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We consider inverse statistics in turbulence and financial data. By inverse statistics, also
sometimes called exit time statistics, we “turn” the variables around such that the fluc-
tuating variable becomes the fixed variable, while the fixed variable becomes fluctuating.
In that sense we can probe distinct regimes of the data sets. In the case of turbulence,
we obtain a new set of (multi)-scaling exponents which monitor the dissipation regime.
In the case of economics, we obtain a distribution of waiting times needed to achieve a
predefined level of return. Such a distribution typically goes through a maximum at a
time called the optimal investment horizon τ∗

ρ , since this defines the most likely waiting
time for obtaining a given return ρ. By considering equal positive and negative levels
of return, we report on a quantitative gain-loss asymmetry most pronounced for short
horizons.

1. Inverse Statistics of Turbulence Data

The understanding of intermittency effects in fully developed turbulence and the

associated multiscaling spectrum of exponents, is probably the most fundamental

open problem in turbulence research.1 The traditional way of describing this is, as

already suggested by Kolmogorov,2 to consider the velocity difference between two

points of the turbulent state, raise this difference to the moment q, and then study

the variation with respect to the distance between the two points, also called struc-

ture functions where the corresponding scaling exponents are called structure func-

tion exponents.1 It has become clear both from many experimental,3–5 numerical6

and theoretical considerations,7 that this set of exponents is very non-trivial, defin-

ing an infinity of independent exponents leading to at “curved” variation of the

scaling exponent with the moment. We propose to “invert” the structure func-

tion equation, and consider instead averaged moments of the distance between two

points, given a velocity difference between those points. This leads to an alternative
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way of describing and analyzing a turbulent velocity field and one obtains a new

set of exponents.

Let us introduce the well known structure functions for the velocity field u(x, t)

of a fully developed turbulent state, obtained either from the Navier–Stokes equa-

tions or from measurements

〈∆ux(`)q〉 ∼ `ζq (1)

where the difference is defined as

∆ux(`) = u(x + r) − u(x) , ` = |r| . (2)

The average in Eq. (1) is over space (and maybe time). We have assumed

full isotropy of the velocity field. The set of exponents ζq forms a multiscaling

spectrum.7

Alternatively, we now consider the following quantities, which is denoted the

inverted structure functions8,9

〈`(∆ux)q〉 ∼ |∆ux|δq (3)

where the difference ∆ux is again defined as in Eq. (2) and `(∆ux) is understood as

the minimal distance in r, measured from x, for which the velocity difference exceeds

the value ∆ux. In other words, we fix a certain set of values of the velocity difference

∆ux. Starting out from the point x, we monitor the distances `(∆ux) where the

velocity differences are equal to the prescribed values. Performing an average over

space (and maybe time) the inverted structure functions Eq. (3) are obtained.

By assuming self-similarity of the small scale velocity differences, one expects a

trivial set of exponents δq where the variation with the moment q is determined by

one exponent. Say, in the standard Kolmogorov theory we know that the velocity

differences behave as ∆u ∼ `1/3, forgetting for a moment the averaging brackets.

Inverting this equations, we of course obtain ` ∼ ∆u3 and would expect a trivial

relation δq = 3q. In case of an intermittent and singular velocity field without self-

similarity of the small scale velocity differences, this would be completely different

and the averaging brackets will be crucial, relating to the statistics of the varying

quantity that is averaged. We will show, based on shell model calculations, that

in turbulence there exists a new spectrum δq . Let us for a moment reflect on the

case q = 1. Using the standard value ζ1 ∼ 0.38 − 0.40, the simple inversion gives

δ1 ∼ 2.5. Our calculations indicate that this value is not obtained in a turbulent

model field. Instead we find a value δ1 ∼ 2.0− 2.1.

