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a b s t r a c t

By the use of both perturbative and non-perturbative solutions of
the reduced Rayleigh equation, we present a detailed study of the
scattering of light from two-dimensional weakly rough dielectric
films. It is shown that for several rough film configurations, Selényi
interference rings exist in the diffusely scattered light. For film
systems supported by dielectric substrates where only one of the
two interfaces of the film is weakly rough and the other planar,
Selényi interference rings are observed at angular positions that
can be determined from simple phase arguments. For such single-
rough-interface films, we find and explain by a single scattering
model that the contrast in the interference patterns is better when
the top interface of the film (the interface facing the incident light)
is rough than when the bottom interface is rough. When both film
interfaces are rough, Selényi interference rings exist but a potential
cross-correlation of the two rough interfaces of the film can be
used to selectively enhance some of the interference rings while
others are attenuated and might even disappear. This feature may
in principle be used in determining the correlation properties of
interfaces of films that otherwise would be difficult to access.
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1. Introduction

Interference effects in the diffuse light scattered by thin and rough dielectric films can look
both stunning and unexpected, and they have fascinated their observers for centuries. First formally
described in modern times as colorful rings in the diffusely scattered light originating from a dusty
back-silvered mirror by Newton [1], what is today known as Quételet- and Selényi-rings have been
thoroughly analyzed theoretically [2–6] and experimentally [7,8]. An example of a non-laboratory
situationwhere onemayobserve this phenomenon is in light reflections frombodies ofwater if appro-
priate algae are present on the water surface. This phenomenon, modeled as a thin layer of spherical
scatterers suspended on a reflecting planar surface, was investigated by Suhr and Schlichting [6].

In a theoretical study of the scattering from one-dimensional randomly rough surfaces ruled on
dielectric films on perfectly conducting substrates, Lu et al. [4] concluded that the degree of surface
roughness had the biggest impact onwhich interference phenomena could be observed. For filmswith
a thickness on the order of several wavelengths they were able to explain the periodic fringes they
observed in themean differential reflection coefficient through simple phase arguments. The patterns
in the diffusely scattered light were shown to undergo a transition, with increasing surface roughness,
from an intensity pattern exhibiting fringes whose angular positions are independent of the angle
of incidence (Selényi rings [9]) to one with fringes whose angular positions depend on the angle of
incidence (Quételet rings [7]) and eventually into a fringeless pattern with a backscattering peak,
which is a signature of multiple scattering [10]. Although the Selényi rings are centered around the
mean surface normal,with their position being independent of the angle of incidence, their amplitude,
however, is modulated by the angle of incidence. According to the current understanding of the
Selényi rings, their main origin is due to the interference between light scattered back directly from
the top scattering layer and light reflected by the film after being scattered within it. In this paper
we seek to complete this interpretation of the interference phenomena within a single scattering
approximation, enabling a sound interpretation of the Selényi rings for the previously unexplored
case when the rough surface is shifted to the non-incident face of the film.

A similar system to the one studied by Lu et al. was also thoroughly studied perturbatively and
experimentally by Kaganovskii et al. [8]. They concluded that the long-range (smooth) component
of the surface roughness, whenever present, can have a deciding effect on the interference pattern
observed in the diffusely scattered light.

However, most of the relevant studies conducted on the topic so far have been restricted to
investigations of scattering from a single rough interface. Allowing for more than one rough interface
significantly increases the complexity of the problem both analytically and computationally, but it
also opens a door to a richer set of scattering phenomena. Such stacked, multi-layered systems will in
many cases better represent the real-world scattering systems we are attempting to model [2]. Two
or more of these randomly rough interfaces in the stack will also often be correlated, either naturally
occurring, by design or by method of production [11,12]. Since both Quételet- and Selényi-rings may
enable a practical way of remote sensing and surface characterization for certain geometries and layer
thicknesses, it is important also to model the impact of such roughness cross-correlation.

In this paper we investigate interference effects in the light scattered diffusely from an optical
system composed of two semi-infinite media separated by a single thin dielectric film where both
interfaces may be rough [Fig. 1(a)]. After describing the statistical properties of the interfaces in
Section 2, we derive, in Section 3, a set of reduced Rayleigh equations (RREs) for the case of
electromagnetic scattering from a system with two rough interfaces, inspired by the work of Soubret
et al. [13]. Although only the case of reflected light will be analyzed in detail, the RREs for both
the reflection and the transmission amplitudes are given for completeness; furthermore, this also
serves to show that the presented framework can easily be generalized to an arbitrary number of
rough interfaces. A perturbative method and a purely numerical method for solving the RREs are
described in Section 4. Since solving the RREs for a set of two, or more, two-dimensional randomly
rough surfaces by purely numericalmeans is a highly computationally intensive task, the perturbative
method will be our main investigation tool for simulating and interpreting interference effects in
such geometries. In Section 5.1 we discuss rough film geometries where either the top interface or
bottom interface of the film is allowed to be randomly rough and the other interface is planar. For



354 J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382

Fig. 1. (a) Layered systemwith two rough interfaces. (b) Definitions of the angles of incidence and scattering andwave vectors.

such geometries, we compare the predictions for the scattered intensities obtained on the basis of
the perturbative and non-perturbative methods. After having established the apparent validity of
the perturbative method for the level of roughness assumed, we continue to investigate rough film
geometries where both interfaces of the film are randomly rough and have a varying cross-correlation
[Section 5.2]. Section 5.3 gives a brief discussion concerning additional effects one expects to observe
in transmission. Finally, Section 6 presents the conclusions that we have drawn from this study.

2. Scattering systems

An overview of a typical system geometry is provided in Fig. 1. We consider the case where both
interfaces of the film may be randomly rough and possess non-trivial auto- and cross-correlation.
Furthermore, we will be interested in scattering systems for which the mean thickness of the film
is several wavelengths so that interference fringes can be observed in the diffusely reflected or
transmitted intensities. The definition of the geometry is set in the three-dimensional space endowed
with a Cartesian coordinate system (O, ê1, ê2, ê3), with the vector plane (ê1, ê2) parallel to the mean
plane of the interfaces [Fig. 1(b)]. The origin, O, can be arbitrarily chosen, only affecting the complex
reflection and transmission amplitudes by an overall phase factor which plays no role in the intensity
of the scattered light. The scattering system splits space into a slab of three domains, or layers, that
will be denoted by the indices j ∈ {1, 2, 3}. The mean thickness of the film will be denoted d > 0, and
the jth interface separating media j and j + 1 can be described by the equation

x3 = ζj(x∥) = dj + hj(x∥) , (1)

for j ∈ {1, 2}, where x∥ = x1 ê1 + x2 ê2, dj = ⟨ζj⟩ denotes the average of the jth profile (and
we have d1 − d2 = d), and the term hj will be assumed to be a continuous, differentiable, single-
valued, stationary, isotropic, Gaussian random process with zero mean and given auto-correlation.
More specifically, the surface profile functions are assumed to satisfy the following properties⟨

hj(x∥)
⟩
= 0 (2a)⟨

hj(x∥)hj(x′

∥
)
⟩
= σ 2

j W (x∥ − x′

∥
). (2b)

Here and in the following, the angle brackets denote an average over an ensemble of realizations of
the stochastic process, σj denotes the rms roughness of interface j and W (x∥) represents the height
auto-correlation function normalized so that W (0) = 1. For reasons of simplicity we here restrict
ourselves to the situation where both interfaces are characterized by the same form of the correlation
function. In particular, we will here assume a Gaussian form of the auto-correlation function that is
defined by

W (x∥) = exp
(

−
|x∥|

2

a2

)
, (3)
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where a is the correlation length. The corresponding power spectrum (defined as the Fourier trans-
form of W ) is then

g(p) = πa2 exp
(

−
|p|

2a2

4

)
, (4)

with p = p1 ê1 + p2 ê2. In addition, the two interfaces will be assumed to be cross-correlated in the
following way⟨

h1(x∥)h2(x′

∥
)
⟩
= γ σ1σ2 W (x∥ − x′

∥
) , (5)

where γ ∈ [−1, 1] is a dimensionless cross-correlation coupling variable. When γ = 0 the two
interfaces are uncorrelated, and the extreme cases γ = ±1 and σ1 = σ2 can be viewed respectively
as the second interface being a shifted copy of the first one by a vector−d ê3, or as the second interface
being a symmetric copy of the first one with respect to the plane x3 = (d1 +d2)/2.We can summarize
the correlations expressed by Eqs. (2b) and (5) by the following relation⟨

hi(x∥)hj(x′

∥
)
⟩
= [δij + γ (1 − δij)] σiσj W (x∥ − x′

∥
) , (6)

where δij denotes the Kronecker delta.

3. Formulation of the problem

The theoretical approach used in this work to study the scattering of light from the systems of
interest is based on the so-called reduced Rayleigh equations. A reduced Rayleigh equation is an
integral equation in which the integral kernel encodes the materials and geometry of the scattering
system and the unknowns are the reflection or transmission amplitudes for each polarization. In the
following, in order to establish thenotation andhighlight themain assumptions of themethod,wewill
briefly recall the key ideas of the derivation of the reduced Rayleigh equations for a system composed
of three media separated by two disjoint rough interfaces. We will use, to our knowledge, the most
general form of the reduced Rayleigh equations for a single interface derived by Soubret et al. in Ref.
[13] and used by these authors in Refs. [13,14] in the case of a single interface system and a film
geometry. Once the general framework is established, we will apply it to the specific geometries of
interest.

3.1. The reduced Rayleigh equations

All physical quantities introduced hereafter will be indexed with respect to the medium (domain)
they belong to. The electromagnetic response of the media is modeled by non-magnetic, homoge-
neous, isotropic, linear constitutive relations in the frequency domain, i.e. that a priori each medium
is characterized by frequency dependent scalar complex dielectric functions, ϵj(ω), where ω denotes
the frequency of the electromagneticwave excitation.We consider the presence of an electromagnetic
field (E,H) in thewhole space. The fieldswill be denoted by a subscript jdepending on their containing
medium. As an example, the electric field evaluated at a point x in medium 1 at time t is denoted
E1(x, t) = E1(x, ω) exp(−iωt). The source freeMaxwell equations, togetherwith homogeneous, linear
and isotropic constitutive relations in the frequency domain, result in the electric andmagnetic fields
satisfying the Helmholtz equation in each region. Namely, for all j ∈ {1, 2, 3},

∇
2Ej(x, ω) + ϵj(ω)

(ω

c

)2
Ej(x, ω) = 0 , (7)

and a similar equation satisfied for H. Here, ∇2 denotes the Laplace operator and c represents the
speed of light in vacuum. In the following, we will drop the time, or frequency, dependence, since
we assume a stationary regime where time contributes only by an overall phase factor exp(−iωt). It
is known that a solution to the Helmholtz equation can be written as a linear combination of plane
waves, thus the representation of the electric field in each region can be written as

Ej(x) =

∑
a=±

∫
R2

[
Ea
j,p(q) ê

a
p,j(q) + Ea

j,s(q) ês(q)
]
exp

(
i ka

j (q) · x
) d2q
(2π )2

, (8)
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where

αj(q) =

√
ϵj

(ω

c

)2
− q2, Re (αj), Im (αj) ≥ 0 , (9a)

k±

j (q) = q ± αj(q) ê3 , (9b)

ês(q) = ê3 × q̂ , (9c)

