �ð ÞT ; (8)

where the index pair mpnp that appears as subscripts is
defined from the lattice point classification matrix C by
Cðmp; npÞ ¼ p with p a positive integer [p 2Nþ]. In other
words, the p’th element of the eigenvector v corresponds to
the lattice point located at position (mp, np).

With this convention, and the use of the classification
matrix C, the coefficient matrix A can be constructed in the
following way. First, all elements of the matrix A are initial-
ized to zero [A¼ 0]. Then one loops over all lattice points
(here in a column-by-column manner), m ¼ 1; 2;…;N‘ þ 1
and n ¼ 1; 2;…;N‘ þ 1. If a lattice point is outside or on the
boundary of the square Koch curve, do nothing, and go on to
the next lattice point. On the other hand, if the point of lattice
indices (m, n) is an internal point i ¼ Cðm; nÞ > 0, the diago-
nal element of the coefficient matrix is set to Aii ¼ 4L2=d2

‘
¼ 4‘þ1 [see Eq. (2)�L2] where we have used h ¼ d‘ for the
square Koch curve at generation level ‘. This value of Aii is
indicated by the blue color in Fig. 4(c). Next, the potential
coupling to its four nearest-neighboring lattice points is
taken into account. This is done by subsequently considering
the points that are located to the right and the left of the lat-
tice point (m, n), that is, points labeled j ¼ Cðmþ 1; nÞ and
j ¼ Cðm� 1; nÞ, and the lattice points just above and below
(m, n) that are labeled j ¼ Cðm; nþ 1Þ and j ¼ Cðm; n� 1Þ.
For each of the points that are nearest-neighbors to lattice
point (m, n) and also are internal lattice points so that j> 0,
one sets Aij ¼ �L2=d2

‘ ¼ �4‘ [see Eq. (2)�L2]. Such ele-
ments are indicated by the green color in Fig. 4(c). In the
same figure, the white color indicates vanishing (zero value)
matrix elements. After completing the loop over the whole
lattice, the coefficient matrix A is filled and the eigenmodes
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and eigenvalues can be computed. One should note that the
coefficient matrix A is symmetric and positive definite.
Hence, the eigenvalues are real and the eigenvectors can be
chosen to be real; this is required for the physical quantities
frequency and displacement.

In passing, it should be noted that the matrix A has dimen-
sion M‘ �M‘ where a good approximation for M‘ is
bðN‘ þ 1Þ2L2=L2

‘e. Furthermore, the majority of the elements
of this matrix are zero, so it is a sparse matrix. Taking advan-
tage of the sparsity of the coefficient matrix A is particularly
important (to reduce memory requirements) if one wants to
handle higher generation levels ‘. Since each row of the
matrix A can have at most 5 non-zero elements, a lower
bound on its sparsity14 is 1� 5=M‘.

E. Solving the eigensystem

If the matrix A is stored as a dense matrix,15 the eigensys-
tem is best solved by the routines ssyev/dsyev from the high-
performance LAPACK-library.16 If instead the popular
programming languages Python or Cþþ are used, the
Python modules NumPy/ScyPy17–19 or the library
Armadillo20 will provide the same capabilities, while Matlab
has an eigensolver directly built into the language.
Internally, all these approaches use the LAPACK library. On
the other hand, if you should opt for storing the coefficient
matrix A as a sparse matrix, ARPACK21 is the workhorse
eigensolver library and both SciPy and Armadillo have

wrappers to this library. Furthermore, Matlab handles sparse
matrices as part of the language. It should be mentioned that
ARPACK also has the option of calculating a given number
of the lowest eigenvalues and corresponding eigenvectors.
This option can be significantly faster than calculating the
full set of eigenvalues and eigenvectors.

Independently of how the eigensystem is solved, the result
is a set of eigenvalues fk�g and the corresponding set of
eigenvectors fv�g (with � ¼ 1; 2;…). Typically the calcu-
lated eigenvectors v� are calculated using a given normaliza-
tion; for instance, if LAPACK is used for the calculation, the
eigenvectors are normalized to have unit L2-norms.

