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An approach is introduced for performing rigorous numerical simulations of electromagnetic wave
scattering from randomly rough, perfectly conducting surfaces. It is based on a surface integral
technique, and consists of determining the unknown electric surface current densities from which the
electromagnetic field everywhere can be determined. The method is used to study the scattering of
a p-polarized beam from an anisotropic Gaussian, randomly rough, perfectly conducting surface. It is
demonstrated that the surface anisotropy gives rise to interesting and pronounced signatures in the
angular intensity distribution of the scattered light. The origins of these features are discussed.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Theoretical/computational studies of the scattering of light from
two-dimensional randomly rough perfectly conducting surfaces are
carried out primarily for two reasons. These are that a perfectly
conducting surface is a good approximation to a finitely conduct-
ing surface in the far infrared region of the optical spectrum, but
computationally less intensive to study than a finitely conducting
surface, and that the development of computational methods for
calculations of scattering from rough perfectly conducting surfaces
can serve as the first step in the development of methods that can
be used in calculations of scattering from rough finitely conducting
surfaces.

The existing studies of the scattering of light from two-
dimensional randomly rough perfectly conducting surfaces by rig-
orous methods [1–7] have been based on the assumption that the
surface profile function ζ(x‖), where x‖ = (x1, x2,0), that defines
the position of the surface by x3 = ζ(x‖) is a stationary zero-
mean, isotropic, Gaussian random process. Very little work has
been devoted to the case where ζ(x‖) is an anisotropic random
process. In this paper we present results, obtained by a rigorous
computational approach, for the electromagnetic field scattered
from a two-dimensional, random, perfectly conducting surface de-
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fined by a surface profile function that is a stationary, zero-mean,
anisotropic, Gaussian random process.

2. The scattering system

The scattering system that we consider in this work is illus-
trated in Fig. 1. It consists of vacuum in the region x3 > ζ(x‖), and
a perfect conductor in the region x3 < ζ(x‖). The surface profile
function ζ(x‖) is assumed to be a single-valued function of x‖ that
is differentiable with respect to x1 and x2, and constitutes a sta-
tionary, zero-mean, Gaussian random process defined by〈
ζ(x‖)

〉 = 0, (1)〈
ζ(x‖)ζ

(
x′‖

)〉 = δ2W
(
x‖ − x′‖

)
, (2)

where δ =
√

〈ζ 2(x‖)〉 is the root-mean-square (rms) roughness

of the surface, and W (x‖) is the surface height auto-correlation
function that is normalized so that W (0) = 1, and vanishes as
|x‖| → ∞. In Eqs. (1) and (2) the angle brackets denote an average
over the ensemble of realizations of the surface profile function.
It should be noted from Eq. (2) that the correlation function W (·)
depends on both the direction and length of its argument. Thus,
in contrast to what has been assumed in the majority of previous
studies of rough surface scattering, the surface here may poten-
tially be anisotropic. The power spectrum of the surface roughness
is defined by

g(k‖) =
∫

d2 x‖W (x‖)exp(−ik‖ · x‖). (3)
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Fig. 1. Illustration of the scattering geometry considered in the present work, where the coordinate system used and angles of incidence (θ0, φ0) and scattering (θs, φs) are
defined.

Fig. 2. A segment of one numerically generated realization of each of the three different types of surfaces used in the numerical calculations of this paper. The surfaces
are characterized by a Gaussian height distribution of rms-value δ = λ/2, where λ is the wavelength of the incident light, and a Gaussian correlation function of transverse
correlation lengths a1 = λ and: (a) a2 = λ, the isotropic case; (b) a2 = 1.5λ, the weakly anisotropic case; and (c) a2 = 3λ, the strongly anisotropic case. The same underlying
random numbers (Xm,n) were used to generate each of these surfaces. The scale of the contour plots corresponds to ζ(x‖)/λ.
In the numerical calculations to be carried out in this work, we
will assume an anisotropic Gaussian form for the surface height
auto-correlation function. Without loss of generality, the two di-
rections corresponding to the directions of shortest and longest
correlation lengths will be chosen to coincide with the x1 and
x2 axes of the coordinate system [Fig. 1], respectively. Under this
assumption, an anisotropic Gaussian correlation function can be
defined as