ê±

p,j(q) =
c

√
ϵjω

(
±αj(q) q̂ − |q| ê3

)
. (9d)

Here a caret over a vector indicates that the vector is a unit vector. Note that the wave vector
k±

j (q) of an elementary plane wave is decomposed into its projection q in the lateral vector plane
(ê1, ê2) and the component ±αj(q) along ê3. The sum for a = ± takes into account both upwards
and downwards propagating and evanescent (and possibly growing) waves. The field amplitude is
decomposed in the local polarization basis (êap,j(q) , ês(q) ), so that Ea

j,α(q) denotes the component of
the field amplitude in the polarization state α of the mode characterized by a and q. In this basis,
the directions given by ê±

p,j(q) , and ês(q) are respectively the directions of the p- and s-polarization
of the electric field amplitude. Furthermore, the electromagnetic fields have to satisfy the boundary
conditions (j ∈ {1, 2})

nj(x∥) ×

[
Ej+1(sj(x∥)) − Ej(sj(x∥))

]
= 0 (10a)

nj(x∥) ×

[
Hj+1(sj(x∥)) − Hj(sj(x∥))

]
= 0 , (10b)

where nj(x∥) is a vector that is normal to surface j at the surface point sj(x∥) = x∥ +ζj(x∥)ê3, and given
by

nj(x∥) = ê3 −
∂ζj

∂x1
(x∥) ê1 −

∂ζj

∂x2
(x∥) ê2 . (11)

Here, ∂/∂xk denotes the partial derivative along the direction êk. Following Soubret et al. [13], for a
given surface indexed by j, by substituting the field expansion Eq. (8) into Eq. (10) and by a clever
linear integral combination of the boundary conditions, one can show that the upward or downward
field amplitudes in medium j + 1 can be linked to the upward and downward field amplitudes in
medium j via the following integral equation defined for aj+1 = ±, j ∈ {1, 2}, and p in the vector
plane (ê1, ê2):∑

aj=±

∫
J

aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) E
aj
j (q)

d2q
(2π )2

=
2 aj+1

√
ϵjϵj+1 αj+1(p)

ϵj+1 − ϵj
E
aj+1
j+1 (p) . (12)

Here Ea
j (q) = (Ea

j,p(q) , E
a
j,s(q) )

T denotes a column vector of the polarization components of the field
amplitude in medium j. Moreover, Mb,a

l,m(p | q) is a 2 × 2 matrix which originates from a change of
coordinate system between the local polarization basis (êbp,l(p) , ês(p) ) and (êap,m(q) , ês(q) ), defined
for a = ±, b = ±, and l,m ∈ {j, j + 1} such that l ̸= m as

Mb,a
l,m(p | q) =

⎛⎜⎝|p||q| + ab αl(p)αm(q) p̂ · q̂ −b
√

ϵm
ω

c
αl(p) [p̂ × q̂] · ê3

a
√

ϵl
ω

c
αm(q) [p̂ × q̂] · ê3

√
ϵlϵm

ω2

c2
p̂ · q̂

⎞⎟⎠ . (13)

The kernel scalar factor J b,a
l,m (p | q) encodes the surface geometry and is defined as

J b,a
l,m (p | q) = (bαl(p) − aαm(q) )−1

∫
exp

[
−i(kb

l (p) − ka
m(q) ) · (x∥ + ζj(x∥) ê3)

]
d2x∥. (14)
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Notice that, as already pointed out in Ref. [13], due to the symmetry of the boundary conditions, one
may also show in the same way that∑

aj+1=±

∫
J

aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) E
aj+1
j+1 (q)

d2q
(2π )2

=
2 aj

√
ϵjϵj+1 αj(p)

ϵj − ϵj+1
E
aj
j (p) , (15)

which can be obtained from Eq. (12) by interchanging j and j + 1. Typically, Eq. (12) is appropriate to
solve the problem of reflection whereas Eq. (15) is appropriate to solve the problem of transmission,
as we will see later. In the following, it will be convenient to define

Θ
aj+1,aj
j+1,j (p | q) = α−1

j+1(p)J
aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) (16)

and

Θ
aj,aj+1
j,j+1 (p | q) = α−1

j (p)J aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) (17)

which we will refer to as the forward and backward single interface transfer kernels between media j
and j+1, respectively. Our aim is to study reflection from and transmission through thewhole system,
i.e. we need to relate the field amplitudes in regions 1 and 3 without having to explicitly consider the
field amplitudes in region 2. To this end, we have to combine Eq. (12) for j = 1 and j = 2 in order to
eliminate E±

2 . A systematic way of doing this, and which can be generalized to an arbitrary number
of layers, is presented below. The key observation lies in the fact that one can choose the sign aj+1 in
Eq. (12) and therefore Eq. (12) contains two vector equations for a given j. For reasons that will soon
become clear, the variable p that appears in Eq. (12) is renamed p2. By left-multiplying both sides of
Eq. (12) taken at j = 1 by a2 Θ

a3,a2
3,2 (p | p2), where a3 = ± can be arbitrarily chosen, we obtain∑

a1=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q) Ea1

1 (q)
d2q
(2π )2

=
2

√
ϵ1ϵ2

ϵ2 − ϵ1
Θ

a3,a2
3,2 (p | p2) E

a2
2 (p2) .

By integrating this equation over p2 divided by (2π )2 and summing over a2 = ±, one obtains that
the right-hand-side of the resulting equation is, up to a constant factor, equal to the left-hand-side of
Eq. (12) evaluated for j = 2. In this way we obtain

∑
a1=±

∫
Θ

a3,a1
3,1 (p | q) Ea1

1 (q)
d2q
(2π )2

= a3
4
√

ϵ1ϵ
2
2ϵ3

(ϵ3 − ϵ2)(ϵ2 − ϵ1)
Ea3
3 (p) , (18)

where the forward two-interface transfer kernel Θa3,a1
3,1 (p|q) is defined by the composition rule

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q)

d2p2
(2π )2

. (19)

By a similar method and by the use of Eq. (15), we obtain the backward relation

∑
a3=±

∫
Θ

a1,a3
1,3 (p | q) Ea3

3 (q)
d2q
(2π )2

= a1
4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
Ea1
1 (p) , (20)

where the backward two-interface transfer kernel Θa1,a3
1,3 (p|q) is defined as

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2

∫
Θ

a1,a2
1,2 (p | p2) Θ

a2,a3
2,3 (p2 | q)

d2p2
(2π )2

. (21)

Let us nowmake a few remarks on Eqs. (18) and (19). Eq. (18) is an integral equation of the same form
as Eq. (12) but it only relates the field amplitudes in medium 1 and 3. Our aim of eliminating the field
amplitudes in the intermediarymedium is therefore achieved. However, this comes at a cost since the
new transfer kernelΘa3,a1

3,1 (p | q) is defined as an integral of the product of two single interface kernels
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as can be seen in Eq. (19). We will see that this pays off in the case where one of the interfaces is flat,
but that the cost can be significant in terms of computational load when both interfaces are rough.

So far,wehave stayed general and simply assumed thepresence of an electromagnetic field decom-
posed in propagating and non-propagating waves in each region. Therefore, there is no uniqueness
in the solutions to the transfer equations, Eqs. (18) and (20). To ensure a unique solution, one needs
to impose some constraints on the field. First, we need to introduce an incident field to our model.
This will split the field expansion into a sum of an incident field, which is given by our model of the
problem, and a scattered field. Note that within this framework, the incident field may be chosen to
be in either medium, or to be a combination of excitations incident from different media. Second, we
need to impose the Sommerfeld radiation condition at infinity. This implies that the non-propagating
waves are indeed only evanescent waves in the media unbounded in the ê3-direction and that the
propagating ones are directed outwards.

In our case, the incident field will be taken as a plane wave incident from medium 1 and defined
as

E0(x) =
[
E0,p ê

−

p,1(p0) + E0,s ês(p0)
]
exp

(
ik−

1 (p0) · x
)
, (22)

where p0 is the projection of the incident wave’s wave vector in the (ê1, ê2) plane, with the property
|p0| ≤

√
ϵ1 ω/c , i.e. we consider an incident propagating wave. The fact that this is the only incident

wave considered, together with the Sommerfeld radiation condition at infinity, gives, apart from the
incident field, that the only elementary waves allowed in the scattered field are those with wave
vectors of the form k+

1 (p) and k−

3 (p) in medium 1 and 3, respectively. This property can be expressed
by defining the field amplitudes

E−

1 (q) = (2π )2 δ(q − p0) E0 , (23a)
E+

3 (q) = 0 , (23b)

where E0 = (E0,p, E0,s)
T. Next, we assume that the scattered field amplitudes are linearly related to

the incident field amplitude E0 via the reflection and transmission amplitudes, R(q | p0) and T(q | p0),
defined as

E+

1 (q) = R(q|p0)E0, (24a)
E−

3 (q) = T(q|p0)E0. (24b)

The reflection and transmission amplitudes are therefore described by 2 × 2 matrices, i.e. for X = R
or T

X =

(
Xpp Xps
Xsp Xss

)
. (25)

From a physical point of view, the coefficient Rαβ (q|p0) (resp. Tαβ (q|p0)) for α, β ∈ {p, s} is the field
amplitude for the reflected (resp. transmitted) lightwith lateralwave vectorq in the polarization state
α from a unit incident field with lateral wave vector p0 in the polarization state β . The reflection and
transmission amplitudes are then the unknowns in our scattering problem. The equations we need
to solve are deduced from the general equations Eqs. (18) and (20) by applying them respectively
at a3 = + and a1 = − and by using Eqs. (23) and (24) for the model of the field expansion. This
yields the following two decoupled integral equations for the reflection or transmission amplitudes,
the so-called reduced Rayleigh equations, that can bewritten in the following general form, forX = R
or T [15]∫

MX(p|q) X(q|p0)
d2q
(2π )2

= −NX(p|p0) , (26)

where the matricesMX and NX are given by

MR(p|q) = Θ
+,+
3,1 (p|q) (27a)

MT(p|q) = Θ
−,−
1,3 (p|q) (27b)
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NR(p|q) = Θ
+,−
3,1 (p|q) (27c)

NT(p|q) =

4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
(2π )2 δ(p − q) I2, (27d)

with I2 denoting the 2 × 2 identity matrix. In the cases where only one interface is rough and the
other interface is planar, the complexity associated with the transfer kernels is equivalent to that of
a single rough interface separating two media. For instance, if the second interface is planar and the
first interface is rough, we can choose the origin of the coordinate system such that ζ2(x∥) = d2 = 0,
and Eq. (14) yields, for l,m ∈ {2, 3} and l ̸= m,

J b,a
l,m (p | q) =

(2π )2 δ(p − q)
bαl(p) − aαm(q)

. (28)

TheDirac distribution then simplifies thewave vector integrationpresent in the two-interface transfer
kernels and one gets

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Ma3,a2

3,2 (p | p) Θa2,a1
2,1 (p | q)

α3(p) [a3α3(p) − a2α2(p) ]
, (29a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Θ

a1,a2
1,2 (p | q) Ma2,a3

2,3 (q | q)
α2(q) [a2α2(q) − a3α3(q) ]

. (29b)

If the first interface is planar and the second interface rough,we can choose the origin of the coordinate
system such that ζ1(x∥) = d1 = 0, and Eq. (28) holds for l,m ∈ {1, 2} and l ̸= m, and the two-interface
transfer kernels read

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Θ

a3,a2
3,2 (p | q) Ma2,a1

2,1 (q | q)
α2(q) [a2α2(q) − a1α1(q) ]

, (30a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Ma1,a2

1,2 (p | p) Θa2,a3
2,3 (p | q)

α1(p) [a1α1(p) − a2α2(p) ]
. (30b)

3.2. Observables

The observable of interest in this study is the so-called incoherent (or diffuse) component of the
mean differential reflection coefficient (DRC) that we denote ⟨∂Rαβ (p|p0)/∂�s⟩incoh. It is defined as the
ensemble average over realizations of the surface profile function of the incoherent component of
the radiated reflected flux of an α-polarized wave around direction k̂+

1 (p), per unit incident flux of a
β-polarized plane wave of wave vector k−

1 (p0), and per unit solid angle. The precise mathematical
definition and the derivation of the expression for the mean DRC as a function of the reflection
amplitudes is given in Appendix B.