The calculated eigenvectors v� cannot be visualized
directly. Instead, they have to be mapped back onto the lat-
tice that was initially defined and assumed in setting up the
eigensystem (a mapping from a vector to a portion of a
matrix). To this end, an eigenmode matrix E� is allocated to
have the same dimensions as the lattice and the classification
matrix C. By performing a (column-by-column) double loop
over the elements C(m, n) of the classification matrix,22 such
a vector-to-matrix mapping can be achieved by using how
the classification matrix was defined [see Sec. III C]. For
points of the lattice (m, n) that are not internal to the square
Koch drum, indicated by Cðm; nÞ � 0, we put E�ðm; nÞ ¼ 0,
i.e., vanishing vertical displacement. However, for points of
the lattice for which Cðm; nÞ > 0, we set E�ðm; nÞ ¼ v�ðiÞ
where i ¼ Cðm; nÞ is a positive integer [see Sec. III C for
details]. When the double-loop over m and n finishes, the
vector-to-matrix mapping is completed and now the eigen-
mode can be visualized by generating a contour plot of the
eigenmode matrix E� and on it superposing the boundary of
the square Koch curve assumed in calculating the eigenmo-
des. In this way, we obtained the eigenmodes that will be
presented below (in Figs. 5 and 6.).

IV. RESULTS AND DISCUSSION

The previous section detailed how to set up and solve the
eigensystem Av ¼ kv that determines the eigenmodes and
eigenfrequencies of the square Koch drum. Here, we will
present and discuss the results that can be obtained by doing
so. It will be assumed that the boundary of the square Koch
drum is generated at level ‘ ¼ 4.23 This value of ‘ is high
enough that the square Koch curve displays sufficient details
without the resulting eigensystem taking too long to solve or
requiring more memory than can be stored on a typical stu-
dent laptop. For level ‘ ¼ 4 the discretization interval is
d4 ¼ L=44 ¼ L=256 [Eq. (3)], and the width of the square
Koch drum is L4 � 1:664L [Eq. (4)]. Furthermore, with these
values, or from Eq. (6), it follows that the linear size of
the quadratic lattice is N4 þ 1 ¼ 427. Out of the ðN4 þ 1Þ2
¼ 182329 points, 16384 lattice points are boundary points,
while there are M4 ¼ 57345 internal lattice points for the
square Koch drum (‘ ¼ 4). Therefore, the size of the eigen-
system is M4 �M4. Using single-precision floating points,
dense storage of the coefficient matrix of the eigensystem
will require about 12.25Gb of memory. Since the sparsity of
the matrix is over 99.9%, only a fraction of this storage is
required if sparse matrix storage is used. It should be men-
tioned that the students do not typically have sufficient mem-
ory on their laptops for dense matrix storage when ‘ � 4;
however, if they are using sparse storage, they are not
expected to face this problem, until ‘ � 6.

Fig. 4. The classification of the lattice points that are internal to the square

Koch curve. (a) For the square Koch curve (solid black line) the blue solid

dots represent internal lattice points. Points that are on the boundary or out-

side the fractal are not shown. The green box indicates the region that is

detailed in panel (b) of this figure; (b) Assuming that the lattice is traversed

column-by-column from the upper left corner, the values of the classification

array corresponding internal points using the convention detailed in the

main text are presented; (c) The structure of the coefficient matrix repre-

sented by the left-hand-side of Eq. (2), that is, the finite difference approxi-

mation to the negative Laplacian �r2. Here blue squares represent the

value 4=h2, the green squares represent the value �1=h2 while the white

squares represent the zero elements.
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For ‘ ¼ 4 the eigensystem was constructed using sparse
matrix storage and solved as outlined in Sec. II. The calcula-
tion of the first 21 eigenmodes of the square Koch drum took
only a few minutes on a typical desktop computer; the most

time-consuming steps of the calculation were (i) to obtain
the classification of the lattice points, needed for the system
setup, and (ii) to solve the eigensystem. In this way we
obtained the eigenmodes presented in Figs. 5 and 6. Here the
calculated eigenvectors were mapped back onto the eigen-
mode matrix E� and contour plots of these modes, with the
boundary of the square Koch drum superimposed, were pro-
duced to visualize the calculated modes [see Sec. III E for
details].

Figure 5(a) presents the fundamental eigenmode of the
square Koch drum (at level ‘ ¼ 4). It is found that the verti-
cal displacement of this mode is concentrated around the
center of the square Koch drum and the displacement values
all have the same sign; therefore, no nodal lines exist for the
fundamental mode, as expected from the Courant nodal
domain theorem.24 This feature is similar to the fundamental
mode of the non-fractal square drum [Fig. 3(a)].4,25 The cor-
responding dimensionless eigenfrequency is X0 ¼ 9:4299, a
value that should be compared to the fundamental frequency

of the square drum which is X̂0 ¼
ffiffiffi
2
p

p ¼ 4:4429.3,4,25

Therefore, the ratio of these two fundamental frequencies is

X0=X̂0 ¼ 2:1225, a ratio that Sapoval et al. reported to be
2.100.3 Reducing the generation level to ‘ ¼ 3, as assumed
in the experiments by Sapoval et al., resulted in a reduced

ratio X0=X̂ that still remained slightly higher than the experi-
mental value. However, visually comparing the fundamental
eigenmode in Fig. 5(a) to the fundamental mode depicted in
Fig. 4(a) of Ref. 3 shows good agreement.