W (x‖) = exp

[
− x2

1

a2
1

− x2
2

a2
2

]
, (4)

where a1 and a2 are the correlation lengths for the x1 and x2
directions, respectively, and it is assumed that a1 � a2. For this
reason (with our convention), we will refer to the x1 and x2 axes
as the minor and major axes of the anisotropy, respectively. When
a1 = a2 ≡ a the surface is isotropic and the correlation function (4)
reduces to the more familiar isotropic Gaussian form, exp[−x2‖/a2],
that depends only on the length (and not the direction) of the
spatial argument x‖ [8]. For the correlation function Eq. (4), the
corresponding power-spectrum reads

g(k‖) = πa1a2 exp

[
−k2

1a2
1

4
− k2

2a2
2

4

]
, (5)

and is elongated along the minor axis of the anisotropy.
An ensemble of randomly rough surfaces of such statisti-

cal properties can be generated numerically by the so-called
Fourier filtering method [9]. In this method we first define a
two-dimensional square lattice of points by x(m,n) = (m,n,0)�x
with m,n = 0,±1,±2, . . . . With each site (m,n) of this lattice
we associate an independent, zero-mean, Gaussian random devi-
ate Xm,n with a standard deviation of unity, so that 〈Xm,n〉 = 0 and
〈Xm,n Xm′,n′ 〉 = δmm′δnn′ . The surface profile function at the point
x‖ = x(m,n) is then written in the form

ζ
(
x(m,n)

) = δ
∑
k,l

Wk,l Xk+m,l+n , (6)

where the {Wk,l} are real weights to be determined. The surface
height auto-correlation function then takes the form〈
ζ
(
x(m,n)

)
ζ
(
x(m + i,n + j)

)〉
= δ2

∑
k,l

Wk,l Wk−i,l− j

= δ2
∫

d2 Q ‖
(2π)2

g(Q‖)exp
[
iQ‖ · x(i, j)

]
, (7)

where Eq. (2) and the inverse of Eq. (3) were used in obtain-
ing this result. We now introduce the representation Wm,n =∫ d2 P‖

(2π)2 Ŵ (P‖)exp[iP‖ ·x(m,n)], and find from Eq. (7) that Ŵ (Q‖) =
�x g1/2(Q‖), so that finally

Wm,n =
∫

d2 Q ‖
(2π)2

g1/2(Q‖)exp
[
iQ‖ · x(m,n)

]
. (8)

From this result and Eq. (6) an ensemble of randomly rough sur-
faces was generated and used in the numerical calculations; see
Fig. 2.

3. Formulation

The solution of the scattering problem, is obtained by solving
the Maxwell equations with the proper boundary conditions on
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the rough surface as well as at infinity. For our purposes, however,
it is more convenient to base the formulation on the Stratton–Chu
formulas [10] for the magnetic field H(x‖|ω), in the vacuum region
above the perfectly conducting surface,

H(x‖|ω)inc + 1

4π

∫
d2x′‖

[∇′g0
(
x|x′)]∣∣

x′
3=ζ(x′‖)

× JH
(
x′‖|ω

)
= θ

(
x3 − ζ(x‖)

)
H(x‖|ω). (9)

Here the function g0(x|x′) = exp[i(ω/c)|x − x′|]/|x − x′| is the
scalar free-space Green’s function, where ω and c are the angu-
lar frequency and speed of light in vacuum, respectively, and θ(·)
denotes the Heaviside unit step function. For all fields a time-
harmonic dependence exp(−iωt) was assumed, but not indicated
explicitly. Moreover, in writing Eq. (9) an (electric) surface current
density has been defined as

JH (x‖|ω) = [
n × H(x|ω)

]∣∣
x3=ζ(x‖), (10)

where n = (−∂ζ(x‖)/∂x1,−∂ζ(x‖)/∂x2,1) is a vector that is nor-
mal to the surface x3 = ζ(x‖) at each point and is directed into the
vacuum.

We note that Eq. (9) determines the magnetic field everywhere
in the region above the rough surface, and that the electric field is
obtained directly from the magnetic via Ampere’s law. Therefore,
the solution of the scattering problem is reduced to determining
the unknown surface current JH (x‖|ω).