4. Numerical methods

Solutions of the reduced Rayleigh equation, Eq. (26), are obtained via both a perturbative and a
non-perturbative numerical approach. In this work we investigate systems with two interfaces; For
the case when one of these interfaces is planar we are able to employ both approaches, but when both
interfaces are rough wewill exclusively use the perturbative approach due to the high computational
cost of the non-perturbative approach.
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4.1. Perturbative method

The approximated solution of Eq. (26) for the reflection amplitudes, and to first order in product
of surface profiles, obtained by small amplitude perturbation theory (SAPT) is derived in Appendix A
and given by

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (31a)

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0). (31b)

Here R(0)(p | p0) is the response from the corresponding system with planar interfaces (i.e. that of a
Fabry–Perot interferometer), ĥj are the Fourier transforms of the stochastic component of the surface
profiles and ρj(p | p0) are matrix-valued amplitudes depending only on the mean film thickness,
the dielectric constants of all media and the wave vectors of incidence and scattering. The explicit
expressions for thesematrices are given in Appendix A (see Eq. (A.20)). The corresponding expression
for the incoherent component of themean differential reflection coefficient reads Appendices A and B⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1 |ρ1,αβ (p | p0)|2 + σ 2

2 |ρ2,αβ (p | p0)|2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

, (32)

where the wave vectors

p =
√

ϵ1
ω

c
sin θs(cosφs ê1 + sinφs ê2) (33a)

and

p0 =
√

ϵ1
ω

c
sin θ0(cosφ0 ê1 + sinφ0 ê2) (33b)

are defined in terms of the angles of scattering (θs, φs) and incidence (θ0, φ0), respectively [see Fig. 1].
The three terms present in the angular brackets of Eq. (32) can be interpreted as follows. The term
containing σ 2

1 |ρ1,αβ (p | p0)|2 (resp. σ 2
2 |ρ2,αβ (p | p0)|2) corresponds to the contribution to the diffuse

intensity of the associated system for which the first (resp. second) interface would be rough and
the other planar. Indeed, this would be the only remaining term if we were to set σ2 = 0 (resp.
σ1 = 0) in Eq. (32). The sum of the two first terms would correspond to the sum of intensity of the
aforementioned associated systems,whichwould be the expected overall response if the two interface
were not correlated, i.e. if γ = 0. The last term in Eq. (32), which does not vanish for γ ̸= 0, can be
interpreted physically as taking into account the interference between paths resulting from single
scattering events on the top interface and those resulting from single scattering events on the bottom
interface. Note that this last term, in contrast to the two first, may take positive and negative values as
the incident and scatteringwave vectors are varied, and hencemay result in cross-correlation induced
constructive and destructive interference. It is clear from the derivation, however, that the overall
incoherent component of the mean differential coefficient remains non-negative, as is required for
any intensity.

4.2. Nonperturbative method

Solutions of Eq. (26) were also obtained in a rigorous, purely numerical, nonperturbative manner
according to the method described in detail in Ref. [16]; only a brief summary of the method is
presented here. This method has previously been used for the investigations of the two-dimensional
rough surface scattering of light from metallic or perfectly conducting surfaces [16–18]; from and
through single dielectric interfaces [17,19,20] and film geometries [21–23]. In this method, an
ensemble of realizations of the surface profile function ζj(x∥) is generated by the use of the Fourier
filtering method [24] on a square grid of Nx × Nx surface points, covering an area of S = L2 in
the (ê1, ê2)-plane. The integral equation, Eq. (26), is solved numerically with finite limits ±Q and
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discretization 1q = 2π/L with Nq × Nq points in wave vector space according to the Nyquist
sampling theorem given the spatial discretization of the surface. On evaluating the kernel scalar
factors J b,a

l,m (p | q) , defined in Eq. (14), we first expand the integrand in powers of ζj(x∥), truncate
this expansion after 20 terms, and integrate the resulting sum term-by-term. The Fourier integral of
ζ n
j (x∥) that remains nowonly depends on the surface profile function and thedifference in lateralwave
vectors p−q, and not onαl(p) andαm(q). These Fourier integrals are therefore calculated only once, on
a p−q grid, for every surface realization by the use of the fast Fourier transform. The resulting matrix
equations are then solved by LU factorization and back substitution, using the ScaLAPACK library [25].
This process is repeated for a large number Np of realizations of the surface profile function, enabling
the calculation of the ensemble averaged observables of interest; like the mean DRC.

It remains to mention that Eqs. (29) and (30), giving the transfer kernels in the case where only
one of the interfaces is rough and the other planar, have been written in a rather compact form.
Numerically, these expressions tend to lead to instabilities due to factors of the form exp(−iα2(q)d)
or exp(−iα2(p)d) which grow for evanescent waves inside the film. This technical issue is resolved
by using the following two ideas: (i) expanding the two terms in the kernels (i.e. for a2 = ±) and
factorizing out the troublesome exponential factor and canceling it on both sides of the reduced
Rayleigh equation (if the exponential factor is a function of the variable p) or (ii) making a change of
variable such that the troublesome exponential factor is absorbed into the reflection or transmission
amplitudes (if the exponential factor is a function of the variable q). One may also shift the x3-axis in
order to facilitate the aforementioned steps. We chose here not to give more details on the explicit
implementation, as these modifications are to be done in a case by case basis depending on which
surface is planar and whether the reflected or transmitted light is considered.

5. Results and discussion

5.1. Single rough interface

As a direct comparison between results obtained by the perturbative and nonperturbative so-
lutions of Eq. (26), Fig. 2 shows the angular distributions of the co-polarized (α = β) incoherent
contribution to the mean DRC for light incident from vacuum (ϵ1 = 1) that is reflected diffusively
into the plane of incidence (i.e. |p̂ · p̂0| = 1) from a randomly rough dielectric film (photoresist,
ϵ2 = 2.69) deposited on a silicon substrate (ϵ3 = 15.08 + 0.15i) for the cases where only one of
the interfaces is rough and the other planar. Results for the case where only the top interface (the
interface facing the medium of incidence) is rough (σ2 = 0) and where only the bottom interface
is rough (σ1 = 0) are shown in Figs. 2(a)–(b) and (c)–(d), respectively. Light was incident on the
dielectric film from the vacuum side in the form of a plane wave of wavelength λ = 632.8 nm with
angles of incidence (θ0, φ0) = (16.8◦, 0◦). The two interfaces were characterized by rms-roughness
σ1 = λ/30, σ2 = 0 [Figs. 2(a)–(b)] or σ1 = 0, σ2 = λ/30 [Figs. 2(c)–(d)], correlation length a = λ/3,
and the film thickness was assumed to be d = 8λ ≈ 5 µm. The scattering system was chosen in
order to highlight the interference phenomena and to purposely deviate from the more historically
typical scattering system of a dielectric film on a perfect electric conductor. The dashed curves in Fig. 2
display the results of computations of the perturbative solution of the RRE, Eq. (32), to leading order,
while the solid curves in Fig. 2 show the non-perturbative solutions of the RRE, Eq. (26). In obtaining
these latter results the following parameters, defined in Section 4.2, were used: Nx = 449, L = 45λ,
Nq = 225 and Np = 325, implying integration limits in wavevector space Q = ±2.5ω/c. Since these
non-perturbative results for the mean DRC are obtained through an ensemble average over a finite
number of surface realizations, they are less smooth than their perturbative counterparts, for which
the averaging is performed analytically. Using a larger number of surface realizations in obtaining the
ensemble average would have produced smoother results, but we have chosen not to do so here due
to the high associated computational cost.

Figs. 2(a)–(b) show excellent agreement between the results for the mean DRC obtained by the
analytical perturbative method and the corresponding results obtained by a full solution of the RRE
for the chosen parameters for the case where only the upper interface is rough. In particular, the
fringes observed in these figures are consistently predicted by both calculation methods for the set
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Fig. 2. Incoherent components of the mean DRCs for in-plane co-polarized scattering as functions of the polar angle of
scattering, θs (note the convention θs < 0 for φs = φ0 + 180◦). The light of wavelength λ = 632.8 nm was incident from
vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i]. The surface-
height correlation length of the rough Gaussian correlated surface was a = λ/3, the mean film thickness was d = 8λ, and the
angles of incidence were (θ0, φ0) = (16.8◦, 0◦) in all cases. Panels (a) and (b) correspond to cases where only the top interface
was rough, while panels (c) and (d) present the results for a film where only the bottom interface of the film is rough. In both
cases, the rms-roughness of the rough interface was set to σ = λ/30. The results obtained on the basis of the non-perturbative
method are shown as solid lines while those obtained with the perturbative method, Eq. (32), are shown as dashed lines. The
position of the specular direction in reflection is indicated by the vertical dashed lines. The vertical dash-dotted and dotted
lines indicate the angular positions of the maxima and minima predicted by Eq. (36), respectively.

of parameters assumed and their angular positions agree well with the expected angular positions
(dashed–dotted vertical lines in Figs. 2(a)–(b)).When the lower surface is rough, the results presented
in Figs. 2(c)–(d) show that the agreement between the two calculation methods is still satisfactory,
but a larger discrepancy between them is now observed relative to what was found when the upper
surface was rough. This larger discrepancy might be due to the fact that the error between the
perturbative solution and the exact solution grows with the ratio of the dielectric constants of the
media that are separated by the rough interface. Since the dielectric contrast between the silicon
substrate and the photoresist film is larger than that between the photoresist film and vacuum,
the corresponding error is also larger. Since the perturbative method is employed only to leading
order, these agreements overall indicate that the physical phenomena that give rise to the scattered
intensity distributions are well approximated as single scattering phenomena, at least for weakly
rough surfaces.