With regard to the eigenmodes E1 and E2, seen in Figs.
5(b) and 5(c), we numerically find that X1 equals X2 to 10
decimal places (Table I), which we interpret as a sign of
degeneracy. The number of different eigenmodes corre-
sponding to a particular eigenfrequency is known as the
degree of degeneracy. It should be recalled that the first
excited states of a square drum are also degenerate with a
degree of degeneracy of two.4

The following two eigenmodes, E3 and E4, are non-
degenerate and their structures are presented in Figs. 5(d)
and 5(e). For both these modes, the displacement is mainly
in the four “wings” of the square Koch drum, while, for each
mode, the displacement at the center of the drum is signifi-
cantly lower. Hence, one observes four well-defined regions
for which the displacement is significant. For mode E4, the
displacement in these regions has the same sign, while for
mode E3, two diagonally placed regions have positive dis-
placement while the other two have negative displacement.
The reason the E3 eigenmode does not have a rotated, degen-
erate eigenmode is discussed later in this section and can be
explained on the basis of group theory. If we compare the
eigenmodes E1–E4 from Figs. 5(b)–5(e) (and their eigenfre-
quencies), to the corresponding modes shown by Fig. 5 in
Sapoval et al.,3 good qualitative agreement is found. It is
remarked that the experimental displacement pattern pre-
sented in Fig. 1(b) can be obtained by a linear combination
of the modes E1–E4, as was explained in Ref. 3.

Figures 5(f)–5(u) present the structure of the modes E� for
�¼ 5–20 and their corresponding eigenfrequencies are given
in Table I. Several of these modes are degenerate, like the
modes that correspond to mode indices � ¼ 5; 6; � ¼ 9; 10;
� ¼ 14; 15 and � ¼ 18; 19 (see Table I). Moreover, and as
expected, one finds that the spatial complexity of the modes
increases with the mode index. It is hard not to appreciate
the esthetic beauty of some of these higher-order modes

Fig. 5. The lowest eigenmodes E0–E20 of the square Koch drum at fractal

generation level ‘ ¼ 4 that correspond the lowest eigenfrequencies which

are listed in Table I. These modes were obtained by solving the eigensystem

as explained in Sec. III assuming the discretization interval d4 ¼ L=44

¼ L=256. The blue and red colors represent negative and positive values for

the vertical displacement, respectively.
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depicted in Fig. 5. Many students found motivation in pro-
ducing, on their own account, such appealing results.

One may also wonder what some of the much higher-
order modes of the square Koch drum look like. To this end,
Fig. 6 presents the modes E1113–E1115. The associated eigen-
frequencies are given in the figure caption. The mode struc-
ture is rather complex, as expected, and E1114 and E1115 are,
in fact, degenerate modes.

We now turn to the symmetry properties of the eigenmodes
presented in Figs. 5 and 6. These properties are determined by
the symmetries of the eigenproblem (1). The square Koch
curve [Fig. 3(c)] is invariant with respect to in-plane rotations
of 908 about the center of the drum (for any value of ‘). Since

the Helmholtz equation (1a) is rotationally invariant, the full
solution to (1) displays in-plane 908-rotational symmetry. The
consequence for the eigenmodes of this symmetry is typically
studied using group theory.26,27 The useful result to note from
such theory is that when a symmetry operation of the problem
is applied to one of its eigenmodes, the result will be a linear
combination of the eigenmodes corresponding to the same
eigenvalue.27 This has the consequence that non-degenerate
eigenmodes of the square Koch drum should, up to a constant,
be 90	-rotational symmetric about their center point. For a
g� ¼ 2 degenerate eigenmode, the prediction is that its in-
plane rotation of 908 about its center should, due to the
orthogonality of the eigenmodes, result in a constant times the
other eigenmode that corresponds to the same eigenvalue.
Close inspection of the modes in Figs. 5 and 6 reveals that the
expected symmetry properties are indeed present in the calcu-
lated eigenmodes.