This is done most readily by deriving and solving an integral
equation for JH (x‖|ω). Such an equation can be obtained by evalu-
ating the Stratton–Chu formula (9) infinitesimally above and below
the surface x3 = ζ(x‖), adding the resulting equations, and taking
the vector cross product of n with the sum. By this procedure, one
is led to the following integral equation satisfied by the surface
current

JH (x‖|ω) + 1

2π
P

∫
d2x′‖ n × {�∇g0

(
x|x′)� × JH

(
x′‖|ω

)}
= 2J(i)

H (x‖|ω), (11)

where the relation ∇′ g0(x|x′) = −∇g0(x|x′) has also been used. In
writing Eq. (11), J(i)

H (x‖|ω) was defined similarly to Eq. (10) but in
terms of the incident field H(x|ω)inc; P denotes the Cauchy princi-
pal part of the integral; and the compact “double bracket” notation
is defined as

�
f
(
x|x′)� = f

(
x|x′)∣∣ x3=ζ(x‖)

x′
3=ζ(x′‖)

. (12)

Eq. (11) represents a set of three coupled integral equations for
the three components of JH (x‖|ω). However, owing to the fact that
n · JH (x‖|ω) = 0, only two of these components are independent,
and JH (x‖|ω)3, say, may be eliminated leaving only two coupled
inhomogeneous integral equations [7]. The resulting set of two
coupled integral equations for JH (x‖|ω)1,2 is solved by convert-
ing it into a pair of coupled matrix equations. This is done by
generating a realization of the surface profile function on a grid
of N2 points within a square region of the x1x2 plane of edge L,
where the ratio L/N = �x is chosen to be �x = λ/7, with λ the
wavelength of the incident field. If both the integral kernel and
the unknown surface currents are assumed to vary slowly over an
area (�x)2 centered around the point (x1, x2,0), the integral equa-
tion (11) is readily converted into a complex dense matrix system
by the extended mid-point method [11]. The principal value inte-
gral ensures that there is no divergence caused by the derivatives
of the Green’s function at x‖ = x′‖ . The memory footprint of the

matrix system scales like 4N4, so preferably one should use itera-
tive methods to solve it if such methods converge for the level of
roughness that one is interested in. In this work we have used
the biconjugate gradient stabilized (BiGCStab) method [12] for
this purpose. Once the matrix system is solved and the equation
n · JH = 0 used to calculate JH (x‖|ω)3 from it, the magnetic com-
ponent of the electromagnetic field can be obtained from Eq. (9).
The corresponding electric field is obtained from the magnetic field
via Ampere’s law.

The physical quantity that we will be concerned with is the
mean differential reflection coefficient, 〈∂ Rνs,ν0/∂Ωs〉, for the scat-
tering of linearly ν0-polarized incident light into linearly νs-
polarized scattered light. The differential reflection coefficient is
defined such that 〈∂ Rνs,ν0/∂Ωs〉dΩs is the fraction of the total
time-averaged flux incident on the surface that is scattered into
the element of solid angle dΩs about the scattering direction
(θs, φs) [7]. Since we are concerned with scattering from a ran-
domly rough surface, it is the average of this quantity over an
ensemble of realizations of the surface that we need to calcu-
late, and it can be expressed in terms of the surface currents (see
Ref. [7] for details). Since a perfectly conducting surface has no
absorption or transmission, all energy that is incident on it has
to be scattered back into the medium of incidence. Hence, energy
conservation requires that the integral over all possible scattering
directions of the mean differential reflection coefficient should be
one. This can be used to estimate the consistency and quality of
the numerical calculations. For all the numerical simulation results
to be presented in this work, energy conservation was explicitly
checked and found to be satisfied with an error of less than 0.4%.

4. Results and discussions

By the approach outlined in the preceding section, we have
performed rigorous computer simulations for the scattering of
p-polarized incident light from randomly rough, perfectly con-
ducting surfaces characterized by a Gaussian height distribution
of rms-value δ = λ/2 and a Gaussian correlation function with
correlation lengths a1 = λ and either (i) a2 = λ (isotropic sur-
face; Fig. 3); (ii) a2 = 1.5λ (weakly anisotropic surface; Fig. 4); or
(iii) a2 = 3λ (strongly anisotropic surface Fig. 5). For all these cases
the p-polarized light was incident at angles (θ0, φ0) = (20◦,45◦).