We identify the interference fringes in Fig. 2 as in-plane scattering distributions of Selényi rings
[9]. These rings are known to be centered around themean surface normal, with their angular position
being independent of the angle of incidence. Their amplitude, however, is modulated by the angle of
incidence. This can indeed be observed if we vary the angle of incidence and record the resulting
in-plane co-polarized angular scattering distributions, presented as contour plots in the first two
columns of Fig. 3. Figs. 3(a)–(b) present, for p-polarized light, contour plots of the (θ0, θs) dependence
of the in-plane co-polarized incoherent component of themeanDRCwhen the top or bottom interface
of the film is rough, respectively. Similar results but for s-polarized light are presented in Figs. 3(f)–(g).
For both configurations, the co-polarized incoherent component of the mean DRC exhibits maxima
that occur on a regular grid of (θ0, θs)-points for s-polarized light [Figs. 3(f)–(g)]. A similar pattern
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Fig. 3. Scaled incoherent component of themean DRCs for in-plane co-polarized scattering, 100×⟨∂Rαα/∂�s⟩incoh , as functions
of the polar angle of incidence θ0 and the polar angle of scattering θs obtained on the basis of Eq. (32). The first row of sub-figures
[Figs. 3(a)–(e)] corresponds to p-polarized light (as marked in the figure), while the second row [Figs. 3(f)–(j)] corresponds to
s-polarized light. These results were obtained under the assumption that the wavelength in vacuum was λ = 632.8 nm, the
mean film thickness was d = 8λ, and the dielectric constants of the media were ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i.
The rms-roughness of the rough interfaces of the film were assumed to be σ1 = σ2 = λ/30, and the Gaussian correlation
functions were characterized by the correlation length a = λ/3. The first column of sub-figures presents contour plots of the
mean DRCs for a film geometry where only the top interface of the film is rough and the bottom interface planar. The second
column shows similar results when the top film interface is planar and the bottom film interface is rough. In the third column,
contour plots of only the cross-correlation term in Eq. (32) – that is, the contribution to the mean DRC produced by the last
term in the square brackets of this equation – are depicted assuming a perfect correlation [γ = 1] between the rough top and
rough bottom interface of the film. Finally, in the fourth and fifth column, contour plots of the total mean DRCs obtained on the
basis of Eq. (32) are presented for two-rough-interface film geometries characterized by γ = 1 and γ = −1, respectively.

is observed for p-polarized light in Figs. 3(a)–(b), although the grid of maxima appears to lose some
of its regularity for the larger polar angles of incidence and scattering [Figs. 3(a)–(b)]. We speculate
that this is due to a Brewster effect, both in its traditional sense and through the Brewster scattering
angles [19,20,26], but we will not delve further on this behavior here. In addition, by comparing the
results presented in Figs. 2, 3(a)–(b), and 3(f)–(g), we note that the contrast in the interference pattern
is better for the configurations where the top interface is rough than for those where the bottom
interface is rough. In the following we will explain these observations in terms of a single scattering
model which is an extension of the model previously proposed by Lu and co-workers [4].

Lu et al. suggested that, for sufficiently small roughness, the main effect of the rough interface is to
produce scattered waves that cover a wide range of scattering angles both inside and outside the film,
and the film may then be considered to approximate a planar waveguide for subsequent reflections
and refractions within the film. This claim is supported by the observed agreement between the
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Fig. 4. Sketch of the optical paths involved in the single scatteringmodel in the case of scattering from the top surface (a) and (b),
or from the bottom interface (c). Incoherent component of the mean differential reflection coefficient for in-plane co-polarized
scattering as a function of the polar angle of scattering for normal incidence for p-polarization (d) to (f). Apart from the angle
of incidence the remaining parameters are the same as those from Fig. 2. In panels (d) and (f), the results were obtained from
SAPT (circles), and from the single scattering model Eqs. (40)(d) and (41)(e) (solid line) respectively for the cases illustrated in
(a–b) and (c). In panel (e), only the contribution of r ′′ (Eq. (39)) to the incoherent component of the mean DRC is shown.

mean DRC distributions obtained through the perturbative solution to leading order, whose physical
interpretation is to take only single scattering events into account, and the full solutions of the RRE in
Fig. 2, since the latter method allows for the full range of multiple scattering events. As the incident
light interacts with the rough interface, whether it is located at the top or bottom interface, multiple
wave components are generated in the film. These waves then undergo multiple specular reflections
within the film while also being partially refracted back into the medium of incidence. Since Lu et al.
only investigated the casewhere the rough interface is on top, their resultswere adequately explained
under the assumption that the incident light was scattered by the rough interface during its first
encounter with the interface. However, a more detailed analysis of the possible optical paths in the
system is necessary in order to fully understand the case where the rough interface is at the bottom of
the film, as illustrated by the more complete depiction of optical paths in Figs. 4(a)–(c). We will now
analyze the different optical paths involving a single scattering event in the two configurations inmore
detail, and also construct a model for the resulting reflection amplitudes. Let rji(p | p0) and tji(p | p0)
denote the reflection and transmission amplitudes obtained by small amplitude perturbation theory
to first order in the surface profile separating two media with dielectric constants ϵi and ϵj (with the
incident wave in medium i). Note that these amplitudes are different from those obtained for the full
system considered in this paper. The expressions for these reflection amplitudes can be found e.g. in
Refs. [19,20]. Moreover, let r (F)ji (p) and t (F)ji (p) represent the corresponding Fresnel amplitudes. All the
amplitudes considered heremay represent either p-polarization or s-polarization aswe treat in-plane
co-polarized scattering for simplicity.

In the case where only the top interface is rough the scattering event may occur on the first
intersection between the path and the top interface, yielding a reflected scattered path denoted (0)
in Fig. 4(a). Alternatively, on the first intersection the scattering event may yield a refracted (and
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scattered)wave in the film. Since the single scattering event allowed in our analysis has then occurred,
subsequent reflections within the film and refractions through the top interface are treated according
to Snell’s law of reflection and refraction, resulting in the paths denoted (1) and (2) (and so on) in
Fig. 4(a). With each such non-scattering interaction with an interface, the reflection/transmission
amplitude associated with the path is given by the Fresnel amplitude. Following the different paths
depicted in Fig. 4(a) and summing the corresponding (partial) reflection amplitudes we obtain the
following reflection amplitude:

r(p|p0) = r21(p|p0) + t (F)12 (p) r
(F)
32 (p) t21(p|p0) exp(2iϕs)

∞∑
n=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n

= r21(p|p0) +
t (F)12 (p) r

(F)
32 (p) t21(p|p0) exp(2iϕs)

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

, (34)

where ϕs = 2π
√

ϵ2d cos θ
(2)
s /λ. The positions of the maxima in the resulting angular intensity

distribution |r(p|p0)|
2 are consistent with the predictions given by Lu et al. [4]. The difference in

optical path length between path (0) and (1), and between (1) and (2), and more generally between
two such consecutive paths, can be expressed as

1 = 2
√

ϵ2d cos θ (2)
s , (35)

where θs in the vacuum is related to θ
(2)
s in the film by

√
ϵ2 sin θ

(2)
s =

√
ϵ1 sin θs according to Snell’s

law. The polar angles of scattering for which the diffusely scattered intensity has local maxima are
given by

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= (ν + 1/2)π, (36a)

while the positions of the minima are determined from the relation

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= νπ, (36b)

where ν ∈ Z. The angular positions of the maxima and minima predicted by Eq. (36) are indicated by
vertical dash-dotted and dotted vertical lines, respectively, in Fig. 2, and these predictions agree well
with the maxima and minima that can be observed in the in-plane co-polarized mean DRC. Equation
(36) does not depend on the polar angle of incidence θ0, which supports the observation that the
positions of themaxima andminima of the incoherent components of themeanDRCdo notmovewith
angle of incidence for weakly rough films. However, the modulation of the fringes with the angle of
incidence cannot be explained if we consider solely the paths depicted in Fig. 4(a). Indeed, additional
paths involving a single scattering event may be drawn as illustrated in Fig. 4(b). It is possible for the
incident path not to experience a scattering event when it encounters the top interface for the first
time, and it may also bounce within the film an arbitrary number of times before it experiences a
scattering event while finally being refracted into the vacuum. Such paths are denoted (1′) and (2′) in
Fig. 4(b). The resulting (partial) reflection amplitude corresponding to the ‘‘single-primed’’ paths in
Fig. 4(b) reads

r ′(p|p0) = t12(p|p0) r
(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

=
t12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

1 − r (F)12 (p0) r
(F)
32 (p0) exp(2iϕ0)

, (37)

where ϕ0 = 2π
√

ϵ2d cos θ
(2)
0 /λ. The difference in optical path length between path (1′) and (2′) is

given by

1 = 2
√

ϵ2d cos θ
(2)
0 , (38)
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where
√

ϵ2 sin θ
(2)
0 =

√
ϵ1 sin θ0 according to Snell’s law. Hence, we again obtain a series of maxima

and minima in the mean DRC if we replace θ
(2)
s by θ

(2)
0 in Eq. (36), but this time the positions of

the maxima and minima are indeed a function of the polar angle of incidence θ0. This interference
phenomenon serves to modulate the intensity of the Selényi interference patterns. The static fringe
pattern and the modulation introduced by the angle of incidence is clearly observed in the in-plane
scattered intensities displayed in Fig. 3(a) and (f). However, we still have more optical paths to take
into account. Indeed, paths yielding outgoing paths of type (1′) and (2′) may experience a scattering
event while being reflected on the top surface instead of being refracted into the vacuum. Such a
scattering event is indicated by the star in Fig. 4(b), and thereon the path may be reflected within
the film an arbitrary number of times before being refracted into the vacuum as depicted by the
paths denoted (1′′) and (2′′) in Fig. 4(b). In order to obtain the reflection amplitudes corresponding
to all such paths, it suffices to multiply the overall reflection amplitude for all paths bouncing any
arbitrary number of times with an angle θ

(2)
0 within the film before the scattering event, with the

overall reflection amplitude of all paths starting from the scattering event and bouncing any number
of times within the film before being refracted into the vacuum. In this way we obtain the reflection
amplitude

r ′′(p|p0) = t (F)21 (p0) r
(F)
32 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r
(F)
32 (p) r12(p|p0) exp(2iϕs)

∞∑
n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r

(F)
32 (p) r12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (39)

Note that the paths (1′′) and (2′′) are somewhat ill-defined in Fig. 4(b). Indeed, each path represents a
family of paths with different history prior to the scattering event. For a given path, the path prior to
the scattering event consists of a number of specular reflections within the film for which amplitudes
dependent on the angle of incidence θ0, as seen previously for the paths represented by r ′, while the
path that follows after the scattering event consists of a number of specular reflectionswithin the film
which are dependent on the angle of scattering θs. Therefore, the phase difference between any two
such paths will, in general, contain an integer combination of ϕ0 and ϕs depending on the number
of bounces prior to and after the scattering event. Eq. (39) hence contains both ϕ0 and ϕs. The total
reflection amplitude for all possible paths involving a single scattering event for the rough-planar
(RP) film [Figs. 4(a) and (b)] is obtained by summing the amplitudes obtained from all the previously
analyzed diagrams, namely

rRP(p|p0) = r(p|p0) + r ′(p|p0) + r ′′(p|p0). (40)

The intensity distribution corresponding to Eq. (40) is shown in Fig. 4(d) for normal incidence and
p-polarized light, and is compared to results based on small amplitude perturbation theory to leading
order, Eq. (32), in the case where only the top interface is rough. The two results are literally
indistinguishable. Similar results were also found in the case of s-polarized light, but the results are
not shown (in order to keep the figure simple). These findings strongly suggest that the two methods
are equivalent. In particular, this means that the perturbative solution to leading order derived in
AppendixA can indeedbe interpreted as a sumof all paths involving a single scattering event, although
this was not obvious from the derivation itself. The model presented here thus justifies this physical
picture. Fig. 4(e) shows the incoherent contribution to the in-plane co-polarizedmean DRC onewould
obtain if only paths of type (1′′), (2′′), and so onwere present, in other words the intensity distribution
resulting from Eq. (39). The relative contribution from r ′′ [Fig. 4(e)] to rRP [Fig. 4(d)] is so small that it
to some approximation may be ignored, as it was in Ref. [4], but we will soon see that this path type
is crucial in the case of a system with the rough interface shifted to the bottom of the film.

