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Abstract. The light scattering by three-dimensional clusters supported by a substrate is modelled by
representing clusters by truncated spheroids whose polarizability is calculated via a multipolar development
of the potential in the quasi-static limit. The determination of the mean island radius, density and aspect
ratio from the optical response is examined. The strong influence of both the particle-substrate interaction
and the particle shape on the optical behaviour is demonstrated, showing the limits of effective medium
and dipolar theories. The Surface Differential Reflectance spectra of silver on MgO(100) and titanium or
aluminium on α-Al2O3(0001) surfaces have then been modelled by using the above model, illustrating the
capability of optical means to deal with various metals, including those belonging to transition series. In
all cases, it is highlighted that the aspect ratio is central in modelling the optical response of supported
particles.

PACS. 78.20.Bh Theory, models, and numerical simulation – 73.20.Mf Collective excitations (including
excitons, polarons, plasmons and other charge-density excitations) – 68.55.Ac Nucleation and growth:
microscopic aspects

1 Introduction

Light scattering from small particles is at the origin of
many colors effects in nature and affects many reflection-
transmission-absorption behaviours. For those reasons, it
has received a tremendous attention in the past four
decades, both experimentally and theoretically [1], in par-
ticular for silver and alkali metals whose behaviour is ac-
curately accounted for by means of the free-electron gas
theory. Light scattering offers elegant and non-destructive
means to probe particles in very versatile conditions of
environment in either vacuum, gas or transparent liquid.
In particular, for the study of supported aggregates dur-
ing either chemical vapor deposition or metal deposition,
Surface Differential Reflectance (SDR) has proved to allow
for an in situ and in real time characterization of the clus-
ter size, density and aspect ratio via high quality optical
spectra, even within the submonolayer range [2–4].

The crucial point is to unambiguously identify the
spectral features and to quantitatively interpret the opti-
cal data. The effective medium theories, such as Maxwell
Garnett or Bruggeman model, fail to describe the experi-
mental spectra in details. Indeed, they assume a strongly
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simplified picture for the supported particles. In particu-
lar, the interaction with the substrate is treated by embed-
ding the particle in an effective medium whose dielectric
constant is between that of vacuum and that of the sub-
strate. Yamaguchi et al. [5,6] have first set up an approach
including the substrate-induced breaking of symmetry. In
their model, each particle is replaced by a point-dipole
and its electrostatic image in the substrate. The renor-
malized polarizability is then obtained by summing the
contributions of all the local fields of neighbours and im-
ages. However, this description does neither account for
the shape of the particle nor for the multipolar coupling
with the substrate, which have both been shown to dra-
matically affect the optical response of supported clusters.

A more sophisticated picture of interacting supported
particles can be achieved by means of the theoretical ap-
proach of the Fresnel coefficients of a thin film which has
been developed by Bedeaux and Vlieger [7–12]. The thin
film is represented by a boundary layer lying between
two bulk media whose thickness is supposed to be small
enough with respect to the wavelength of light for the
non-retarded limit to hold. The optical response of this
layer is treated by bringing back to the surface, as Dirac
terms, all the integrated excess fields from the simple
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Fresnel behaviour. The surface being non-magnetic, four
coefficients, called surface susceptibility, γe, βe, τ and δ are
introduced. The reflection and transmission amplitudes,
the ellipsometric coefficients can be expressed in terms of
these parameters. The susceptibilities γ, which gives the
integrated surface polarization parallel to the surface in
term of the electric field along the surface, and β, which
relates the integrated surface polarization normal to the
surface in terms of the electric displacement field normal
to the surface are given as functions of the exact local
dielectric constant ε(z) along z by:

γe =
∫ +∞

−∞
[ε(z)− ε−θ(−z)− ε+θ(z)]dz, (1.1)

βe = −
∫ +∞

−∞
[

1
ε(z)

− 1
ε−
θ(−z)− 1

ε+
θ(z)]dz, (1.2)

where θ(z) is the Heaviside function and ε+ and ε− are the
dielectric functions of the two surrounding media. There
is a clear connection with the non local dielectric ten-
sor introduced by Barrera et al. [13] for the description
of the anisotropic response of a metallic surface in the
jellium approximation. The others coefficients τ and δ,
which are of second order with respect to the ratio be-
tween the thickness of the layer and the wavelength, can
be neglected herein. The parameters γ and β are related
to the islands polarizabilities parallel and perpendicular
to the surface. All the measurable quantities are indepen-
dent of the choice of the dividing surface so that invariant
combinations of them can be introduced as suggested first
by Lekner [7,14]. The calculation mostly consists in deter-
mining the island polarizability by accounting for all the
above-mentioned interactions.

The choice for the particle geometry was currently lim-
ited to that of truncated spheres on a substrate [15–17].
However, the model could hardly be run for high aspect
ratio, i.e. for spherical caps, because of matrix condition-
ing [15]. Although this geometry offers a realistic repre-
sentation of the particles at thermodynamic equilibrium,
it does not allow to picture neither partial wetting nor
growth modes dominated by kinetics [18]. It is anticipated
that a much greater variety of thin films could be repre-
sented by approximating particles by truncated spheroids.
The aim of the paper is to calculate the polarizability of
such objects and to illustrate the capability of the method
to deal with experimental cases. The paper is organized
as follows. Section 2 is dealing with the calculation of the
polarizability of an isolated particle in interaction with
the substrate via a spheroidal expansion of the potentials.
The expansion coefficients which are then determined can
be related to measurable quantities which characterize the
optical response. In Section 3 the formalism is applied to
differential reflectivity spectra collected in situ during the
formation of thin films in the cases of silver on MgO(100),
and titanium or silver on α-Al2O3(0001).

2 Polarizability of a truncated spheroid

Truncated spheroids, either prolate or oblate, that are
symmetric around an axis of revolution normal to the sur-
face of the substrate with its centre either above (island)
or below (cap) the substrate, are depicted in Figure 1. The
reason to distinguish between islands and caps lies in the
expression of the potentials. The symmetry of the prob-
lem implies the use of spheroidal coordinates (ξ, η, φ) [19]
defined in more details in Appendix A. It is convenient to
locate the originO for this spheroidal coordinate system at
the centre of the spheroid. In addition, an other spheroidal
coordinate system (ξ′, η′, φ′), whose origin O′ is at the im-
age point of the centre of the spheroid with respect to the
surface of the substrate, is introduced. The appropriate
changes of variables between these two systems, as well
as with the Cartesian system, are given in Appendix A.
The Cartesian system S has its origin O at the centre of
the spheroid with the z-axis pointing downwards into the
substrate. The quantity a stands for the radius of the ring
of foci. The surface of the spheroid corresponds to ξ = ξ0
whereas z = aξη = ±d = ±aξ1 defines the surface of the
substrate (+ for an island and− for a cap) which separates
the vacuum (medium 1) from the substrate (medium 2)
and supports the particle (medium 3). For calculation con-
venience, the buried part of the particle appears as a dif-
ferent medium 4. The limits in spheroidal coordinates of
the various domains are given in Appendix A. A dielectric
constant εi(ω) is assigned to each medium (i = 1, 2, 3, 4).