For later comparison, we start by considering an isotropic sys-
tem for which the full angular distributions of the mean differen-
tial reflection coefficients are presented in Fig. 3. A similar system
has recently been discussed in the literature [7], and the interested
reader is referred to that publication for additional details about
the scattering properties of isotropic random surfaces. We note
from Fig. 3, or from Ref. [7], that the co-polarized (p → p) scat-
tering consists of a dipole-like angular distribution with the main
intensity oriented parallel to the plane of incidence [Fig. 3(b)]. In
contrast, for cross-polarization (p → s) the main intensity distribu-
tion is oriented perpendicular to the plane of incidence [Fig. 3(c)].
For both cases (if the surface is isotropic), the intensity distribu-
tions are symmetric with respect to the plane of incidence, and
the intensity distributions of the scattered light are independent of
the azimuthal angle of incidence, φ0, except for a trivial rotation of
the scattered intensity patterns. When the polarization of the scat-
tered light is not recorded [Fig. 3(a)], the dipole-like angular distri-
butions that were seen for both co- and cross-polarized scattering
are not easily observed. In passing we note that the pronounced
peak in the backscattering direction (θs = θ0 and φs = φ0 + 180◦)
is an enhanced backscattering peak, which finds its physical origin
in multiple scattering [13].

When the randomly rough surface is anisotropic, the angular
distribution of the scattered light is more complex than that for
the corresponding isotropic geometry. For instance, the intensity
of the scattered light from an anisotropic surface will in general
not be symmetric about the plane of incidence. However, even



I. Simonsen et al. / Computer Physics Communications 182 (2011) 1904–1908 1907
Fig. 3. A p-polarized beam of wavelength λ and width w = 4λ is scattered from an isotropic perfectly conducing rough surface characterized by a Gaussian height distribution
of rms-value δ = λ/2 and a Gaussian correlation function of correlation lengths a1 = a2 = λ. The panels show contour plots of the full angular distributions of the mean
differential reflection coefficient, 〈∂ Rνs ,p/∂Ωs〉, obtained by a rigorous computer simulation approach for the scattering of the beam incident on the rough surface at a
polar angle θ0 = 20◦ and an azimuthal angle φ0 = 45◦ . The three panels correspond to various configurations for the polarization of the scattered light. They are: (a) the
polarization of the scattered light is not recorded [νs = p, s]; (b) only p-polarized scattered light is measured [νs = p]; and (c) only s-polarized scattered light is recorded
[νs = s]. The rough surface, covering an area 16λ × 16λ, was discretized on a grid of 112 × 112 points corresponding to a discretization interval λ/7 for both directions. The
presented figures were obtained by averaging the mean differential reflection coefficient over results for 6000 surface realizations.

Fig. 4. Same as Fig. 3 with the only difference being that the surface now is weakly anisotropic and characterized by the correlation lengths a1 = λ and a2 = 1.5λ.

Fig. 5. Same as Fig. 3 with the only difference being that the surface now is strongly anisotropic and characterized by the correlation lengths a1 = λ and a2 = 3λ.
in the anisotropic case, it has been found (see discussion below)
that the intensity distributions are symmetric about the plane of
incidence whenever the projection of the incident wave vector
onto the mean plane, k‖ = (ω/c)(sin θ0 cosφ0, sin θ0 sin φ0,0), is
parallel to either the minor or the major axis of the anisotropy
[φ0 ∈ [0◦,±90◦,180◦]]. For such cases the angular intensity dis-
tributions of the scattered light are qualitatively rather similar to
those shown in Fig. 3 for the isotropic case. This conclusion holds
for both co- and cross-polarized scattering as well as when the
polarization of the scattered light is not recorded.