Let us nowanalyze the casewhere only the bottom interface is rough, as illustrated in Fig. 4(c). Ifwe
follow paths (1) and (2) in Fig. 4(c), it becomes evident that a pathmust first undergo a Snell refraction
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from vacuum into the film before it may interact with the rough interface. Following this refraction
into the film a given path may undergo an arbitrary number of Snell reflections within the film, now
at a polar angle θ

(2)
0 with the normal to the mean film interfaces, before it is scattered by the rough

interface as indicated by the star in Fig. 4(c). The path then performs an arbitrary number of Snell
reflections within the film, now at a polar angle of scattering θ

(2)
s with the normal to the mean film

interfaces, before it exits into the vacuum. All possible paths involving a single scattering event are for
the present configuration depicted in Fig. 4(c), and it is now immediately evident that these paths bear
close resemblance to those shown in Fig. 4(b) which correspond to the amplitude r ′′. Consequently
the resulting intensity pattern associatedwith the paths in Fig. 4(c) will exhibit, by construction of the
paths, dependencies on both the polar angles of incidence and scattering as given by Eqs. (38) and (35).
This is supported both by the resulting reflection amplitude [Eq. (41)] and the angular positions of the
maxima and minima of the in-plane co-polarized mean DRC displayed in Figs. 2(c) and (d), indicated
as vertical dashed–dotted and dotted lines, respectively. Similar to what was done for the paths of
type (1′′) and (2′′) in the configuration depicted in Fig. 4(b), the resulting reflection amplitude for the
paths shown in Fig. 4(c) can be expressed as the product of the partial reflection amplitude resulting
from all possible paths prior to the scattering event and the partial reflection amplitude resulting from
all possible paths that may follow after the scattering event. The resulting reflection amplitude for the
planar-rough (PR) film [Fig. 4(c)] obtained in this way reads

rPR(p|p0) = t (F)21 (p0) exp(iϕ0)
∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r32(p|p0) exp(iϕs)
∞∑

n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r32(p|p0) t

(F)
21 (p0) exp(i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (41)

The intensity pattern predicted by Eq. (41) is presented as a solid line in Fig. 4(f) for normal incident
p-polarized light; in the same figure, the filled circles represent the prediction from Eq. (32). As was
the case when only the top interface was rough, we find an excellent agreement between the two
approaches also when only the bottom interface is rough. A similar agreement was also found when
the incident light was s-polarized (results not shown). These findings support our single scattering
interpretation of the perturbative solution to leading order. We have now explained the angular
positions of the Selényi rings and their amplitude modulation with the angle of incidence based on
optical path analysis.

It remains to explain the difference in contrast observed in the interference patterns corresponding
to the geometries where the rough surface is either located on the top of the film or at the bottom of
the film (with the other film interface planar). In providing such an explanation, the expressions given
by Eqs. (40) and (41) will prove to be useful alternative representations of the perturbative solutions
of the RRE to leading order. Indeed, we can now investigate the relative contribution from each type
of path by artificially removing terms. In our analysis of the type of paths in the two configurations,
we have identified that paths of type (1′′) and (2′′), in the configuration where the top interface is
rough, are similar to paths (1) and (2) for the configuration where the bottom interface is rough.
As was mentioned previously, Fig. 4(e) shows the (diffuse) in-plane mean DRC we would obtain if
only paths of type (1′′), (2′′), etc. were present; in other words the scattering intensities originating
in Eq. (39). We observe that the curve in Fig. 4(e) exhibits poor contrast, and is very similar to the
scattering intensities observed in the case where the bottom interface is rough [Fig. 4(f)]. This clearly
hints towards the idea that the poor contrast observed when the bottom film interface is rough is
intrinsically linked to the nature of the paths. Moreover, we have seen that ignoring the contribution
from r ′′ in Eq. (40) gives a result similar to when all terms of the same equation are included. This
indicates that the contribution from r ′′ can be neglected relative to the other two terms in Eq. (40).
However, since paths similar to (1′′), (2′′), etc. are the only paths allowed for the configuration where
the bottom interface is rough, the contrast is poor by default. In both cases, and as we have seen, a
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Fig. 5. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , as function of the lateral

wave vector q of the light that is scattered from a rough film where either the top interface is rough [Figs. 5(a)–(i)] or the
bottom interface is rough [Figs. 5(j)–(r)] and the other interface of the film is planar. The light of wavelength λ = 632.8 nmwas
incident from vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i].
The rms-roughness of the rough film interface was σ1 = λ/30, σ2 = 0 [Figs. 5(a)–(i)] and σ1 = 0, σ2 = λ/30 [Figs. 5(j)–(r)].
The surface-height correlation length was a = 211nm = λ/3, the film thickness was d = 5062.4nm = 8λ and the angles
of incidence were (θ0, φ0) = (16.8◦, 0◦) for all panels. The positions of the specular directions in reflection are indicated by
white dots. The remaining parameters assumed for the scattering geometry and used in performing the numerical simulations
had values that are identical to those assumed in obtaining the results of Fig. 2. The upper halves of all panels are results from
the small amplitude perturbation method to leading order, while the lower halves show results obtained through the non-
perturbative solutions of the RRE. The sub-figures in Figs. 5(a)–(i) and (j)–(r) are both organized in the same manner and show
how incident β-polarized light is scattered by the one-rough-interface film geometry into α-polarized light [with α = p, s and
β = p, s] and denoted β → α. Moreover, the notation ◦ → ⋆ is taken to mean that the incident light was unpolarized while
the polarization of the scattered light was not recorded. For instance, this means that the data shown in Fig. 5(a) are obtained
by adding the data sets presented in Figs. 5(b)–(c); similarly, the data shown in Fig. 5(g) result from the addition and division
by a factor two of the data sets presented in Figs. 5(a) and (d); etc.. Finally, the in-plane intensity variations from Figs. 5(b, f)
and (k, o) are the curves depicted in Figs. 2(a)–(b) and (c)–(d), respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

typical pathmust undergo a number of non-scattering reflectionswithin the filmboth before and after
the scattering event occurs. Consequently, the phase difference between any two such paths will in
general involve integer combinations of ϕ0 and ϕs, as can be seen from Eqs. (39) and (41). This phase
mixing is the fundamental reason for the difference in contrast found in the contributions to the total
intensity rRP from the three components of Eq. (40). The difference in contrast can also be investigated
mathematically by estimating the contrast directly, as explained in Appendix C.

We now turn to the full angular distributions for the mean DRC. Figs. 5(a)–(i) and (j)–(r) show the
full angular distributions of the incoherent contribution to the mean DRC, for simulation parameters
corresponding to those assumed in obtaining the results of Figs. 2(a)–(b) and (c)–(d), respectively. In
fact, the non-perturbative results presented in Figs. 2(a)–(b) and (c)–(d) correspond to in-plane cuts
along the q1 axis from Figs. 5(b, f, k, o). The results of Fig. 5 show that, in addition to the interference
phenomena already mentioned, the distributions of the incoherent contributions to the mean DRC
are also weighted by the shifted power spectrum of the rough interface. In the current work this is
a Gaussian envelope centered at the angle of specular reflection, where the width of the envelope is
directly influenced by the surface-height correlation length a. This is shown explicitly in the case of
small amplitude perturbation theory to leading order as the term g(p − p0) in Eq. (32), and its impact
on the scattering distributions should not be confused with the interference phenomena.
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The reader may verify that the maxima and minima are located at the same positions as predicted
for Fig. 2, as is predicted by Eq. (36). However, for Figs. 5(j)–(r) the contrast in the oscillations of the
incoherent contribution to themeanDRC is now less pronounced, as explained for in-plane scattering.

The lower left 2 × 2 panels in each of the panel collections in Fig. 5 display overall dipole-like
patterns oriented along the plane of incidence for co-polarized scattering and perpendicular to it for
cross-polarized scattering. These features are consequences of the definition used for the polarization
vectors of our system. They are similar to the scattered intensity patterns obtained in recent studies
of light scattering from single two-dimensional randomly rough surfaces [16,19,20,27–29].

5.2. Two rough interfaces

We will now turn to the discussion of the geometry where both the top and bottom interfaces of
the film are rough. In the following it will be assumed that these rough interfaces are characterized by
Eq. (6), and for simplicity it will be assumed that their rms-roughness are the same and equal to σ1 =

σ2 = λ/30. The cross-correlation between these two interfaces is characterized by the parameter
γ which is allowed to take values in the interval from −1 to 1. All the remaining experimental
parameters are identical to those assumed in the preceding sections of this paper.

For the case where only one of the two interfaces of the film was rough, we demonstrated that
good agreement exists between the results obtained by a purely numerical solution of the RRE and
those obtained on the basis of a perturbative solution of the same equation [SAPT]. A purely numerical
solution of the RRE associated with a film geometry where more than one of the interfaces are
rough is a challenging task that requires extensive computational resources to obtain, and to the
best of our knowledge such a purely numerical solution has not yet been reported. Therefore, for
film geometries where both interfaces are rough we will only solve the corresponding RRE through
SAPT to obtain the incoherent component of the mean DRC to second order in products of the surface
profile functions, for which the relevant expression is given by Eq. (32). In the following it will be
assumed that for the level of surface roughness thatwe consider here,which provided accurate results
for the corresponding one-rough-interface film geometry considered in the preceding subsection,
such a perturbative solution method is sufficiently accurate to adequately describe the physics of the
problem under investigation.

The first set of scattering results for a film bounded by two rough interfaces is presented in Fig. 6. In
particular, Figs. 6(a)–(c) present the incoherent component of themean DRC for in-plane co-polarized
scattering (i.e. |p̂ · p̂0| = 1 and α = β) as a function of the polar angle of scattering θs, for given polar
angle of incidence equal to θ0 = 0◦, and for three extreme values of the cross-correlation parameter
γ ∈ {0, 1, −1}. These three values of γ physically correspond to the situations of uncorrelated film
interfaces; perfectly positively correlated interfaces so that the film thickness measured along any
vertical line segment will be constant and equal to d; and perfectly negatively correlated or anti-
correlated interfaces, respectively. From Fig. 6(a) one observes that for uncorrelated interfaces of the
film [γ = 0], the number of interference fringes and their angular positions remain unchanged as
compared to what was found when only one of the two interfaces of the filmwas rough. This is found
to be the case for both p- and s-polarized incident light. Such behavior can easily be understood in
terms of the expression in Eq. (32); when γ = 0 only the first two terms in the square brackets on
the right-hand-side of this equation contribute. These two terms are the only non-zero contributions
to the incoherent component of the mean DRC (to second order) for a film system bounded by two
uncorrelated rough surfaces. Moreover, these two contributions are, respectively, identical to the
incoherent component of the mean DRC obtained for film geometries where either the top or the
bottom interface of the film is rough and the other planar. Summing these two contributions will
hence result in summing two similar interference intensity patterns. Consequently, the resulting
interference pattern maintains the same number of fringes at the same positions as the pattern
obtained from scattering from the corresponding one-rough interface film geometry. However, by
gradually introducing more cross-correlation between the two rough interfaces of the film [γ ̸= 0],
one observes that half of the fringes observed for the system for which γ = 0 are significantly
attenuated whereas the other half are enhanced [Figs. 6(b) and (c)]. Furthermore, it is observed from
the results in Figs. 6(a)–(c) that the fringes that are enhanced (attenuated) for the case when γ = 1
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Fig. 6. Incoherent components of the mean differential reflection coefficients ⟨∂Rαα/∂�s⟩incoh for in-plane co-polarized
scattering from a two-rough-interface film geometry for the polar angle of incidence θ0 = 0◦ [Figs. 6(a)–(c)] and θ0 = 60◦

[Figs. 6(d)–(e)]. The wavelength of the incident light was λ = 632 nm, the mean thickness of the film d = 8λ, and the dielectric
constants of themediawere ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i. The rms-roughness of the interfaceswereσ1 = σ2 = λ/30,
and the Gaussian correlation functions of each of the surfaces were characterized by the correlation length a = λ/3. The cross-
correlation function between the rough top and rough bottom interface of the film had the form (5) and was characterized by
the parameter γ with values as indicated in each of the panels. The vertical dash-dotted and dotted lines indicate the expected
angular positions of the maxima and minima of the scattered intensity as predicted by Eq. (36b), respectively. For reasons of
clarity only the expected positions of the minima of the in-plane mean DRCs are indicated in Figs. 6(a) and (d).

are the fringes being attenuated (enhanced) for the case when γ = −1. This phenomenon can
be attributed to the last term in the square brackets in Eq. (32) which is linear in γ and can take
both positive and negative values and hence increase or decrease the value of the intensity pattern
resulting from the superposition of the scattering amplitudes obtained for the two independent
aforementioned one-rough-interface film geometries.