To apply this scheme we employ the Gledzer–Ohkitani–Yamada, GOY, shell

model10,11 which has be intensively studied over the last years.12,13 This model

is a rough approximation to the Navier–Stokes equations and is formulated on a

discrete set of k-values, kn = rn. We use the standard value r = 2. In term of a

complex Fourier mode, un, of the velocity field the model reads
(

d

dt
+ νk2

n

)

un = ikn

(

anu∗

n+1u
∗

n+2 +
bn
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∗
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+ fδn,4 , (4)
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with boundary conditions b1 = bN = c1 = c2 = aN−1 = aN = 0. f is an external,

constant forcing, here on the forth mode. In order to construct a field in real space

we apply a trick proposed by Vulpiani, to Fourier transform the shell amplitude to

real space, see Ref. 13.

Equipped with a real space time dependent velocity field we start out with a

test of this field by computing the standard velocity structure functions, given by

Eq. (1). Indeed, the field exhibits nice scaling invariance as shown in Fig. 1a, where

the first order velocity structure function is presented. We have extracted all the

exponents with moment up to q = 10 and the corresponding results are shown in

Fig. 2a. Having checked this we proceed to extract the inverted structure functions,

Eq. (3). As the starting point we set x = 0 and vary again along the coordinate

axes. For a fixed value of ∆u0, ` is increased until for the first time the velocity

difference exceeds this fixed value: this defines `(∆0u). Then ∆u0 is increased by

one more step and so on. Figure 1b presents the scaling of the first order inverse

structure function and the corresponding exponent δ1 is estimated to a rather good

precision, δ1 = 2.02 ± 0.05, with a scaling regime of 2 decades on the ∆0u axes

and 4-5 decades on the ` axes. Note, the cut-off at low values of ∆0u. This cut-off

is related, both for values of velocity and distance, to the dissipative cut-off of the

standard structure function, see Fig. 1a. The cut-off at large values of ∆0u is related

to the velocity at the forcing scale. Figure 2b shows the multiscaling spectrum of

δq .
8 We have included a straight line through the point (1, δ1) in order to show the

curved nature of the spectrum.

We have introduced the inverted structure functions defined for a velocity field

in fully developed turbulence and the corresponding scaling exponents. These in-

verted structure functions (or exit time statistics) have been applied to study the

intermediate dissipation regime in the very interesting paper by Biferale, Vulpi-

ani and coworkers.9 It has also been found for the forward enstrophy spectrum

of two-dimensional turbulence, that even though the standard structure function

exponents for the corresponding smooth velocity field are trivial (without multi-

scaling), the inverted structure functions may exhibit multiscaling.14 The suggested

method of inverse statistics can thus be a way to extract non-trivial information

from seemingly simple data sets.

2. Inverse Statistiscs of Financial Data

Financial time series have been recorded and studied for many decades. With the

appearance of the computer, this development has accelerated, and today large

amounts of financial data are recorded daily. These data are used in the financial

industry for statistical studies and for benchmarking. In particular, they can be

used to measure the performance of a financial instrument. Traditionally this has

been done by studying the distribution of returns15–17 calculated over a fixed time

period ∆t. Such distributions measure how much an initial investment, made at

time t, has gained or lost by the time t + ∆t. Numerous empirical studies have
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Fig. 1. a): The velocity structure function of order one. The line has a slope of 0.39. b): The
inverse structure function of order one. The line has a slope of 2.02. Note the inner cut-off related
to the dissipative cut-off in a), and the outer cut-off given by velocity of the forcing scale.8

demonstrated that for not too large ∆t’s, say from a few seconds to weeks, the

corresponding (return) distributions are characterized by so-called fat tails.15–18

This is to say that the probability for large price changes are much larger then

what is to be expected from Gaussian statistics, an assumption typically made

in theoretical and mathematical finance.15–17 However, as ∆t is increased even

further, the distribution of returns gradually converge to the Gaussian distribution.

In the context of economics, it was recently suggested,19 partly inspired by

earlier work in turbulence,20 to alternatively study the distribution of waiting times

needed to reach a fixed level of return. These waiting times, for reasons to be clarified
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Fig. 2. a): The exponents ζq for the velocity structure functions, with selected error bars. The
line corresponds to Kolmogorov theory. b): The exponents δq for the inverted structure functions.
The line is adjusted to pass through the value of the first order exponent (1, δ1).8

in the discussion below, were termed investment horizons, and the corresponding

distributions the investment horizon distributions. Furthermore, it was shown for

positive levels of return, that the distributions of investment horizons had a well-

defined maximum followed by a power-law tail scaling likea

p(t) ∼ t−3/2 .