However, the main difference between the angular intensity
distributions of the light scattered from isotropic and anisotropic
surfaces can be observed when the azimuthal angle of incidence,
φ0, is such that k‖ is neither parallel to the minor nor to the
major axis of the anisotropy. One particular such situation is con-
sidered in Fig. 4 for which the azimuthal angle of incidence was
φ0 = 45◦ and the correlation lengths of the anisotropic random
surface were a1 = λ and a2 = 1.5λ [see Fig. 2(b)]. By compar-
ing the scattering from the isotropic [Fig. 3(a)] and the related
anisotropic surface [Fig. 4(a)] for the case when the polarization
of the scattered light was not recorded, it is observed that what
is a well-defined enhanced backscattering peak in the case of the
isotropic surface, becomes a much broader “bandy stick” shaped
region of high intensity that includes the backscattering direction
for the anisotropic surface. This latter high-intensity structure is
predominantly oriented along the major axis of the anisotropy,
and the bandy stick blade is directed towards the specular direc-
tion in the forward scattering plane [Fig. 4(a)]. It is noted that
a peak is still visible in Fig. 4(a) in the backscattering direction,
but it seems to be less intense. In order to interpret this result,
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it is instructive to study in some more detail the angular distri-
bution of the mean differential reflection coefficients in the co-
and cross-polarized configurations, Figs. 4(b)–(c), and to compare
them to the corresponding figures for the isotropic counterparts.
Figs. 4(b)–(c) show explicitly that the dipole-like angular scattering
patterns lack the symmetry with respect to the plane of incidence
that the isotropic equivalents have. This asymmetry of the angular
distribution of the scattered intensity expresses itself as a larger
fraction of the intensity incident on the surface being scattered
to one side of the incident plane relative to the other. From the
computer simulation results for weakly anisotropic surfaces de-
picted in Figs. 4(b)–(c), this asymmetry is particularly apparent
in the cross-polarized scattering. The cross-polarized component
of the mean differential reflection coefficient is to lowest (sin-
gle scattering) order proportional to g(q‖ − k‖)[(q̂‖ × k̂‖) · x̂3]2,
where q‖ = (ω/c)(sin θs cosφs, sin θs sin φs,0) [14]. For anisotropic
surfaces, this function is not symmetric with respect to the plane
of incidence, and the trend in its angular dependence is consistent
with what is observed in Fig. 4(c).

The co-polarized scattering pattern is explained in a similar
way. In this case, the single scattering contribution to the co-
polarized component of the mean differential reflection coefficient
contains terms of the form g(q‖ − k‖)[q̂‖ · k̂‖]m , with m = 1,2. The
positions of the maxima of such functions are in the forward di-
rection and, when the surface is anisotropic, they move away from
the plane of incidence and toward the minor axis of the anisotropy
[Fig. 4(b)].

When the surface becomes strongly anisotropic [Fig. 2(c)], most
of the features of the weakly anisotropic surfaces discussed above
seem to hold, only becoming more pronounced. For instance,
in Fig. 5(a) high scattered intensity at the position (θs, φs) ≈
(θ0,180◦ − φ0) is readily seen, and is due to cross-polarized scat-
tered light, as was explained for the weakly anisotropic case.
The cross-polarized contribution to the scattered light is seen in
Fig. 5(c). However, the co-polarized component of the mean dif-
ferential reflection coefficient seems to be somewhat different for
the strongly anisotropic case [Fig. 5(b)]. The reason for this is to
be found in an additional term in the single scattering contribu-
tion to 〈∂ R pp/∂Ωs〉. This term is proportional to g(q‖ − k‖), and
does not have any additional φ0 or φs dependence. Hence, as the
surface becomes strongly anisotropic, and the power-spectrum de-
cays rapidly along the major axis of the anisotropy, this term will
start playing a more and more important role, resulting in a pat-
tern elongated along the minor axis of the anisotropy.

5. Conclusions

We have introduced a reliable numerical simulation approach
capable of producing rigorous results for the scattering of light,
both co- and cross-polarized, from two-dimensional, randomly
rough, perfectly conducting surfaces. By this method we study the
scattering of a p-polarized beam from an anisotropic Gaussian, ran-
domly rough, perfectly conducting surface. It is demonstrated that
the surface anisotropy gives rise to interesting and pronounced sig-
natures in the angular intensity distribution of the scattered light.
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