The last term in the square brackets of Eq. (32) is an interference term. Physically it can be inter-
preted as the interference between a path formed by a single scattering event occurring on the top in-
terface of the film such as one depicted in Figs. 4(a–b), and a path consisting of a single scattering event
taking place on the bottom interface as depicted in Fig. 4(c).When the two interfaces are uncorrelated,
the phase difference between these two optical paths will form an uncorrelated random variable so
that the ensemble average of the termwhere it appears in Eq. (32) will be zero and themean DRCwill
equal the sum of the intensities of the two corresponding one-rough-interface geometries, i.e. it will
be given by the two first terms of Eq. (32). However,when the two interfaces of the film are completely
or partially correlated, |γ | > 0, the phase difference of these two paths becomes a correlated random
variable so that the interference term – the last term in (32) – does not average to zero; this results in
an optical interference effect. Consequently, the observed interference pattern for |γ | > 0 will obtain
a non-zero contribution from the last term in the square brackets of Eq. (32), which thus will make it
different from the pattern obtained for an uncorrelated film geometry that corresponds to γ = 0.

Figs. 6(d)–(f) present for polar angle of incidence θ0 = 60◦ similar results to those presented
in Figs. 6(a)–(c) for normal incidence. Except for the increased intensity of the light scattered into
the forward direction defined by θs > 0◦ relative to what is scattered into angles θs < 0◦, and the
increased contrast of the fringes observed for s-polarized light in the forward direction, the behavior of
themean DRC curves is rather similar for the two angles of incidence. In particular, for the same value
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of γ , fringes are observed at the same angular positions for the two angles of incidence. Moreover,
which of the fringes that are enhanced or attenuated by the introduction of (positive or negative)
cross-correlation between the two rough interfaces of the film are also the same for the two angles of
incidence. Such behavior is as expected for Selényi fringes.

A close inspection of the perturbative results presented in Fig. 6 reveals that for both θ0 = 0◦ and
θ0 = 60◦ the angular positions of the maxima of the in-plane, co-polarized mean DRC curves are
more accurately predicted by Eq. (36) for s-polarized light than for p-polarized light; this seems in
particular to be the case for the larger values of |θs|. We speculate that such behavior is related to a
phase change associated with the Brewster scattering phenomenon [19,20,26] that exists in the case
of p-polarized light, reminiscent of the well known phase change associated with the Brewster angle
found for planar interfaces.

So far in our analysis of the two-rough-interface film geometry, we have observed that the
enhancement or attenuation of the diffusely scattered co-polarized intensity are localized to regions
around the polar angles determined by Eq. (36a). In order to make this observation more apparent,
Figs. 3(a)–(e) present various terms, or combinations of terms, from Eq. (32) when the incident and
scattered light is p-polarized; Figs. 3(f)–(j) depict similar results for s-polarized incident and scattered
light. The three first columns of sub-figures that are present in Fig. 3 – labeled ‘‘Interface 1’’, ‘‘Interface
2’’, and ‘‘Cross-correlation’’ – represent the terms in Eq. (32) that contain the factors σ 2

1 , σ
2
2 , and σ1σ2,

respectively. The cross-correlation terms, Figs. 3(c) and (h), where obtained from the last term of
Eq. (32) with γ = 1. Furthermore, a contour plot that appears in the 4th column of Fig. 3 [labeled
‘‘Total (γ = 1)"], displays the sum of the data used to produce the three first mean DRC contour plots
appearing in the same row. In other words, the results depicted in Figs. 3(d) and (i) are the contour
plots of the incoherent component of the mean DRC for a film geometry bounded by two perfectly
correlated rough interfaces and therefore given by the expression in Eq. (32) with γ = 1. Similarly,
the incoherent component of themeanDRCs for a geometrywhere the two rough interfaces of the film
are perfectly anti-correlated are displayed in the last column of Fig. 3 [Figs. 3(e) and (j)] and labeled
‘‘Total (γ = −1)’’. These latter results correspond to Eq. (32) with γ = −1, and can be obtained by
summing the results of the two first columns and subtracting the result of the third column of Fig. 3.

The contour plots of the cross-correlation terms presented in Figs. 3(c) and (h), which are obtained
under the assumption that γ = 1, display extrema localized on the same grid of points in the (θ0, θs)-
plane as the extrema of the incoherent component of the mean DRC obtained when only one of the
film interfaces is rough [Figs. 3(a)–(b) and (f)–(g)]. An important observation should be made from
these results. The minima of the former (the cross-correlation terms) are negative while the latter are
always non-negative. Hence, the incoherent component of the mean DRC for γ = 1, which according
to Eq. (32) corresponds to the addition of the results used to produce the three first columns of each
row of Fig. 3, will cause fringes localized at the minima of the cross-correlation terms to be attenuated
(or disappear) and those localized at the maxima of the cross-correlation terms to be enhanced [see
Figs. 3(d) and (i)].

The preceding discussion stays valid when considering the full angular distribution of the inco-
herent component of the mean DRC. Fig. 7 presents the full angular distribution of the incoherent
component of the mean DRC, obtained on the basis of Eq. (32), for the two polar angles of incidence
θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. In this figure, each column formedby the sub-plots
corresponds to either p- or s-polarized incident light, and in all cases the polarization of the scattered
light was not recorded. Moreover, each of the three rows of sub-figures that are present in Fig. 7
corresponds to different values for the cross-correlation parameter γ ∈ {0, 1, −1} as indicated in the
figure. From the results presented in Fig. 7 it should be apparent that what appear as fringes in the
in-plane angular dependence of the mean DRCs indeed are expressed as interference rings in the full-
angular distribution of the same quantity; this is particularly apparent for normal incidencewhere the
intensity of the (Selényi) interference rings is independent of the azimuthal angle of scattering φs (due
to the rotational invariance of the system and the source). The angular distributions in Figs. 7(a)–(f)
also demonstrate very clearly how the possible interference rings present for uncorrelated interfaces
of the film [γ = 0] are enhanced or attenuated when |γ | ̸= 0, i.e. when cross-correlation exists
between the two rough interfaces of the film.

Figs. 7(g)–(l) show that interference rings are also present for non-normal incidence and that they
are present for the same polar scattering angles θs as was found for normal incidence. However, for
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Fig. 7. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s and β = p, s]. When the
polarization of the scattered light is not observed, the relevant mean DRC quantity is

∑
α=p,s

⟨
∂Rαβ/∂�s

⟩
incoh and this situation

is labeled as β → ⋆. The reported results were obtained on the basis of SAPT, Eq. (32), and the polar angles of incidence
were θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. The incident in-plane wave vector is indicated by the white dot
for non-normal incidence [Figs. 7(g)–(l)]. The cross-correlation function between the rough top and rough bottom interface of
the film had the form (5) and was characterized by the parameter γ as indicated in the figure (and constant for each row of
sub-figure). The remaining roughness parameters are identical to those assumed in producing the results presented in Fig. 6.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

non-normal incidence the intensity of the rings does depend on the azimuthal angle of scattering. It
is found that the intensity of the interference rings are concentrated to the forward scattering plane
[|φs − φ0| < 90◦].

For normal incidence Fig. 8 presents, for completeness, the full angular distribution of
⟨
∂Rαβ/

∂�s
⟩
incoh for all possible linear polarization couplings, i.e. from incident β-polarized light to scattered

α-polarized light. The values assumed for the cross-correlation parameter in obtaining these results
were γ ∈ {0, 1, −1}. It should be observed from the results of Fig. 8 that interference structures are
observed but they are not ring structures of a constant amplitude as was seen in Figs. 7(a)–(f). The
reason for this difference is that in the results presented in Fig. 8 only scattered light of a given linear
polarization was observed; this contrasts with the situation assumed in producing Fig. 7 where all
scattered light was observed and not only scattered light of a given linear polarization.

We have here only shown the extreme cases of cross-correlation, but one may also consider
intermediate values for the cross-correlation parameter γ . The effect found for γ = ±1 remains
also for 0 < |γ | < 1 but with less pronounced enhancement and attenuation of the rings. The reader
is invited to take a look at the animations in the Supplementary Materials, where the contour plots
of the incoherent component of the mean DRCs are featured for smoothly varying cross-correlation
parameter γ over the interval from −1 to 1, for both normal incidence and for θ0 = 60◦ incidence.

5.3. Transmitted light

Finally, we would like to briefly comment on what would be observed in transmission if a non-
absorbingmediumwas chosen, such as silica. No results will be presented here, but we have observed
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Fig. 8. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light of polar angle θ0 = 0◦ that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s
and β = p, s] and labeled β → α in the sub-figures. The cross-correlation function between the rough top and rough bottom
interface of the film had the form (5) and was characterized by the parameter γ as marked in the figure. The reported results
were obtained on the basis of SAPT, Eq. (32). The remaining experimental and roughness parameters are identical to those
assumed in producing the results presented in Figs. 6 and 7.

that interference rings are also observed in the diffusely transmitted light and that the effect of
enhancement and attenuation of the rings induced by the interface cross-correlation still holds.
Furthermore, additional features attributed to the so-called Brewster scattering angles and Yoneda
effects in the diffusely transmitted light would then be present. As presented in Ref. [20] for scattering
systems of comparable surface roughness and materials, the diffusely transmitted intensity as a
function of angle of transmission will be modulated by a typical Yoneda intensity pattern. At normal
incidence this pattern exhibits a peak at some critical angle of scattering for s-polarized light and a
vanishing intensity for p-polarized light (see Ref. [20] for details). However, we observed that not only
did the overall intensity distribution undergo such modulation: the angular positions of the fringes
were also affected compared to the predictions provided by naive optical path arguments, analogous
to what was presented in this paper for reflection. The angular positions of the fringes predicted by
optical path arguments leading to equations similar to Eq. (36) still hold for scattering angles below the
Yoneda critical angle, butmust be corrected for scattering angles larger than the Yoneda critical angle.
We speculate that this is due to a gradual phase shift that occurs above the critical angle, and that it is
associatedwith the Yoneda phenomenon. Note that this phenomenon is also observed in the diffusely
reflected light if the medium of incidence has a higher refractive index than that of the substrate (i.e.
ϵ1 > ϵ3) [19,22]. Moreover, we have also observed that when scattered to larger polar angles than
the Brewster scattering angle the p-polarized transmitted light exhibits an additional phase shift, as
compared to s-polarized transmitted light, resulting in a switch in the positions for the maxima and
minima. These and other features of the interference rings in the diffusely transmitted light will be
discussed in more detail in a dedicated paper.
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6. Conclusion

Based on both non-perturbative and perturbative solutions of the reduced Rayleigh equation,
we have in this paper demonstrated that for systems composed of two-dimensional weakly rough
dielectric films, Selényi rings can be observed in the diffusely scattered light. These rings make up a
static interference pattern that is modulated by the polar angle of incidence. We have illustrated that
the interference mechanism at play can be explained by simple optical path arguments, leading to a
simplemodel capable of predicting both the angular positions of the rings and the expected difference
in contrast of the rings for film geometries where either the top or the bottom interface of the film is
rough (but not both interfaces).