In total 11 of the 21 eigenmodes of the square Koch
drum presented in Fig. 5 are non-degenerate (Table I).
The dimensionless eigenfrequencies of the (non-fractal)
square drum are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p

p with m; n ¼ 1; 2;….4,28

Among the 21 first eigenmodes of the square drum, only
four modes are non-degenerate. The lower number of
degenerate eigenmodes found for the square Koch drum
as compared to the corresponding non-fractal square drum
is due to the latter drum having a higher degree of symme-
try. The classic square drum is also symmetric with
respect to reflections about the first (horizontal) and sec-
ond (vertical) axis [Fig. 2(a)] and with respect to the 645	

diagonals. These symmetries are not present for the square
Koch drum. For this reason, some of the degeneracy that
is present in the classic square drum is lifted for the corre-
sponding square Koch drum. Additional symmetry in the
shape of the drum increases the fraction of eigenmodes
that are degenerate, at least, this is the case for the drums
that we considered.

V. CONCLUSIONS

The numerical experiment described in this paper pro-
vided students with a better understanding of the vibrational
properties of fractal or extremely irregular structures.
Important topics include the vibrations of fractal drums, their
eigenfrequencies and corresponding eigenstates. Optionally,

Fig. 6. The structure of the eigenmodes E1113–E1115 that correspond to the eigenfrequencies X1113 ¼ 136:3287, and X1114 ¼ X1115 ¼ 136:3656. The remaining

parameters are like in Fig. 5.

Table I. The eigenfrequencies associated with the eigenmodes of the square

Koch drum (‘ ¼ 4) depicted in Fig. 5. The columns of the table present the

mode index �, the dimensionless eigenfrequency X� and the degree of

degeneracy g� , both for the square Koch drum, and finally the ratio X�=X̂0

where X̂0 ¼
ffiffiffi
2
p

p is the dimensionless fundamental eigenfrequency of the

corresponding classic square drum.

m X� g� X�=X̂0

0 9.4299 1 2.1225

1 14.1469 2 3.1842

2 14.1469 2 3.1842

3 14.4199 1 3.2456

4 14.4969 1 3.2629

5 15.0824 2 3.3947

6 15.0824 2 3.3947

7 17.6559 1 3.9740

8 18.9114 1 4.2565

9 19.4563 2 4.3792

10 19.4563 2 4.3792

11 20.0210 1 4.5063

12 20.5972 1 4.6360

13 21.3443 1 4.8041

14 21.6361 2 4.8698

15 21.6361 2 4.8698

16 23.3219 1 5.2492

17 23.5807 1 5.3075

18 24.8755 2 5.5989

19 24.8755 2 5.5989

20 25.7253 1 5.7902
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one could extend the study to include the density of states in
order to examine the Weyl-Berry conjecture.

The numerical experiment allows students to construct a
fractal drum, calculate its eigenmodes, and visualize the
vibrational modes. The students can change boundary condi-
tions, vary certain dimensions, and observe the results. The
assignment may be integrated into a computational physics
class. Understanding students’ concerns when solving a
numerical problem allows the teacher to be more effective
and help all their students take full advantage of the educa-
tional resources at their disposal. The ideal group size for
conducting the proposed activities is two students to allow
for discussions between them. Furthermore, this problem
will expose students to eigenvalue problems which probably
are larger than what they have faced during their studies. In
order to solve it, they have to generate the fractal structure
and must learn to master how to map an unorganized portion
of a matrix of unknowns into a vector (required by the
eigensolver) and to define the coefficient matrix that is asso-
ciated with it. Since this matrix is quite sparse, the use of
eigensolvers for sparse matrices will typically become a
topic of interest. Last but not least, our experience in present-
ing/supervising this computational student project several
times is that the students tend to enjoy it. Students typically
find the project challenging but are still motivated to solve
the problem; they are fascinated by the beauty of some of the
eigenmodes of the square Koch drum. The hope is that others
can benefit from our experience with this numerical student
experiment.

Many of the tasks in this numerical experiment presented
students with novel challenges. For example, students work-
ing on the classification of whether lattice points are inside
or outside the fractal boundary struggled with finding an effi-
cient solution.

Since some of the tasks in this work involve very large
arrays such as the coefficient matrix, every portion of the
code must be optimized to yield a solution within a real-
istic time span. Students reported that while constructing
and solving the eigensystem was relatively simple, opti-
mizing this process was more challenging. Furthermore,
they also reported that the scope and difficulty of the
tasks of this numerical experiment improved their confi-
dence in their own coding abilities for the purpose of
both scientific numerical modeling and software
engineering.

To assist instructors considering applying the “fractal
drum” project discussed in this paper, the formulation of
the project as we used it in our course, including the
step-by-step instructions for the students, is available in
Ref. 29.
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