The maximum of this distribution signifies the optimal investment horizon for an

investor aiming for a given return.

In order to present the method, let us start by letting S(t) denote the asset

price. Then the logarithmic return at time t, calculated over a time interval ∆t, is

aNotice that this scaling behavior implies that the first (average investment horizon), and higher,
moments of this distribution do not exist.
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defined as15–17

r∆t(t) = s(t + ∆t) − s(t) , (5)

where s(t) = ln S(t). Hence the log-return is nothing but the log-price change of the

asset. We consider a situation where an investor is aiming for a given return level

denoted ρ, which may be both positive (being “long” on the market) or negative

(being “short” on the market). If the investment is made at time t, then the invest-

ment horizon is defined as the time τρ(t) = ∆t so that the inequality r∆t(t) ≥ ρ

when ρ ≥ 0, or r∆t(t) ≤ ρ when ρ < 0, is satisfied for the first time. The investment

horizon distribution, p (τρ), is then the distribution of investment horizons τρ (see

Fig. 4) averaged over the data.

A classic assumption made in theoretical finance is that the asset prices follow

a geometrical Brownian motion, i.e. s(t) = ln S(t) is just a Brownian motion. For

a Brownian motion, the investment horizon (first passage time) problem is known

analytically.21,22 It can be shown that the investment horizon distribution is given

by the Gamma-distribution:

p(t) = |a| exp(−a2/t)/(
√

πt3/2) ,

where a ∝ ρ. Note, that in the limit of large (waiting) times, one recovers the well-

known first return probability p(t) ∼ t−3/2. As the empirical logarithmic stock price

process is known not to be Brownian,15–18 we instead suggest to use a generalized

(shifted) Gamma distribution of the form:

p(t) =
ν

Γ(α
ν )

|β|2α

(t + t0)α+1
exp

{

−
(

β2

t + t0

)ν}

, (6)

as a basis for fitting the empirical investment horizon distributions. It will be seen

below, that this form parametrize the empirically data excellently. Note, that the

distribution, Eq. (6), reduces to the Gamma-distribution (given above) in the limit

of α = 1/2, β = a, ν = 1, and t0 = 0. Furthermore, the maximum of this distribu-

tion, i.e. the optimal investment horizon, is located at

τ∗

ρ = β2(ν/(α + 1))1/ν − t0

for a given level of return ρ. If the underlying asset price process is geometric

Brownian, then one would have τ∗

ρ ∼ ρ2 for all values of ρ. We will later see that

this is far from what is observed empirically.

It is well-known that many historic financial time series posses an (often close

to exponential) positive drift over long time scales. If such a drift is present in

the analyzed time series, one can obviously not compare directly the histograms

for positive and negative levels of return. Since we in this paper mainly will be

interested in making such a comparison, one has to be able to reduce the effect of

the drift significantly. One possibility for detrending the data is to use deflated asset

prices. However, in the present study we have chosen an alternative strategy for drift

removal based on the use of wavelets,23 which has the advantages of being non-

parametric and does not rest on any economic theory whatsoever. This technique
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has been described in detail elsewhere,19 and will therefore not be repeated here. It

suffices to say that this wavelet technique enables a separation of the original time

series into a short scale (detrended) time series s̃(t) and a drift term d(t) so that

s(t) = s̃(t)+ d(t). In Fig. 3, we see the effect of this procedure on the whole history

of one of the major US economical indicators, namely the Dow Jones Industrial

Average (DJIA). In this particular example, which is the one used in the analysis,

the separation is set to 1000 trading days, corresponding to roughly 4 calendar

years.