Furthermore, by investigating the influence of the cross-correlation between the film interfaces
when both interfaces are rough, we have shown that a selective enhancement or attenuation of the
interference rings in the diffusely scattered light can be observed. This suggests that the positions
and the amplitudes of Selényi rings can, when combined with reflectivity and/or ellipsometry
measurements, in principle enable the determination of the mean film thickness, the dielectric
constant of the film material and the statistical properties of the interfaces. In particular, numerical
experiments show that the cross-correlation between interfaces can be assessed. Alternatively, film
geometries consisting of cross-correlated interfaces can be designed to control the intensity pattern
of the diffusely scattered light that they give rise to. Sensors can also be designed in such a way that
the interference rings observed for a clean system with known cross-correlated interfaces will be
modified by the adsorption of a substance or nano-particles onto the first interface, hence partially
destroying the effective cross-correlation between the interfaces. These possibilities are, however,
likely to be limited by the ordering of length scales d > λ > σ , which expresses the fact that
the film thickness must be on the order of a few wavelengths to observe interference rings in the
diffusely scattered light and that the rms-roughness of the interfaces should be small compared to
the wavelength. Such a length scale ordering combined with controlled interface cross-correlation
may be challenging to achieve experimentally.

While the main results presented in this paper considered the diffusely scattered light, the
theoretical framework that it presents also allows for the investigation into the light transmitted
diffusely through transparent film structures with one or several rough interfaces. The developed
theoretical framework is readily generalized to the case of an arbitrary number of correlated layers
and allows, for example, for the study of the effect of gradually changing cross-correlations overmany
interfaces.

We hope that the results presented in this paper can motivate experimental investigations into
the scattering of light from rough film systems so that the predictions that are reported here based on
theoretical grounds can be confirmed experimentally.
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Appendix A. Perturbative solution

We present here a method known as small amplitude perturbation theory that we apply to find an
approximate solution of the reduced Rayleigh equations. We will illustrate the method considering
a system made of a stack of three media separated by two randomly rough interfaces, like the one
depicted in Fig. 1. Using the notation introduced in Section 3, we know that the reduced Rayleigh
equations for the reflection amplitude is given by Eqs. (26) and (27)∫

Θ
+,+
3,1 (p | q) R(q | p0)

d2q
(2π )2

= −Θ
+,−
3,1 (p | p0) , (A.1)



J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382 375

where we recall that the forward two-interface transfer kernel is defined as

Θ
a3,a1
3,1 (p3 | p1) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p3 | p2)Θ

a2,a1
2,1 (p2 | p1)

d2p2
(2π )2

, (A.2)

with the single-interface kernelsΘb,a
l,m defined for successivemedia, i.e. l,m ∈ {1, 3} such that |l−m| =

1, a, b ∈ {±}, as

Θ
b,a
l,m(p | q) = α−1

l (p)J b,a
l,m (p | q) Mb,a

l,m(p | q). (A.3)

The perturbative method consists in expanding each single-interface kernel in a series of Fourier
moments. In order to avoid unnecessary lengthy expansion, we first introduce some notations that
will allow us to keep a compact derivation and proved to be useful for generalizing to an arbitrary
number of layers and for numerical implementation. We define

Θ̃
a3,a1,(m)
3,1 (p3 | p2 | p1) =

∑
a2=±

a2 α−1
3 (p3)

[
a3α3(p3) − a2α2(p2)

]m2−1

× exp
[
−i

{
a3α3(p3) − a2α2(p2)

}
d2

]
× α−1

2 (p2)
[
a2α2(p2) − a1α1(p1)

]m1−1

× exp
[
−i

{
a2α2(p2) − a1α1(p1)

}
d1

]
× Ma3,a2

3,2 (p3 | p2)M
a2,a1
2,1 (p2 | p1) , (A.4)

wherem = (m1,m2) ∈ N2 is a pair-index (i.e. a two componentmulti-index). Here, we havemade the
choice of factorizing the phase factor e−i(aj+1αj+1(pj+1)−ajαj(pj))dj , with dj = ⟨ζj⟩ being the offset height
of the jth interface, from each factor J

aj+1,aj
j+1,j (pj+1 | pj) for later convenience. Given this definition, an

expansion of the two-interface kernel in Fourier moments is given by

Θ
a3,a1
3,1 (p3 | p1) =

∞∑
m=0

(−i)|m|

m!

∫
ĥ(m2)
2 (p3 − p2) ĥ

(m1)
1 (p2 − p1)Θ̃

a3,a1,(m)
3,1 (p3 | p2 | p1)

d2p2
(2π )2

=

∞∑
m=0

(−i)|m|

m!
Za3,a1,(m)
3,1 (p3 | p1) , (A.5)

where
∑

∞

m=0 ≡
∑

∞

m1=0
∑

∞

m2=0, |m| = m1 +m2 is the length of the pair-index, andm! = m1!m2!, and
for all j ∈ {1, 2},

ĥ
(mj)
j (q) =

∫
exp

[
−iq · x

] [
ζj(x) − dj

]mjd2x , (A.6)

is the Fourier moment of hj = ζj − dj of order mj. It is then clear that Za3,a1,(m)
3,1 (p3 | p1) is a term of

order |m| in product of surface profiles. The reflection amplitude can be expanded as

R(q | p0) =

∞∑
j=0

(−i)j

j!
R(j)(q | p0) , (A.7)

where the term R(j)(q | p0) is of order j in product of surface profiles. We are now ready to start the
derivation of the perturbative expansion. By plugging Eqs. (A.5) and (A.7) into Eq. (A.1) we obtain

∞∑
m′=0
j=0

(−i)|m
′
|+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)|m|

m!
Z+,−,(m)
3,1 (p | p0). (A.8)

Summing over all multi-index m is equivalent to summing over subsets Sm = {m ∈ N2
||m| = m}

of multi-index of constant lengthm, i.e. that we have
∑

∞

m=0 ≡
∑

∞

m=0
∑

m∈Sm
, therefore the previous
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equation can be re-written as
∞∑

m′=0
j=0

∑
m′∈S

m′

(−i)m
′
+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

∑
m∈Sm

(−i)m

m!
Z+,−,(m)
3,1 (p | p0). (A.9)

We then use the definition of the multinomial coefficient in multi-index form as |m|!/m! =
(
|m|

m

)
to

obtain
∞∑

m′=0
j=0

(−i)m
′
+j

m′! j!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0). (A.10)

We nowmake a change of summation index j ↔ m − m′ on the left hand side of the above equation.
This makes clearly appear terms of orderm in product of surface profiles. We obtain

∞∑
m=0

m∑
m′=0

(−i)m

m′! (m − m′)!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0) , (A.11)

which can be re-written with the use of the definition of the binomial coefficient
(m
m′

)
as

∞∑
m=0

(−i)m

m!

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

It is now time to identify terms of same orders in the left and right hand sides. For m = 0, only the
term form′

= (0, 0) remains in the left hand side, only the termm = (0, 0) remains in the right hand
side and we have∫

Z+,+,(0)
3,1 (p | q) R(0)(q | p0)

d2q
(2π )2

= −Z+,−,(0)
3,1 (p | p0). (A.12)

which, when expanded, reads∫∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − q)Θ̃+,+,(0)

3,1 (p | p2 | q)
d2p2
(2π )2

R(0)(q | p0)
d2q
(2π )2

= −

∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − p0)Θ̃

+,−,(0)
3,1 (p | p2 | p0)

d2p2
(2π )2

. (A.13)

From the definition of the zero order Fourier moment, we have ĥ(0)
j (q) = (2π )2 δ(q), which yields

Θ̃
+,+,(0)
3,1 (p | p | p) R(0)(p | p0) = −(2π )2Θ̃+,−,(0)

3,1 (p0 | p0 | p0) δ(p − p0). (A.14)
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Here, the reader may recognize the solution of the reflection problem for a stack of layers with flat
interfaces, i.e. Fresnel amplitudes

R(0)(p|p0) = −
[
Θ̄

+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0) (2π )2δ(p − p0) = −ρ0(p0) (2π )2δ(p − p0) , (A.15)

where Θ̄
+,+
3,1 (p0) ≡ Θ̃

+,+,(0)
3,1 (p0 | p0 | p0) and Θ̄

+,−
3,1 (p0) ≡ Θ̃

+,−,(0)
3,1 (p0 | p0 | p0). Thus, the order zero of

the perturbative expansion corresponds to the Fresnel coefficients for the corresponding systemwith
flat interfaces. For ordersm ≥ 1, we have

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

By isolating the term corresponding to m′
= 0, hence m′

= (0, 0) and using that for all j ∈ {1, 2} we
have ĥ(0)

j (q) = (2π )2 δ(q), we obtain

R(m)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1

⎡⎣ ∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0)

+

m∑
m′=1

(
m
m′

)∫ ∑
m′∈S

m′

(
m′

m′

)
Z+,+,(m′)
3,1 (p | q)R(m−m′)(q | p0)

d2q
(2π )2

⎤⎦ . (A.16)

We have finally obtained a recursive expression giving themth order term in the reflection amplitude
expansion as a function of lower order terms. For weakly rough surfaces, an approximation based on
a truncation of the expansion of the reflection amplitude Eq. (A.7) to the first non-trivial order often
yields accurate physical insights. Form = 1, we obtain that

R(1)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

+

∫ (
Z+,+,(1,0)
3,1 (p | q) + Z+,+,(0,1)

3,1 (p | q)
)
R(0)(q | p0)

d2q
(2π )2

]
= −

[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

−

(
Z+,+,(1,0)
3,1 (p | p0) + Z+,+,(0,1)

3,1 (p | p0)
) [

Θ̄
+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0)

]
, (A.17)

where we have used the previously obtained expression for R(0)(q | p0) in Eq. (A.15), and in particular
the fundamental property of the Dirac delta. From the definition of Za3,a1,(m)

3,1 [Eq. (A.5)] it is clear that
form = (1, 0) or (0, 1) the integration reduces to

Za3,a1,(1,0)
3,1 (p | p0) = ĥ(1)

1 (p − p0)Θ̃
a3,a1,(1,0)
3,1 (p | p | p0) (A.18a)

Za3,a1,(0,1)
3,1 (p | p0) = ĥ(1)

2 (p − p0)Θ̃
a3,a1,(0,1)
3,1 (p | p0 | p0). (A.18b)

It is convenient to group terms with common factor ĥj ≡ ĥ(1)
j in Eq. (A.17), which leads to

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0) , (A.19)

with

ρ1(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(1,0)
3,1 (p | p | p0)ρ0(p0) − Θ̃

+,−,(1,0)
3,1 (p | p | p0)

]
(A.20a)

ρ2(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(0,1)
3,1 (p | p0 | p0)ρ0(p0) − Θ̃

+,−,(0,1)
3,1 (p | p0 | p0)

]
. (A.20b)
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We have treated the case of reflection as a representative example, but the same method applies for
transmission.