Several parameters are used to characterize the shape
of the particle and its position with respect to the sub-
strate. The axial ratio, ar = R‖/R⊥, of the spheroid is the
ratio of the parallel radius (R‖) over the normal radius
(R⊥). A useful quantity which maps all the possible axial
ratios onto the interval [0, 1] is defined by x = 1/(1 + ar).
The truncation parameter tr is defined by:

tr =
d

R⊥
=

d

aξ0
with 0 ≤ tr ≤ 1 (2.1)

where R⊥ is the radius along the surface normal (R⊥ =
Rs, Rl for oblate or prolate particle) and d is the distance
from the centre of the spheroid to the surface of the sub-
strate. In all formulae, tr is defined as a positive number.
However, in figures, to clarify the presentation of data,
negative values of tr are associated with the spheroidal
cap case. For example, tr = −1 describes a completely
buried particle. Finally, the aspect ratio, sr, is defined as
the cluster diameter seen from above (as in most of the ex-
perimental diameter determinations by microscopy tech-
niques) divided by its height h = R⊥(1± tr), i.e.:

sr =


2ar

1 + tr
island,

2ar

√
1 + tr
1− tr

cap.
(2.2)

The isovalues of sr in logarithmic scale are presented in
Figure 2, where the various regions for oblate or prolate
island or cap are indicated.
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Fig. 1. Cross-sections of the various geometries for truncated spheroidal islands: (a) oblate island (b) oblate cap (c) prolate
island (d) prolate cap.
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Fig. 2. Isovalues in logarithmic scale for the aspect ratio sr of
the particle, i.e. the cluster diameter seen from above divided
by its height. The high aspect ratios correspond to oblate par-
ticles whereas the low values correspond to prolate particles.

2.1 The Laplace equation and the spheroidal potential
expansion

The particle is submitted to an incident plane wave
Eext = E0 e i(k·r−ωt) where k = 2π/λ is the wave
vector, ω the frequency of the incident light and E0

the field modulus. The central hypothesis of the model
presented herein is that the size of the islands are much
smaller than the incident wavelength λ, so that all
retardation effects can be neglected. The applied field is
thus expressed in the electrostatic limit of the Maxwell
equations by the potential Ψext(r, t) ≡ −E0 · r e−iωt. For
charge-free clusters made of non-magnetic materials, the
total (applied plus induced) electric potential Ψ(r) in all
four media can thus be derived from the Laplace equation:

∇2Ψ(r) = 0 with E(r) = −∇Ψ(r). (2.3)

In spheroidal coordinates, the potential is separable into
two types of function which both satisfy the Laplace
equation and can be written in the form of a product of
spheroidal harmonics and “radial” (ξ) functions [19]:

Ψ(r) =
∑
`m

A`mZ
m
` (ξ, a)Y m` (arccosη, φ)

+
∑
`m

B`mX
m
` (ξ, a)Y m` (arccosη, φ). (2.4)
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The summation is from ` = 0 to∞ and m = −` through `.
The expansion (2.4) is known as a spheroidal multipolar
expansion of the potential [19]. Here A`m and B`m are un-
known expansion coefficients and the functions Xm

` (ξ, a),
Zm` (ξ, a) and Ym` (arccosη, φ) are defined in Appendix B.
Multipolar coefficients associated with the reflected and
transmitted field will be denoted by superscripts r and t,
respectively. Notice that the Xm

` and Zm` functions show
different asymptotic behaviours (Eqs. (B10)).

2.1.1 Potential expansion for the oblate island
with its centre above the surface

The potential expansion for an oblate island is obtained
by placing multipoles at the centre of the spheroid O and
at its mirror image O′. The potential in vacuum (region 1)
takes the following form:

Ψ1(r) = Ψext(r) +
′∑
`m

A`mẐ
m
` (ξ, a)Y m` (arccosη, φ)

+
′∑
`m

Ar`mẐ
m
` (ξ′, a)Y m` (arccosη′, φ), (2.5a)

where the first sum accounts for the charge distribution
located in the cluster at O and the other sum for the
image charge at O′. The prime superindex in the sums
means that ` 6= 0, a consequence of the fact that the
system is charge-free. The quantity:

Ψext(r) = V 0
1 X̂

0
1 (ξ, a)Y 0

1 (arccosη, φ)

+ V 1
1 X̂

1
1 (ξ, a)Y 1

1 (arccosη, φ)

− V −1
1 X̂−1

1 (ξ, a)Y −1
1 (arccosη, φ) (2.5b)

denotes the potential generated by the uniform applied
electric field E0 = E0(sin θ0, 0, cos θ0), with:

V 0
1 = −

√
4π
3
E0 cos θ0, V 1

1 =

√
2π
3
E0 sin θ0,

V −1
1 = −

√
2π
3
E0 sin θ0. (2.5c)

The potential in the substrate (region 2) is:

Ψ2(r) = ψ′2 + Ψ text +
′∑
`m

At`mẐ
m
` (ξ, a)Y m` (arccos η, φ)

(2.5d)

where ψ′2 is a constant. The constant potential Ψ text, cor-
responding to the transmitted field, is in the same form
as Ψext(r) except that the quantities V k1 are replaced by
three constants c1, c2, and c3 to be determined. Further-
more, the potentials in region 3 (island) and region 4 can

be written in the following form:

Ψ3(r) = ψ′3 +
′∑
`m

B`mX̂
m
` (ξ, a)Y m` (arccos η, φ)

+
′∑
`m

Br`mX̂
m
` (ξ′, a)Ym` (arccos η′, φ), (2.5e)

Ψ4(r) = ψ′4 +
′∑
`m

Bt`mX̂
m
` (ξ, a)Y m` (arccos η, φ), (2.5f)

where ψ′3 and ψ′4 are constants.

2.1.2 Potential expansion for the oblate cap

The above expansion of the potential for the oblate is-
land cannot be used in the cap case because the notion of
an image point looses its meaning and because the direct
field (first sum in Eq. (2.5a)) will not describe correctly
the charge distribution in the island [15]. As suggested
by Wind et al. [16,17], the right expressions are obtained
by a permutation of the dielectric constants ε1 ↔ ε2,
ε3 ↔ ε4 with a rotation of the coordinate system used
in the potential expansion relative to the island case and
a permutation of the transmitted and incident field (see
Refs. [7,16,17] for details). The result of that permutation
is that the underlying potential is in fact expressed by

Ψ1(r) = Ψext(r) +
′∑
`m

At`mẐ
m
` (ξ, a)Y m` (arccosη, φ) (2.6a)

Ψ2(r) = ψ′2 + ψtext +
′∑
`m

A`mẐ
m
` (ξ, a)Y m` (arccosη, φ)

+
′∑
`m

Ar`mẐ
m
` (ξ′, η), a)Y m` (arccos η′, φ) (2.6b)

Ψ3(r) = ψ′3 +
′∑
`m

Bt`mX̂
m
` (ξ, a)Y m` (arccos η, φ) (2.6c)

Ψ4(r) = ψ′4 +
′∑
`m

B`mX̂
m
` (ξ, a)Y m` (arccos η, φ)

+
′∑
`m

Br`mX̂
m
` (ξ′, a)Ym` (arccos η′, φ). (2.6d)

Terms with superscripts t and r correspond to mul-
tipole fields transmitted from point O to the am-
bient (medium 1) and reflected by the substrate,
respectively.

For a prolate particle, the expansions are formally the
same as for an oblate particle, equations (2.5) and (2.6),
except that in all spheroidal functions, the hat is replaced
by a tilde, i.e. X̂m

` → Z̃m` and Ẑm` → X̃m
` (Eqs. (B1)).
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2.2 Expansion coefficients

The expansions for the potential contain several unknown
coefficients like ci, A`m, B`m, etc. which are determined
by taking advantage of the boundary conditions at each
interface. These are the continuity of the potential itself
and of the normal component of the displacement field:

Ψi(rs) = Ψj(rs), (2.7a)
εi(ω) ∂nΨi(rs) = εj(ω) ∂nΨj(rs). (2.7b)

Here, rs is assumed to be any point on the interface and
∂n denotes the normal derivative.

In the case of an island, the fulfillment of equa-
tions (2.7) by the potentials defined in the previous sec-
tions on the planar interface outside the island separating
medium 1 and 2 leads to:

c1 = − ε1
ε2

√
4π
3
E0 cos θ0, c2 =

√
2π
3
E0 sin θ0,

c3 = −
√

2π
3
E0 sin θ0, ψ′2 = −

(
1− ε1

ε2

)
d E0 cos θ0,

(2.8)

Ar`m = (−1)`+m
(
ε1 − ε2
ε1 + ε2

)
A`m, At`m =

2ε1
ε1 + ε2

A`m,

(2.9)

and for the planar interface inside the island separating
medium 3 and 4:

Br`m = (−1)`+m
(
ε3 − ε4
ε3 + ε4

)
B`m, Bt`m =

2ε3
ε3 + ε4

B`m,

(2.10)

and ψ′3 = ψ′4 ≡ ψ0 where constant potential ψ0 will
be determined later (Eq. (C5)). Notice that the equa-
tions for the multipolar coefficients come from the clas-
sical multipole-image link [20]. For a cap, the relations
are identical except that one should invert the dielectric
constants: ε1 ↔ ε2, ε3 ↔ ε4 in equations (2.9–2.10) and
the sign of ψ′2 in equation (2.8).