Based on s̃(t) for the DJIA, the empirical investment horizon distributions,

p(τρ), can easily be calculated for various levels of return ρ. In Fig. 4 these em-

pirical distributions for ρ = 0.05 (open circles) and ρ = −0.05 (open squares) are

presented. The solid lines in this figure are the maximum likelihood fits of the em-

pirical data to the functional form (6). It is indeed observed that the generalized

Gamma distribution, Eq. (6), fits the empirical data well for both positive and

negative levels of return. It has been checked separately that the quality of the

fits are of comparable quality for other values of ρ. However, as |ρ| becomes large,

the empirical distributions are hampered by low statistics that makes the fitting

procedure more difficult.

The most interesting feature that can be observed from Fig. 4, is the apparent

asymmetry between the empirical investment horizon distributions for ρ = ±0.05.

In particular, for ρ = −0.05 there is a higher probability, as compared to what

is observed for ρ = 0.05, to find short investment horizons, or in other words,

draw-downs are faster then draw-ups. Consequently, one might say that there exists

a gain-loss asymmetry! This result is in agreement with the drawdown/drawup
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Fig. 3. The historic daily logarithmic closure prices, S(t), of the Dow Jones Industrial Aver-
age (DJIA) over the period from May 26, 1896 to June 5, 2001. The upper curly curve is the raw
logarithmic DJIA price s(t) = ln S(t), while the smooth curve represents the drift on a scale larger

then 1000 trading days. The lower curly curve represents the wavelet filtered logarithmic DJIA
data, s̃(t), defining the fluctuations of s(t) around the drift.
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Fig. 4. The investment horizon distributions for the DJIA closing prices at a return level |ρ| =
0.05. The open symbols correspond to the empirical distributions, while the solid lines represents
the maximum likelihood fit of these distributions to the functional form given by Eq. (6). The
fitting parameters used to obtain these fits are for ρ = 0.05: α = 0.50, β = 4.5 days1/2 , ν = 2.4,
and t0 = 11.2 days; and for ρ = −0.05: α = 0.50, β = 5.0 days1/2, ν = 0.7, and t0 = 0.6 days.

analysis presented in Ref. 24. Similar results to those presented here have also been

obtained for SP500 and NASDAQ.

Figure 5 depicts the optimal investment horizon vs level of return. From this

figure it is observed that the asymmetry feature found for a return level of 5% is

not unique. For the smallest levels considered, |ρ| ∼ 10−3, no asymmetry can be

detected. However, as |ρ| is gradually increased, the asymmetry starts to emerge

at |ρ| ∼ 10−2. By further increasing the level of return, a state of saturation for

the asymmetry appears to be reached. In this state the asymmetry in the optimal

investment horizon for the DJIA is almost 200 trading days.

These findings in fact confirms the saying in the financial industry that it takes

time to drive up prices. From this analysis, one may add compared to driving them

down, a result that coincides with the common believe that the market reacts more

violently to negative information than to positive. To our knowledge, this is the

first time that such statements have been founded in a quantitative analysis.

We have considered inverse statistics in economics. It is argued that the natural

candidate for such statistics is what we call the investment horizon distribution.

Such a distribution, obtained from the historic data of a given market, indicates

the time span an investor historically has to wait in order to obtain a predefined level

of return. The distributions are parametrized excellently by a shifted generalized

Gamma distributions for which the first moment does not exist. The typical waiting

time, for a given level of return ρ, can therefore be characterized by e.g. the time

position of the maximum of the distribution, i.e. by the optimal investment horizon.

By studying the behaviour of this quantity for positive (gain) and negative (loss)

levels of return, a very interesting and pronounced gain-loss asymmetry emerges.
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Fig. 5. The optimal investment horizon τ∗

ρ for positive (open circles) and negative (open squares)
levels of return ±ρ. In the case where ρ < 0 one has used −ρ on the abscissa for reasons of
comparison. If a geometrical Brownian price process is assumed, one will have τ ∗

ρ ∼ ργ with γ = 2
for all values of ρ. Such a scaling behaviour is indicated by the lower dashed line in the graph.
Empirically one finds γ ' 1.8 (upper dashed line), only for large values of the return.

As we have seen, the inverse statistics provides a useful tool to extract new

information of time series in turbulence as well as finance. We believe the same

methods can be applied to a range of data from many other systems. In many such

cases new knowledge of the particular data set could be gained.
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