Appendix B. Differential reflection coefficient

Assuming we have obtained the reflection amplitudes Rαβ (p | p0) either by using the perturbative
approach or by the purely numerical simulation, we can now proceed to express the differential
reflection coefficient (DRC) defined as the time-averaged flux radiated around a given scattering
direction (θs, φs) per unit solid angle and per unit incident flux and denoted ∂R/∂�s(p | p0). Let a
virtual hemisphere of radius r ≫ c/ω lie on the plane x3 = 0 on top of the scattering system. The
support of this hemisphere is a disk of area S = πr2. We consider the scattering from a truncated
version of the scattering system inwhich the surface profiles are set to be flat outside the disk support.
Consequently, the field amplitudes we will manipulate are not strictly speaking those of the full
system of interest butwill converge to them as r → ∞. Wewill nevertheless keep the same notations
as that from the full system introduced in Section 3 for simplicity. The time-averaged flux incident on
this disk is given by

Pinc/S = −Re
c
8π

∫
S

[
E∗

0(p0) ×

( c
ω

k−

1 (p0) × E0(p0)
)]

· ê3 exp
[
−i(k−∗

1 (p0) − k−

1 (p0)) · x
]
d2x∥

= −
c2

8πω
Re

∫
S

[
|E0(p0)|

2 k−

1 (p0) −
(
E∗

0(p0) · k−

1 (p0)
)
· E0(p0)

]
· ê3d2x∥

= S
c2

8πω
α1(p0) |E0(p0)|

2

= S
c2

8πω
α1(p0)

[⏐⏐E0,p⏐⏐2 +
⏐⏐E0,s⏐⏐2] . (B.1)

Here, the ∗ denotes the complex conjugate, and incident field amplitude E0(p0) = E0,p ê
−

p,1(p0) +

E0,s ês(p0) as defined in Eq. (22), the vector identity a × (b × c) = (a · c)b − (a · b)c and the
orthogonality between the field and the wave vector E∗

0(p0) · k−

1 (p0) = 0 have been used. Note that
the flux incident on the disk is proportional to the disk area. Let us now consider the outgoing flux
crossing an elementary surface dσ = r2 sin θsdθsdφs = r2d�s around a point r = r (sin θs cosφs ê1 +

sin θs sinφs ê2 + cos θs ê3) = r n̂. The flux crossing this elementary surface is given by

Pdσ =
c
8π

Re
[
E+∗

1 (r) × H+

1 (r)
]
· n̂ dσ . (B.2)

We then use the well-known asymptotic expansion of the field in the far-field given by (see Refs.
[30,31])

E+

1 (r) ∼ −i ϵ1/2
1

ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
E+

1 (p) (B.3a)

H+

1 (r) ∼ −i ϵ1
ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
n̂ × E+

1 (p) (B.3b)

where p =
√

ϵ1
ω
c (sin θs cosφs ê1 + sin θs sinφs ê2). This asymptotic approximation will becomemore

and more accurate as we let r → ∞. Plugging Eq. (B.3) into Eq. (B.2) we obtain

Pdσ = ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

|E+

1 (p)|
2 d�s

= ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

(
|E+

1,p(p)|
2
+ |E+

1,s(p)|
2
)

d�s. (B.4)

The total differential reflection coefficient is then given by

∂R
∂�s

(p | p0) = lim
r→∞

Pdσ
Pinc/S d�s

= lim
r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

|E+

1,p(p)|
2
+ |E+

1,s(p)|
2

|E0,p|
2
+ |E0,s|

2 . (B.5)
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From the total differential reflection coefficient given by Eq. (B.5), we deduce the differential reflection
coefficient when an incident plane wave of polarization β , with in-plane wave vector p0 is reflected
into a plane wave of polarization α with in-plane wave vector p given as

∂Rαβ

∂�s
(p | p0) = lim

r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐Rαβ (p | p0)
⏐⏐2 = lim

r→∞

∂R(S)
αβ

∂�s
(p | p0). (B.6)

As we are interested in averaging the optical response over realizations of the surface profiles, we
consider the following ensemble average⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⟨
|Rαβ (p | p0)|

2⟩ . (B.7)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation from
the mean)

Rαβ (p | p0) =
⟨
Rαβ (p | p0)

⟩
+

[
Rαβ (p | p0) −

⟨
Rαβ (p | p0)

⟩]
, (B.8)

we can decompose the mean differential reflection coefficient as the sum of a coherent term and an
incoherent term⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

+

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
incoh

, (B.9)

where ⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 (B.10a)⟨

∂R(S)
αβ

∂�s
(p|p0)

⟩
incoh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

[⟨⏐⏐Rαβ (p|p0)
⏐⏐2⟩ −

⏐⏐⟨Rαβ (p|p0)⟩
⏐⏐2] . (B.10b)

If we now use the expression found in Appendix A for the reflection amplitudes to first order in the
product of surface profiles,

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (B.11)

where R(0)(p | p0) is the response from the corresponding system with flat interfaces (i.e. that of a
Fabry–Perot interferometer), Eq. (A.15), and R(1)(p | p0) is given in Eq. (A.19), we obtain that the factor
in the square bracket in Eq. (B.10b) reads⟨

|Rαβ (p | p0)|
2⟩

−
⏐⏐⟨Rαβ (p | p0)

⟩⏐⏐2 =

⟨⏐⏐⏐R(1)
αβ (p | p0)

⏐⏐⏐2⟩
=

⟨
|ĥ1,S(p − p0)|

2⟩
|ρ1,αβ (p | p0)|2

+

⟨
|ĥ2,S(p − p0)|

2⟩
|ρ2,αβ (p | p0)|2

+ 2 Re
⟨
ĥ1,S(p − p0)ĥ

∗

2,S(p − p0)
⟩

×
(
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
)
. (B.12)

Note here that we are still dealing with a scattering systemwhose surface profiles are flat outside the
disk of radius r , hence the subscript S. For the statistical properties attributed to the surface profiles
in Section 2, we have⟨

ĥi,S(q)ĥ∗

j,S(q)
⟩
=

⟨∫
S

∫
S
hi(x)hj(x′) exp

[
iq · (x − x′)

]
d2x d2x′

⟩
=

∫
S

∫
S

⟨
hi(x)hj(x′)

⟩
exp

[
iq · (x − x′)

]
d2x d2x′
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=

∫
S

∫
S
γij W (x − x′) exp

[
iq · (x − x′)

]
d2x d2x′. (B.13)

Here we have used the definition of the Fourier transform, and the fact that ensemble average
commutes with the integration of the surfaces and the definition of the correlation function. We have
also introduced the shorthand γij =

[
δij + γ (1 − δij)

]
σi σj. Via the change of variable u = x − x′ we

obtain ⟨
ĥi,S(q)ĥ∗

j,S(q)
⟩
= S γij

∫
S
W (u) exp(iq · u) d2u = S γij gS(q). (B.14)

Thus ⟨
|Rαβ (p | p0)|

2⟩
−

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 = S gS(p − p0)

[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.15)

Finally, by plugging the above equation into Eq. (B.10b), the surface area S cancels and letting r → ∞,
gS → g (where we remind the reader that g is the power spectrum of the surface profiles) and
we finally obtain the expression for the incoherent component of the mean differential reflection
coefficient for the entire (infinite) system under the first order approximation of the reflected
amplitudes in product of the surface profiles⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.16)

Appendix C. Contrast estimates

We propose here to motivate mathematically that the phase mixing in paths of type (1’’), (2’’) etc.,
from Fig. 4(b) and those from Fig. 4(c) intrinsically leads to poorer contrast in the interference pattern
found in the incoherent contribution to the mean DRC than, for example, paths of type (1), (2) in
Fig. 4(a), where no phase mixing is allowed. As a prototypical reflection amplitude for a sum of paths
that involves phase mixing and a sum of paths that does not (and will serve as reference), let us have
respectively

rmixϕ =
r̃

[1 − r0 exp(2iϕ0)] [1 − rs exp(2iϕs)]
(C.1a)

rref =
r̃

1 − rs exp(2iϕs)
. (C.1b)

These reflection amplitudes mimic the structure from Eqs. (41) and Eq. (34) respectively, but we will
see that the precise expressions for the numerators do not matter for the contrast, and are hence
denoted by the same symbol r̃ . Note that all the reflection amplitudes in Eq. (C.1) depend on angles
of incidence and scattering, but for clarity we drop these arguments. Our first step consists in taking
the square modulus of Eq. (C.1)

Imixϕ =
|r̃|2

|1 − r0 exp(2iϕ0)|2 |1 − rs exp(2iϕs)|2
(C.2a)

Iref =
|r̃|2

|1 − rs exp(2iϕs)|2
, (C.2b)

and in bounding the intensity by using the triangular inequality

|r̃|2

(1 + |r0|)2 (1 + |rs|)2
≤ Imixϕ ≤

|r̃|2

(1 − |r0|)2 (1 − |rs|)2
(C.3a)
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|r̃|2

(1 + |rs|)2
≤ Iref ≤

|r̃|2

(1 − |rs|)2
. (C.3b)

It is clear from Eq. (C.3) that the intensity lies between two bounding curves. A fair estimate for the
trend, i.e. the intensity without the oscillationswould be given by |r̃|2, andwe thus estimate, or rather
define, the inverse contrast as

η−1
mixϕ = (1 + |r0|)2 (1 + |rs|)2 − (1 − |r0|)2 (1 − |rs|)2 (C.4a)

η−1
ref = (1 + |rs|)2 − (1 − |rs|)2. (C.4b)

This may not be the most natural definition for the contrast, but we choose this one since it is easier
to work with and will not change the conclusion. By re-writing Eq. (C.4) by using straightforward
algebra, we obtain

η−1
mixϕ = 4|rs| + 4|r0| + 4|r0||rs| + 4|r0|2|rs| (C.5a)

η−1
ref = 4|rs|. (C.5b)

This shows that the inverse contrast for phase mixing is larger than that of the reference, i.e. that the
contrast in the case of phase mixing is smaller than that of the reference. Indeed, the two last terms
in Eq. (C.5a) are cross-terms resulting directly from the phase mixing nature of the initial reflection
amplitude. Note that the choice for the reference was arbitrary and one could choose to study paths
of type (1’), (2’), etc., in Fig. 4(b), and hence replace rs exp(2iϕs) in Eq. (C.1) by r0 exp(2iϕ0), and the
conclusion would still hold.

Appendix D. Supplementary data

Supplementarymaterial related to this article can be found online at https://doi.org/10.1016/j.aop.
2017.12.003.
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