From equations (2.9–2.10), it appears that only the two
sets {Alm} and {Blm} of multipolar coefficients are inde-
pendent. These are determined through the boundary con-
ditions on the surface of the spheroid. By taking advantage
of the fact that the spherical harmonics form a complete
basis on the spheroidal surface ξ = ξ0, a weak formulation
of the boundary conditions can be derived by multiply-
ing equations (2.7) by the complex conjugate spherical
harmonic, [Y m` (arccosη, φ)]∗, and integrating the result-
ing equations over all angles (arccosη and φ):∫ ±tr
−1

dη
∫ 2π

0

dφ(Ψ1 − Ψ3)ξ=ξ0 [Y m` (arccosη, φ)]∗

+
∫ 1

±tr
dη
∫ 2π

0

dφ(Ψ2 − Ψ4)ξ=ξ0 [Ym` (arccosη, φ)]∗ = 0

(2.11a)

∫ ±tr
−1

dη
∫ 2π

0

dφ
[
∂

∂ξ
(ε1Ψ1 − ε3Ψ3)ξ=ξ0

]
[Y m` (arccosη, φ)]∗

+
∫ 1

±tr
dη
∫ 2π

0

dφ
[
∂

∂ξ
(ε2Ψ2 − ε4Ψ4)ξ=ξ0

]
× [Y m` (arccosη, φ)]∗ = 0. (2.11b)

The right sign has to be used for tr (+ for an island and −
for a cap). Upon substitution of the expressions for the
potentials equations (2.5) and (2.6) into equations (2.11)
and using the orthogonality relations for the spherical har-
monics, an infinite set of linear equations for the multipo-
lar coefficients is obtained:

∞′∑
`1=|m|

Cm``1R
−`1−2
⊥ A`1m +

∞′∑
`1=|m|

Dm
``1R

`1−1
⊥ B`1m = Hm

`

(2.12a)
∞′∑

`1=|m|
Fm``1R

−`1−2
⊥ A`1m +

∞′∑
`1=|m|

Gm``1R
`1−1
⊥ B`1m = Jm`

(2.12b)

where the system elements Cm``1 , Dm
``1

, Fm``1 , Gm``1 , Hm
`

and Jm` are defined in Appendix C.1. Furthermore ` =
0, 1, 2, 3, .... and m = 0,±1, while R⊥ = aξ0 is the length
of the short axis perpendicular to the surface of the sub-
strate. The sums are understood to exclude the `1 = 0
term because of the lack of free charge. Notice that the
multipolar terms with |m| ≥ 2 do not couple to the linear
incident field and that the equation for l = 0, m = 0 is
useful only to determine the unknown quantity ψ0. The
m = 0 system comes from the perpendicular component
of the electric field E0,z whereas the m = ±1 cases (de-
generated because of the rotational invariance along the
z−axis) reflect the excitation by E0,x and E0,y.

In a complete analogous way (Appendix C.1), a linear
system can be derived for an oblate cap. For prolate island
and cap, the derivation is similar as above, provided the
right interfaces limits and spheroidal functions are used
(Eqs. (A7–B1)).

2.3 The surface susceptibilities and the Fresnel
coefficients

2.3.1 The polarizability tensor

In the presence of the external field Eext, a particle of
much smaller size than the wavelength of the incident light
is polarized in such a way that its far-field behaviour can
be accounted for, in the linear approximation, by the ree-
mission of light by an oscillating dipole p. The response
of the island is estimated through its dipole strength, i.e.
its effective polarizability tensor, which relates the dipole
and the external field p = α ·Eext. By using the rotational
symmetry along the z-axis, the α tensor is diagonal with
two main eigenvalues, one parallel α‖ and the other per-
pendicular αz to the surface of the substrate. Of course,
these polarizabilities depend on the charge induced in the



272 The European Physical Journal B

rs =
n1 cos θ − n2 cos θt + i(ω/c)γ

n1 cos θ + n2 cos θt − i(ω/c)γ
(2.20a)

ts =
2n1 cos θ

n1 cos θ + n2 cos θt − i(ω/c)γ
(2.20b)

rp =
(n2 cos θ − n1 cos θt)[1− (ω/2c)2ε1γβ sin2 θ]− i(ω/c)γ cos θ cos θt + i(ω/c)n1n2ε1β sin2 θ

(n2 cos θ + n1 cos θt)[1− (ω/2c)2ε1γβ sin2 θ]− i(ω/c)γ cos θ cos θt − i(ω/c)n1n2ε1β sin2 θ
(2.20c)

tp =
2n1 cos θ[1 + (ω/2c)2ε1γβ sin2 θ]

(n2 cos θ + n1 cos θt)[1− (ω/2c)2ε1γβ sin2 θ]− i(ω/c)γ cos θ cos θt − i(ω/c)n1n2ε1β sin2 θ
(2.20d)

particle, on the geometry and on the frequency dependent
dielectric constants.

Far away from the island centre O, the spheroidal and
spherical expansions become equivalent, i.e.

Zm` (ξ, a) ' (aξ)−`−1 ' r−`−1, (2.13a)
Y m` (arccosη, φ) ' Ym` (θ, φ) (2.13b)

for ξ → ∞. Therefore, the polarizability tensor elements
for an oblate or prolate island, normal or perpendicular
to the surface of the substrate respectively, can simply be
related to the multipolar coefficients A10 and A11 of the
potential in medium 1:

αz(0) =
2πε1A10√
π/3E0 cos θ0

, (2.14a)

α‖(0) =
−4πε1A11√
2π/3E0 sin θ0

· (2.14b)

For the cap case, the direct multipoles are located at O′,
below the surface of the substrate. In equations (2.14),
ε1 must be replaced by ε2. Furthermore, the external
field, by which A10 and A11 are divided, is the trans-
mitted incident field in medium 2, i.e., the substitution
E0 cos θ0 → ε1/ε2E0 cos θ0 has to be made. Hence, the
equivalent formulae to equations (2.14) for the cap case
becomes:

αz(0) =
2πε2A10

(ε1/ε2)
√
π/3E0 cos θ0

, (2.15a)

α‖(0) =
−4πε2A11√
2π/3E0 sin θ0

· (2.15b)

2.3.2 The Fresnel coefficients: reflection, transmission
and absorption

For low island density, the island polarizabilities are sim-
ply related to the surface susceptibilities (Sect. 1):

βe(d) =
ραz(0)
ε21

, (2.16a)

γe(d) = ρα‖(0). (2.16b)

where ρ is the number of particles per unit surface area
(particle density). In these equations, z = d means that
the choice of the dividing surface for susceptibilities is

along the substrate plane. For a cap, the dipole is shifted
from the point O to just below the surface and crosses
this surface. It can be proved [7] that αz(0) = αz(−d +
0+) = (ε2/ε1)2αz(−d + 0−) and α‖(0) = α‖(−d + 0+) =
α‖(−d + 0−), which leads to the following expressions of
the surface susceptibilities:

βe(−d) =
ραz(0)
ε22

, (2.17a)

γe(−d) = ρα‖(0). (2.17b)

Dimensionless susceptibilities quantities can be intro-
duced:

β̂ =
βe(±d)
ρV

∼ α̂z, γ̂ =
γe(±d)
ρV

∼ α̂‖ (2.18)

where α̂z = αz/V and the same for α̂‖. V denotes the
volume of the particle located above the substrate:

V (oblate) =
1
3
πa3ξ0(1 + ξ2

0)(2± tr ∓ t3r ), (2.19a)

V (prolate) =
1
3
πa3ξ0(ξ2

0 − 1)(2± tr ∓ t3r ). (2.19b)

In the previous equations, the (+) sign should be used
for an island and (−) for a cap. Bearing in mind that the
polarisability is directly proportional to V of the particle,
these reduced susceptibilities do not depend on it. The
dependence on other parameters, such as those charac-
terizing the shape of the particle, can hence be described
more easily. The quadrupole susceptibilities τ and δ, which
include the non-local response of the surface quadratic
in d/λ, are ignored herein since absorption dominates in
the metallic particles under consideration. However, for
the case of dielectric particles, these terms should be in-
cluded [7].

The susceptibilities γ and β modify the boundary con-
ditions in such a way that the amplitudes of the reflected
and transmitted in s− or p-polarisation states can be ex-
pressed as [8]:

See equations (2.20a, 2.20b, 2.20c, 2.20d) above

where n1 =
√
ε1 and n2 =

√
ε2 are the refractive indexes of

the ambient medium and substrate, respectively, θ the an-
gle of incidence and θt the angle of the transmitted beam
given by Descartes law. The reflectance and transmittance
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are obviously given by the flux conservation of Poynting
vector:

Rs = |rs|2, Rp = |rp|2, (2.21a)

Ts = |tp|2
n2 cos θt

n1 cos θ
, Tp = |tp|2 n2 cos θt

n1 cos θ · (2.21b)

Here n1 and n2 are supposed to be real for insuring the
physical existence of the transmitted field in the substrate.

2.4 The influence of the particle shape on the optical
absorption

In this section, the importance of the aspect ratio in mod-
elling the optical response of particles is illustrated by
performing a numerical implementation of the model in
the case of silver on alumina. To numerically compute the
multipolar expansion coefficients, the set of linear equa-
tions (2.12) has to be truncated at some order M . Most
often, the calculations are only aimed at determining the
polarizability of the particles via the estimates of the terms
A10 and A11 of the multipolar expansion of the interac-
tion of the particle with the substrate. In practice, M is
increased until these parameters do not evolve any longer.
However, a more stringent test of the convergence consists
in examining the fulfillment of the boundaries conditions
on the surface of the particle [15]. In most cases, M = 16
is high enough to achieve a reasonable convergence of the
numerical calculations. Two drawbacks are encountered
in calculations. When tr is close to unity, a divergence
is brought about by cancellations of big numbers which
leads to round-off errors. Moreover, a particle close to a
truncated sphere is not well described in spheroidal coor-
dinates. Indeed, the calculation for a sphere, which corre-
sponds to the limits ξ0 →∞ and a→ 0 with ξ0a = R, is
untractable in the spheroidal model since it requires the
computation of very large numbers. In this limit, the sup-
ported particles have been represented by means of the
previously described model of truncated spheres [16,17].

A numerical implementation of the above model is per-
formed in the case of silver on Al2O3. The dielectric con-
stants are extracted from the compilation of Palik [21].
The silver clusters, around 10 nm in diameter, are much
smaller than optical wavelengths (λ ∼ 102 nm). Hence a
finite-size correction has been applied to the dielectric con-
stant of silver. The reduction of the mean-free path of the
s-conduction electrons with respect to the bulk, results in
a shorter relaxation time τ . The classical expression for
the dielectric function is [1,22]:

ε(ω) = εB(ω) +
ω2

p

ω2 + iωτ−1
B

−
ω2

p

ω2 + iωτ−1
(2.22)

where εB is the bulk dielectric function, ~ωp is the plasma
frequency of s-electrons alone, and ~/τB is the bulk re-
laxation time. By taking λB = 43 nm, ~ωp = 9.17 eV,
~/τB = 0.018 eV, ~vF = 0.91 eV nm and ~/τ = ~/τB +
~vF/R = 0.2 eV, the corrected dielectric function of sil-
ver has been plotted in Figure 3 for the UV-visible range.
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Fig. 3. The dielectric constant of silver: bulk values from E.D.
Palik (thin lines) and corrected ones with a reduced relaxation
time ~/τ = 0.2 eV (bold lines).

Figure 3 clearly demonstrates that finite-size corrections
are worth considering, since the imaginary part of the di-
electric function of the particle is significantly increased
with respect to the bulk values. These corrected values
for the dielectric function of silver will be used in all nu-
merical calculations presented below. The matrix elements
contained in equations (2.12) were calculated as described
in Appendix C.

As compared to the truncated spherical model [15–17]
or that of supported spheroids [23], the present model has
the capability of dealing with a great variety of particle
shapes, ranging from flat discs to needles. To highlight the
influence of the particle shape on the optical response, the
real and imaginary components of the reduced suscepti-
bilities β̂ ∼ α̂z and γ̂ ∼ α̂‖ are plotted in Figure 4 as
functions of x = 1/(1 + ar), for a fixed truncation ra-
tio tr = 0, which corresponds to a hemispheroidal shape.
The energy of the light was chosen to be E = 2.5 eV
(ε2 = 3.15 and ε3 = −8.364 + i1.729). Indeed, the strong
peaks in the imaginary parts of the reduced susceptibil-
ities β̂ and γ̂, which appear at ar = 0.25 (Fig. 4a) and
ar = 1.5 (Fig. 4b), respectively, are directly related to
maxima in the absorption of the light [24]. This demon-
strates that the absorption by particles smaller than the
wavelength are highly sensitive to their shape. To the first
order, the maxima are associated with “dipolar” modes
excited in the particle. Such modes can be visualized by
mapping the potential around the particle (Fig. 5) for inci-
dent fields E0 either parallel (θ0 = π/2) or normal (θ0 = 0)
to the surface. The equipotential lines of the potentials in
units of E0R⊥ are pinned around the triple contact line for
ar = 1.5 whereas a less intense dipolar vibration is seen in
the normal direction for ar = 0.25. It is worth noting that
Figures 5a and c present a mirror plane perpendicular to
the figure (azimuthal function m = 1) whereas Figures 5b
and d present a revolution axis along z for θ = 0 (m = 0).
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In Figure 6, the isovalues of the real and imaginary
parts of the the reduced quantities β̂ and γ̂, which have
been determined at multipolar order M = 16, are plot-
ted in the (x, tr)-plane. Resonances in a prolate (oblate)
particle manifest themselves upon normal (parallel) ex-
citations. Interestingly, their locations are mainly deter-
mined by the aspect ratio sr of the particle since the most
intense contour lines for the imaginary part of β̂ and γ̂
closely follow a constant aspect ratio line sr as seen from
Figure 2 (sr ' 0.75 for β̂ and sr ' 3.5 for γ̂). Less intense
well localized absorptions are seen for Im(β̂) or Im(γ̂) for
a cap particle (tr < 0). A cut along the line ar = 3 (ver-

tical dashed line) is presented in Figures 4c–d. Despite
the difference in magnitude of the polarizability parallel
and normal to the surface, numerous small absorptions
features seen in Im(β̂) are attributed to multipolar ab-
sorptions and such modes [25,26] will be the main topic
of a forthcoming paper.

Several models can be used to interpret light absorp-
tion by supported particles, namely the effective dielectric
medium and the dipolar theories. The former clearly does
not include neither the electromagnetic coupling with the
substrate nor the anisotropy of the optical response of
the particles [1]. By accounting for interactions with the
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Fig. 7. The comparison for β̂ and γ̂ between the Yamaguchi dipole model (dotted line) and the M = 1 (thin line), M = 16
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substrate up to dipolar order, the polarizabilities α are
given by:

α‖(d) =
α‖

1 +Aα‖
, αz(d) =

αz
1 + 2Aαz

(2.23)

where α‖ and αz are the free particle polarizabilities
and d is the distance from the dipole to the surface of
the substrate. The dipole image is introduced through
A = (32πε1d3)−1 (ε1 − ε2) / (ε1 + ε2). This approach de-
scribes the main physics of the depolarization process, but
neglects all the higher order multipoles as well as the real
shapes of the objects.

To show the influence of these higher order multipoles,
the reduced polarizabilities β̂ and γ̂ have been plotted in
Figures 7 as a function of 1/(1 + ar) for the model of
Yamaguchi et al., equation (2.23) and within the M = 1
and M = 16 approximations of the present model. The
truncation ratio used to obtain the results of Figures 7
was tr = 0.6. Calculations at order M = 1 (dipolar or-
der) and M = 16 do not differ very much. In fact, the
model spectrum does not evolve anymore for M > 16.
This is the reason why this value has been chosen for all
calculations in the present work. However, the discrepancy
between dipolar model [5,6] and the spheroidal model is

significant. This in particular is true for the parallel polar-
izability γ̂ (Figs. 7c–d). Indeed, the dipolar model overes-
timates the interaction with the substrate [23] and under-
estimates the axial ratio corresponding to the resonance.
Moreover, the damping, i.e. the resonance width, is dras-
tically too small for this type of model. In the case of β̂,
the axial ratio of the resonance is ill-defined giving rise
to a double peak (Figs. 7a and b) although the ampli-
tudes seem to be correctly described. This phenomenon
is due to the strange behaviour of the depolarization fac-
tors in the dipolar model for oblate particles [23]. Thus,
the correct description of both the shape of the particle
and the particle-substrate interaction is a key ingredient
of a quantitative approach to the light absorption by sup-
ported metallic particles. In particular, fitting the extinc-
tion positions with the axial ratio and the position of the
dipole d [27] leads obviously to erroneous conclusions.

Another way to probe the islands excitations which is
more appealing from an experimental point of view is to
vary the wavelength or energy, E, of the incident light.
In Figures 8, the case of a hemispheroid (tr = 0) of sil-
ver on Al2O3 with ~/τ = 0.2 eV is considered in the
(E,1/(1 + ar)) plane. Silver is a peculiar metal since it
has a strong plasmon oscillation which is poorly damped
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by interbands transition contrary to transition metals.
Its dielectric constant is such that upon either flatten-
ing or interaction with the substrate, the splitting of the
Mie resonance of the sphere falls in the UV-visible spec-
tral range. This is clearly seen in Figure 8 where for ev-
ery axial ratio ar two absorption resonances of different
intensities located at different energies are excited. For
instance, for an oblate particle of ar = 3 indicated by
a dashed line in Figure 8, a weak resonance associated
with the dipole excitation perpendicular to the surface
is seen in β̂ at an energy around E = 3.7 eV (Fig. 9a),
while a strongest absorption resonance is along the surface
at around E = 2 eV (Fig. 9b).

3 Application to metal particles supported
on oxide substrates

In this section, the relevance of the above model is high-
lighted by several examples. Previous experimental data
concerning silver deposit on MgO [2,15] are then revisited
in the light of the present approach to more finely char-
acterize the shape of the supported clusters. Finally the
model is also used in the cases of both aluminium and ti-
tanium thin films to show that it can be applied to various
metals.
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3.1 Aspect ratio of silver particles on a magnesium
oxide substrate

The principle of the experiments presented herein consists
in examining metallic thin films by Surface Differential
Reflectance (SDR) in an ultra-high vacuum chamber. The
relative reflectivity of the sample defined as:

∆R

R
(ω) =

R(ω)−R0(ω)
R0(ω)

, (3.1)

where R0(ω) is the bare substrate (Fresnel) reflectivity,
is measured, in real time and in situ during the metal
deposition. Here, the incident light was UV-visible light
provided by a deuterium lamp. It was p-polarized and the
angle of incidence was 45◦. The scattered light was ana-
lyzed by a grating spectrometer via an optical fiber. Spec-
tra were recorded on a 1024 silicon diode array connected
to a computer.

The vacuum chamber was equipped with a X-ray Pho-
toemission Spectrometer (XPS) and a Low Energy Elec-
tron Diffraction (LEED) Princeton Res. Instr. MgO(100)
samples were cleaved from crystals provided by Cana-
dian Substrates in a glove bag filled with dry nitrogen
and directly connected to the load-lock system of the vac-
uum chamber, so that these samples could be introduced
in vacuum without any contact with the ambiant air.
The α-Al2O3(0001) crystals were polished samples pro-
vided by Mateck. Samples were cleaned by an already de-
scribed method [28]. The cleanliness of the surfaces was
checked by XPS and good LEED patterns were recorded
on each type of crystal. Silver was deposited from an alu-
mina cell and aluminium from a boron nitride cell. In
the case of aluminium, the cell was degassed for days in
vacuum, at a temperature just above the melting tem-
perature of aluminium (933 K). Prior to being used for
thin film deposition, it was annealed at 1273 K for a
few hours. Titanium was evaporated from a titanium fil-
ament wrapped round a tungsten wire. The system was
carefully outgassed. All sources were checked to provide
pure metal fluxes, in particular in the cases of aluminium
and titanium. Aluminium and silver fluxes have been cal-
ibrated by means of a quartz balance. Titanium coverages
were determined by XPS analysis of the titanium-covered
substrates. For Ag/MgO, ex situ techniques [2] have al-
lowed for the determination of the mean cluster density
ρ = 1.9 ± 0.5 1011 cm−2 and the particle radius as seen
from above R = 8.2± 1.5 nm (Tab. 1). The experimental
spectrum (open circles in Fig. 10), is dominated by two
features which are associated with the excitation of Mie
resonances by the p-polarized incident light.

Up to now, the assumption has been made that the
particles are non-interacting. In fact in the quasi-static
limit the polarizabilities must be renormalized by ac-
counting for a dipolar interaction of a given particle with
the surrounding particles and their images [7,11,17,29].
For the island case, such renormalized polarizabilities are

Table 1. Comparison between experimental and theoretical
parameters values for the sphere and spheroid model. (f) cor-
responds to parameters whose value has been fixed to the ex-
perimental value.

Model R‖(nm) R⊥(nm) tr ρ(cm−2) sr χ2

spheroid 8.2(f) 4.8 0.27 1.9 1011(f) 2.7 0.18

sphere 1 8.2(f) 8.2(f) 0 1.9 1011(f) 2 0.30

sphere 2 6.8 6.8 0.11 2.6 1011 1.8 0.25

3

2

1

0

∆R
/R

4.54.03.53.02.52.01.5
Energy (eV)

 Experiment
 spheroid
 sphere 1
 sphere 2

Fig. 10. Theoretical and experimental (points) differential re-
flectivity spectra for Ag/MgO(100). Comparison of the spher-
ical (dotted lines) and spheroidal model (continuous line) at
order M = 16 (see text for the parameter).

given by [7,11,17,29]:

αz(0)= ᾱz

{
1− ᾱz

2πε1L3

[
S20 −

(
ε1−ε2
ε1+ε2

)
S̃r

20

]√
4π
5

}−1

,

(3.2a)

α‖(0)= ᾱ‖

{
1+

ᾱ‖
4πε1L3

[
S20 +

(
ε1−ε2
ε1+ε2

)
S̃r

20

]√
4π
5

}−1

(3.2b)

and for the cap particle, ε1 and ε2 have to be interchanged.
Here ᾱz and ᾱ‖ denote the polarizabilities of a single clus-
ter interacting with the substrate as calculated from equa-
tions (2.14) and (2.15). The functions S20 and S̃r

20 are
defined by [7]:

S20 =
∑
i6=0

(
L

r

)3

Y 0
2 (θ, φ)|r=Ri

, (3.3a)

S̃r20 =
∑
i6=0

(
L

r

)3

Y 0
2 (θ, φ)|r=Rr

i
, (3.3b)

where L is the lattice constant. The lattice sums S20 and
S̃r

20 defined in equations (3.3) describe the dipole-dipole
interaction of a dipole with the surrounding dipoles and
images placed at r = Ri and r = Rr

i respectively. Notice
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the difference between this approach, where the limit i = 0
is excluded from the lattice sums of equations (3.3) and
instead included in ᾱ, and the dipolar model [5,6] (cf.
Eqs. (2.23)). The dipole approximation [30] was shown
to be sufficient to model particle-particle interactions up
to rather high coverage (50%) for spheres. Moreover, a
calculation up to quadrupolar order for truncated sphere
has demonstrated that the difference with dipolar order
was negligible [31] at this experimental coverage. After
renormalizing the polarizabilities in agreement with equa-
tions (3.2), the susceptibilities β and γ are calculated by
means of equations (2.16) and (2.17) and the reflectivity
from equations (2.20) and (2.21).

In the computational process of model SDR-spectra
(for M = 16), both the density ρ and the apparent island
radius, Rapp

‖ , parallel to the substrate were kept constant
at the experimental values (Tab. 1). The type of array
(square, hexagonal or random) being unimportant at this
coverage [30,31], a square array of clusters was used. A
finite size correction in the dielectric constant was applied:

1
τ

=
1
τB

+
vF

R′
(3.4)

withR′ being half of the smallest dimension of the physical
particle (medium 3). A χ2-factor defined by:

χ2 =
1
N

N∑
i=1

[(
∆R

R

)
the

(Ei)−
(
∆R

R

)
exp

(Ei)
]2

(3.5)

was used to determine the best theoretical parameters
that fit the experimental DRS-spectrum. The compari-
son between the experimental spectrum (open circles) and
the fits with spherical and spheroidal models are shown in
Figure 10. In the spherical model 1, all parameters are
allowed to vary [15]. The spherical model 2 as well as the
spheroidal model consist in finding the best truncation
at fixed density ρ and apparent radius Rapp. The best
χ2-factor with the experimental parameters is achieved
with the spheroidal model corresponding to the parame-
ters R⊥ = 4.8 nm and tr = 0.27 (sr = 2.7) where the
remaining fixed parameters are defined in Table 1. The
truncated spheroidal model clearly brings about a new
degree of freedom (R⊥) in fitting the model to the ex-
perimental spectra. In this particular case, it allows to
explore aspect ratios sr > 2 which can hardly be analyzed
by means of the spherical model [15].

3.2 Aspect ratio of aluminium and titanium particles
on an alumina substrate

Silver particles are a test bed for optical measurements.
In this metal, the plasma energy is much reduced with
respect to the free-electron prediction ωp = 9.2 eV by
the presence of a full d-band at 4–6 eV below the top
of the hybridized s-p valence band. It amounts to ω∗p =
ωp/

√
Re(εd) = 3.8 eV, where Re(εd) is the real part of

the contribution of the d band to the dielectric function of
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Fig. 11. SDR spectra collected during the deposition of alu-
minium on α-Al2O3(0001) at 625 K. The average thickness is
shown on each spectrum.

silver. Therefore, because the interactions with surround-
ing media tend to red-shift the plasma resonances below
that value, the Mie absorption lines of silver mostly show
up well inside the UV-visible range, which is the most ac-
cessible with the laboratory means. In addition, due to
the fact that the interband sp-d transition threshold lies
high enough (3.88 eV) to moderately damp the plasma
oscillations, these resonances are sharp and intense. How-
ever, the above model can also be used in the case of (i)
metals having resonances at energies much higher than
those of silver and (ii) metals in which interband transi-
tions broaden the resonances, as it is shown below in the
case of aluminium and titanium depositions on alumina
substrates.

Aluminium behaves mostly as a Drude metal, with a
Mie resonance expected at 9 eV and 6 eV for a sphere
in vacuum or supported on an alumina substrate, respec-
tively. SDR spectra recorded during the deposition of alu-
minium on α-Al2O3(0001) held at 625 K are shown in
Figure 11. A feature appears around 5 eV for an aver-
age thickness of 0.2 nm. It then shifts progressively to-
wards lower energies. The absence of signal at the very
beginning of the deposition is associated with the fact
that, at that stage, the aluminium is not in a metallic
form, a question that will be studied in more details in
a forthcoming paper. Qualitatively, the observation of a
Mie absorption band in the spectral range of the deu-
terium lamp, i.e. well below the resonance energy of a
supported sphere (6 eV), indicates that aluminium clus-
ters have high aspect ratios. Nevertheless, the existence of
a band in the SDR spectrum discard the formation of a
continuous layer which would instead result in a continu-
ous increase in the reflected intensity toward the infrared
region. In the same way, even at low coverages, the appear-
ance of a resonance for an average thickness of aluminium
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Fig. 12. Model SDR spectra calculated for aluminium clusters
on alumina for different values of the aspect ratio which appear
in figure. Clusters, which are modelled by hemispheroids (tr =
0 and M = 16) forms an hexagonal array whose parameter
is 20 nm. The average thickness of aluminium is 2 nm. Also
shown is the spectrum corresponding to a continuous thin film.

of 0.2 nm is indicative of the formation of clusters (in or-
der to form a dipole when excited by the electromagnetic
field of the light [32]). This again corresponds to a three-
dimensional (3D) growth mode. To put this in a more
quantitative form, model spectra were calculated with the
above formalism for hemispheroidal clusters of various as-
pect ratios, for an average thickness of 2 nm of aluminium
(Fig. 12). By comparing model and experiment, it appears
that the value of the aspect ratio which best fits the ex-
periment is close to 8. Therefore, the suggestion that alu-
minium deposited on alumina forms flat-top 3D clusters
is fully supported by the model spectra. It is worth men-
tioning that experimental spectra are much broader than
model spectra. This might obviously arise from some scat-
tering in the aspect ratios of the supported aluminium
clusters. However, experimental lines also show very vis-
ible extra features which are reminiscent of those which
show up when the size of the clusters becomes not negligi-
ble with respect to the wavelength of the incident light or,
in other words, when the optical response no longer obey
the quasi-static limit [1].

SDR spectra collected during the deposition of tita-
nium on α-Al2O3(0001) at 300 K are shown in Figure 13.
Titanium being an early transition metal, its plasma res-
onance is strongly damped by interband transitions, in
particular around 2 eV and 4 eV [33]. Consequently, the
resulting reflectivity spectra show broad features peak-
ing slightly below 3 eV (Fig. 13). As in the case of alu-
minium deposition, the absence of optical response up to
0.4–0.5 nm is associated with the oxidation of the very first
layer of titanium deposited on the alumina substrate [34].
Calculated spectra have been derived from both the trun-
cated sphere model [15] and the above-mentioned trun-
cated spheroidal model, for aspect ratios up to two and
higher than two, respectively (Fig. 14). The experimental

Fig. 13. SDR spectra collected during the deposition of ti-
tanium on α-Al2O3(0001) at 300 K. The average thickness is
shown on each spectrum.

spectra clearly differ from models obtained by assuming
a two-dimensional growth which should correspond to the
case of a perfect wetting. Instead, the models which best
agree with experiment are those which are derived for as-
pect ratio values ranging between 4 and 8. These obser-
vations meet the high energy electron diffraction results
of Dehm et al. [35], and Suzuki et al. [36]. The diffrac-
tion patterns recorded by these authors show lines which
indicate a trend toward two-dimensional growth mode.

Both aluminium and titanium films deposited on α-
Al2O3(0001) substrates behave in a quite similar manner.
They both grow in a Volmer-Weber mode. However, al-
though they form 3D clusters, these cluster show very
high aspect ratios. This is consistent with experiments
by atomic force microscopy on α-Al2O3(0001) which evi-
denced large flat-top clusters and a rather uniform cover-
age for aluminium and titanium depositions, respectively,
attributing in particular these growth modes to a chemical
interaction at the metal/alumina interface [34].

4 Conclusion

An approach to evaluate the optical properties of sup-
ported particles in the quasi-static limit has been intro-
duced by modelling particles with truncated spheroids.
The island polarizabilities are evaluated by a multipo-
lar expansion of the potential in spheroidal coordinates.
This particle shape offers the opportunity to describe a
much wider range of island morphologies than the previ-
ously published models of truncated spheres or supported
spheroids. In addition, the computational limit for the
description of the aspect ratio of particles by the trun-
cated sphere model is by-passed by the truncated spheroid
model.

By using the present approach, the aspect ratio
is demonstrated to tremendously influence the opti-
cal response of particles. Growths of Ag/MgO(100),
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thickness being 2 nm; the truncated sphere model (dotted line) is used for aspect ratios lower than two and the truncated
spheroid model (continuous line) for aspect ratios higher than two; the optical response of the continuous thin film is also given.

Al/Al2O3(0001) and Ti/Al2O3(0001) thin films are ex-
amined by Surface Differential Reflectance (SDR) and
model spectra are calculated. Although three-dimensional
growth mode are observed for all systems, aluminium and
titanium deposited on alumina are shown to form parti-
cles with very high aspect ratios. These cases illustrate
the capability of the present model to deal with the op-
tical response of particles of various metals with different
shapes.

Appendix A: The spheroidal coordinate system

The definition of the spheroidal coordinate system (ξ, η, φ)
is different for a prolate and an oblate spheroid [19]. In
the case of an oblate spheroid (Fig. 1), the long (l) and
short (s) axis parallel and normal to the surface of the
substrate are Rl = 2a

√
ξ2
0 + 1 and Rs = 2aξ0, respec-

tively. Furthermore, the quantity a denotes the radius
of the ring of foci and ξ = ξ0 defines the surface of the
spheroid. Cartesian coordinates are related to spheroidal
coordinates by [19]:

ξ=

[(
ρ1+ρ2

2a

)2

− 1

]1/2

, η=±
[

1−
(
ρ1−ρ2

2a

)2
]1/2

,

φ = arctan
(y
x

)
(A1)

with

ρ1 = [z2 + (x+ a cos φ)2 + (y + a sin φ)2]1/2,

ρ2 = [z2 + (x− a cosφ)2 + (y − a sin φ)2]1/2 (A2)

where ρ1 and ρ2 are the distances from the point (x, y, z)
to the intersections of the ring of foci 2a with the plane

through (x, y, z) and the z-axis. The angle φ defines the
orientation of this plane with respect to the xz-plane. The
positive sign in η should be used if z ≥ 0 and the negative
sign if z < 0. The range in which coordinates are defined
are: 0 ≤ ξ ≤ ∞, −1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π. The inverse
transformation is:

x = a[(ξ2 + 1)(1− η2)]1/2 cosφ,

y = a[(ξ2 + 1)(1− η2)]1/2 sinφ, z = aξη. (A3)

In the prolate case (Fig. 1), the two foci lie on the
revolution axis z perpendicular to the surface. The elon-
gation parameter ξ0 (1 ≤ ξ0 ≤ ∞) is defined through the
long axis perpendicular to the surface Rl = 2aξ0 and the
short axis parallel to the surface Rs = 2a

√
ξ2
0 − 1. The

spheroidal coordinates are given by:

ξ =
ρ1 + ρ2

2a
, η =

ρ1 − ρ2

2a
, φ = arctan

(y
x

)
(A4)

with

ρ1 =[(z + a)2+x2+y2]1/2, ρ2 =[(z − a)2+x2+y2]1/2,
(A5)

where ρ1 and ρ2 are the distances of the point (x, y, z) to
the two foci and φ describes the orientation of the plane
through (x, y, z) and the z-axis with respect to the xz-
plane. In this case, the coordinates are defined within the
following ranges: 1 ≤ ξ < ∞, −1 ≤ η ≤ 1, 0 ≤ φ < 2π,
and the inverse transformation is:

x = a[(ξ2 − 1)(1− η2)]1/2 cosφ,

y = a[(ξ2 − 1)(1− η2)]1/2 sinφ,
z = aξη. (A6)

For both the oblate and prolate cases, using ξ1 = d/a,
the boundaries between the various regions are defined by
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the flowing relations :

regions 1 and 3 : ξ = ξ0, −1 ≤ η ≤ ±ξ1
ξ0
, (A7a)

regions 2 and 4 : ξ = ξ0, ±ξ1
ξ0
≤ η ≤ 1, (A7b)

regions 3 and 4 : η = ±ξ1
ξ
, ξ1(1) ≤ ξ ≤ ξ0

for an oblate (prolate) particle, (A7c)

regions 1 and 2 : η = ±ξ1
ξ
, ξ0 ≤ ξ <∞. (A7d)

The positive sign should be used in the case of an island
and the negative sign in the case of a cap, to keep the ξ1
parameter positive. The spheroidal coordinates of a point
P = (x, y, z) with respect to O′ are found by noting that
x
′2 + y

′2 = x2 + y2 and z′ = z ∓ 2d, so that:

ξ′(ξ, η) =
1√
2
ξ

{
1 + 4

ξ2
1

ξ2
− 4r

ξ1
ξ
η − sη

2

ξ2

+

[(
1 + 4

ξ2
1

ξ2
− 4r

ξ1
ξ
η − sη

2

ξ2

)2

+ 4s
1
ξ2

(
2r
ξ1
ξ
− η
)2
]1/2


1/2

η′(ξ, η) = 2
ξ′(ξ, η)
ξ

(
η − 2r

ξ1
ξ

)
φ′ = φ (A8a)

where r = 1,−1 in the island and cap cases, respectively,
and s = 1,−1 in the oblate and prolate case, respectively.

Appendix B: The spheroidal multipolar
expansion

The multipolar spheroidal functions, which describe the
“radial” part of the solution to Laplace equation (2.3) are
expressed in the following way, for oblate (hat) and prolate
(tilde) coordinates:

X̂m
` (ξ, a) = im−`

(`−m)!
(2`+ 1)!!

a`Pm` (iξ),

Ẑm` (ξ, a) = i`+1 (2`+ 1)!!
(`+m)!

a−`−1Qm` (iξ), (B1a)

X̃m
` (ξ, a) = im

(`−m)!
(2`− 1)!!

a`Pm` (ξ),

Z̃m` (ξ, a) =
(2`+ 1)!!
(`+m)!

a−`−1Qm` (ξ). (B1b)

Here (n)!! ≡ 1 × 3 × ... × (n − 2) × n for n odd and
(n)!! ≡ 2 × ×... × (n − 2) × n for n even, and by defi-
nition (−1)!! ≡ 1. The associated Legendre functions of
degree ` and order m of the first (Pm` ) and second kind

(Qm` ) have been introduced [19]. They are defined through
the classical formulae [19] (m ≥ 0):

Pm` (iξ) = (−1)mi`+m
(1 + ξ2)m/2

2``!

(
d
dξ

)`+m
(1 + ξ2)`,

(B2)

Qm` (iξ) = (−1)m+1i`+1 (1 + ξ2)m/2

2``!

(
d
dξ

)m
×
{

2
(

d
dξ

)` [
arctan(1/ξ)(1 + ξ2)`

]
− arctan(1/ξ)

(
d
dξ

)`
(1 + ξ2)`

}
. (B3)

for the oblate case along the imaginary axis with 0 ≤ ξ ≤
∞ and by:

Pm` (ξ) = (−i)m
(ξ2 − 1)m/2

2``!

(
d
dξ

)`+m
(ξ2 − 1)`, (B4)

Qm` (ξ) = (−1)m
(ξ2 − 1)m/2

2``!

(
d
dξ

)m
×
{(

d
dξ

)` [
ln
(
ξ + 1
ξ − 1

)
(ξ2 − 1)`

]

−1
2

ln
(
ξ + 1
ξ − 1

)(
d
dξ

)`
(ξ2 − 1)`

}
(B5)

for the prolate case along the real axis with 1 ≤ ξ ≤ ∞.
For m < 0 one should use the definitions:

Pm` (x) = (−1)m
(`+m)!
(`−m)!

P−m` (x),

Qm` (ξ) =
(`+m)!
(`−m)!

Q−m` (x) (B6)

with x = iξ, ξ, respectively, for the oblate and prolate
case and with the appropriate limit for ξ. The associated
Legendre functions of first or second kind and their deriva-
tives for real or imaginary arguments Pm` (z) and Qm` (z)
(Eqs. (B2)–(B5)) are computed with the stable recurrence
relations [19,37]:

Fm` (z) =
1

`−m
[
(2`− 1)zFm`−1 − (`− 1 +m)Fm`−2

]
,

(B7a)
dFm`
dz

(z) =
1

z2 − 1
[
`zFm` − (`+m)Fm`−1

]
(B7b)

where Fm` stands for either Pm` or Qm` and z = x or ix.
The angular part of the Laplace equation (2.3) is included
in the spherical harmonics Y m` (arccosη, φ):

Ym` (arccosη, φ) =
[

2`+ 1
4π

(`−m)!
(`+m)!

]1/2

(−1)mPm` (η)eimφ

(B8)
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Cm``1 = u21

�
2ε1

ε1 + ε2

�
ξ`1+1
0 Zm`1 (ξ0)δ``1 − v

�
ε1 − ε2
ε1 + ε2

�
ζm``1ξ

`1+1
0 [Zm`1 (ξ0)Qm``1(tr)− (−1)`1+mV m``1(ξ0, tr)] (C1a)

Dm
``1 = −u43

�
2ε3

ε3 + ε4

�
ξ−`10 Xm

`1 (ξ0)δ``1 + v

�
ε3 − ε4
ε3 + ε4

�
ζm``1ξ

−`1
0 [Xm

`1 (ξ0)Qm``1(tr)− (−1)`1+mWm
``1(ξ0, tr)] (C1b)

Fm``1 =

�
2ε1ε2
ε1 + ε2

�
ξ`1+2
0

dZm`1 (ξ0)

dξ0
δ``1 + vu21ε1

�
ε1 − ε2
ε1 + ε2

�
ζm``1ξ

`1+2
0

�
dZm`1 (ξ0)

dξ0
Qm``1(tr) + (−1)`1+m ∂V

m
``1

(ξ0, tr)

∂ξ0

�
(C1c)

Gm``1 = −
�

2ε3ε4
ε3 + ε4

�
ξ−`1+1
0

dXm
`1

(ξ0)

dξ0
δ``1 − vu43ε3

�
ε3 − ε4
ε3 + ε4

�
ξ−`1+1
0 ζm``1

�
dXm

`1
(ξ0)

dξ0
Qm``1(tr) + (−1)`1+m ∂W

m
``1

(ξ0, tr)

∂ξ0

�
(C1d)

where the Legendre function for real argument−1 ≤ η ≤ 1
is given by:

Pm` (z) =
(1− z2)m/2

2``!

(
d
dz

)`+m
(z2 − 1)`. (B9)

Again for m < 0, one uses the formula (B6). Of course,
the oblate and prolate spheroidal functions have the same
asymptotic behaviour for ξ →∞, i.e.

Xm
` (ξ, a) ' r`, (B10a)

Zm` (ξ, a) ' r−`−1 (B10b)

where r stands for the distance from the centre of the
ellipsoid. These limits (equivalent to the spherical case)
are useful to determine the polarizability of the particle.

Appendix C: The matrix elements

C.1 Matrix system

In this appendix, the matrix elements of the linear sys-
tem equations (2.12) are given. In order to allow for the
treatment of both the oblate and prolate cases simulta-
neously, the generic functions Xm

` and Zm` are used. In
explicit calculations they should be substituted for oblate
spheroids by X̃m

` and Z̃m` and by X̂m
` and Ẑm` for the pro-

late case. The matrix elements of the linear system defined
by equations (2.12) can then be written as:

See equations (C1a, C1b, C1c, C1d) above

with, for oblate islands: u21 = u43 = v = 1 and for oblate
caps: u21 = ε2/ε1, u43 = ε4/ε3 and v = (−1)`+`1+1. Here
the following abbreviations are introduced:

Xm
` (ξ) = Xm

` (ξ, a)a−`, Zm` (ξ) = Zm` (ξ, a)a`+1,

ζmll′ =
1
2

√
(2l + 1) (2l′ + 1) (l −m)! (l′ −m)!

(l +m)! (l′ +m)!
· (C2)

The functions Qm``1(tr), Vm``1(ξ, tr), Wm
``1

(ξ, tr) that appear
in the coefficients of the linear system are:

Qm``1(tr) =
∫ tr

−1

Pm` (η)Pm`1 (η)dη (C3a)

V m``1(ξ, tr) =
∫ tr

−1

Pm` (η)Pm`1 (η′)Zm`1 (ξ′)dη (C3b)

Wm
``1(ξ, tr) =

∫ tr

−1

Pm` (η)Pm`1 (η′)Xm
`1 (ξ′)dη. (C3c)

In the spherical limit, this formulae reduce to the trun-
cated sphere model which has been analyzed previ-
ously [15].

The right hand side of the linear system, i.e. the source
field, is expressed by (with v = 1 and v = (−1)`+2 for the
oblate island and cap, respectively):

H0
` =

√
4π/3E0 cos θ0

{
u21

ε1
ε2
ξ−1
0 X0

1 (ξ0)δ`1+v
(
ε1−ε2
ε2

)
×
[√

3trζ0
`0Q

0
`0(tr)−ξ−1

0 X0
1 (ξ0)ζ0

`1Q
0
`1(tr)

]}
(C4a)

J0
` =

√
4π/3E0 cos θ0ε1

dX0
1 (ξ0)

dξ0
δ`1 (C4b)

H1
` = −

√
2π/3E0 sin θ0ξ

−1
0 X1

1 (ξ0)δ`1 (C4c)

J1
` = −

√
2π/3E0 sin θ0

dX1
1 (ξ0)

dξ0
×[u12ε2δ`1 + v(ε1 − ε2)ζ1

`1Q
1
`1(tr)]. (C4d)

The integrals, equations (C3), which appear in the lin-
ear system are computed by the Quadpack integrator
of Piessens [38,39]. It allows the use of Gauss-Kronrod
quadrature with a globally adaptive integrator to reach
the desired accuracy. It handles well the strong oscillations
of the integrand brought by the Legendre functions of high
degree. The linear system, equations (2.12), is solved by
the LU-decomposition scheme of Lapack [40,39]. For the
ill-conditioned matrix system, a multiple precision algo-
rithm based on the routines of Smith’s ZM package [39,41]
has been set-up. All the remaining calculations were per-
formed in double precision.

C.2 The potential constant term ψ0

Sometimes, it is useful to have a complete map of the
potential around the island to see how vibrates the charge
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on the cluster. In the expansion of the potentials, only
one constant remains unknown namely ψ0. The equation
` = 0 of the linear system allows to determine this quantity
through H0

0 in terms of the others multipole coefficients.
The result is:

ψ0 = R⊥

(
ε1
ε2
− 1
){

1√
3
ζ0
01Q

0
01 (tr)

+tr[p− ζ0
00Q

0
00 (tr)]

}
E0 cos θ0

− 1
2
√
π

∞∑
`=1

A`0R
−`−1
⊥ q

(
ε1 − ε2
ε1 + ε2

)
ζ0
0`ξ

`+1
0

×[Z0
` (ξ0)Q0

0` (tr)− (−1)`V 0
0` (ξ0, tr)]

+
1

2
√
π

∞∑
`=1

B`0R
`
⊥q

(
ε3 − ε4
ε3 + ε4

)
ζ0
0`ξ
−`
0

×[X0
` (ξ0)Q0

0` (tr)− (−1)`W 0
0` (ξ0, tr)] (C5)

with p = q = 1 for an island and p = 0, q = (−1)`+1 for a
cap. Notice that one must use either X̂, Ẑ, V̂ , Ŵ functions
with R⊥ = Rs or X̃, Z̃, Ṽ , W̃ with R⊥ = Rl for oblate and
prolate particles, respectively.
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