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Abstract
We study the scattering of electromagnetic waves from metallic self-affine
surfaces, and review earlier approximative results for the angular distribution
of the scattered light (the mean differential reflection coefficient).
Furthermore, experimental scattering data for industrial cold-rolled
aluminium surfaces that show self-affine scaling invariance are presented.
Comparison between these experimental data and approximative analytic
and rigorous numerical simulation results shows very good agreement over
the dominating angular interval where most of the scattered power is
distributed. The excellent quality of this agreement suggests that light
scattering can be used as a cheap, robust and versatile (inverse scattering)
tool for characterizing self-affine metallic surfaces, i.e. used to estimate
roughness exponents as well as topothesies and the related slope parameters.
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1. Introduction

Wave scattering from self-affine fractal surfaces has been stud-
ied intensively for the last 20 years. In the mid-1980s theoreti-
cal results were given by Jakeman et al [1, 2] and Sinha et al [3]
for the angular distribution of the scattered light. These results
were later extended and applied to the experimental character-
ization of thin-film growth. Consult, for example, the recent
review by Zhao et al [4] for details. More recently, direct
rigorous numerical calculations have been performed for elec-
tromagnetic wave scattering from one-dimensional self-affine
surfaces [5–8] and the results of such calculations have suc-
cessfully been compared with analytic expressions that can be
derived from a Kirchhoff approximation [9, 10]. However,
none of these studies compared analytic and simulation results
with experimentally obtained scattering data. This will there-
fore be the main goal of the present paper.

In the following we first recall the definition of self-affine
surfaces and the parameters which allow us to characterize
them. We then give the expression for the angular dependence
of the scattered light in the Kirchhoff approximation in the
case of s polarization of the incident light and focus on the
incoherent scattering peak. We show evidence that this peak
is slightly shifted away from the specular angular position.
We finally show experimental results obtained for cold-rolled
aluminium surfaces and compare them with both the Kirchhoff
solution and rigorous numerical simulation results.

2. Characterization of rough self-affine surfaces

A large number of real surfaces can be described through a
fractal formalism. This is, for example, the case for fracture
surfaces [11] or deposition surfaces [12] to mention a few.
However, industrial processes may also lead to the formation
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of self-affine surfaces. To illustrate this, in figure 1 we show
an atomic force microscopy (AFM) image of a thin aluminium
plate produced by cold rolling. This result has been obtained by
Boehm and Plouraboué [13], who showed that such a surface
shows a self-affine scaling over three orders of magnitude
ranging in scale from 50 nm up to 50 µm.

Although widely used for more than 20 years, the
characterization of rough surfaces by scale-invariant, fractal or
self-affine tools sometimes suffers from ambiguous definitions.
This is especially the case for the concept of fractal dimension,
which is commonly used in practice although poorly defined in
the case of surfaces. Below we summarize the main parameters
used to characterize a rough surface when a scaling-invariant
description is relevant.

Let us start by considering the statistical description of
surface roughness, that for simplicity is assumed to be planar
on average. A two-dimensional coordinate system is arranged
so that the x-axis coincides with the mean planar surface, and
the z-axis is directed upward into the (assumed) vacuum above
the metal surface. Furthermore, it will be assumed that the
height fluctuations can be quantified by a single-valued real
function z = h(x). The height statistics is described by the
height distribution function and the height–height correlation
function. In the case of short-range correlations, the roughness
can thus be characterized by two quantitative parameters—the
standard deviation of heights and the correlation length, i.e.
the lateral distance over which the correlation function drops
to 1/e of its initial value. Let us now turn our attention to
the case of scale invariance. From a mathematical point of
view the roughness is said to be scale invariant if it remains
statistically invariant under anisotropic transformations of the
form

�x → λ�x �z → λζ �z. (1)

Here, �z corresponds to the height difference between two
points separated by a (lateral) distance �x . The Hurst
exponent ζ (also known as the roughness exponent) is a
constant parameter that characterizes the invariance. Finally
the multiplicative factor λ can take on any real positive value.
Let P(�z,�x) denote the probability distribution of height
increment �z for a given horizontal separation �x . Hence,
the statistical scale invariance, given by equation (1), implies

P(�z,�x)d(�z) = P(λζ �z, λ�x)d(λζ �z) (2a)

which has the consequence that

P(�z,�x) = 1

�xζ
φ

(
�z

�xζ

)
(2b)

where φ is some continuous function.
This property has a simple and direct consequence: a

roughness measurement depends on the lateral extension over
which it is performed. For example the standard deviation
or root mean square (RMS) of the height differences, σ(�x),
depends on the distance, �x , according to

σ(�x) ∝ �xζ . (3)

Surfaces obeying this type of anisotropic scale invariance
are said to be self-affine and they are characterized by the
roughness (or Hurst) exponent ζ . However, the roughness

cannot be characterized only by this parameter. In particular,
this roughness exponent gives no information about the
amplitude of the height fluctuations. For any given spatial
separation, this amplitude can be very small or very large
independent of ζ . Hence, we need an additional parameter to
characterize the amplitude of these height fluctuations. The
definition of such a parameter is less simple than it could
appear at first glance and may be dependent on the physical
system studied. A simple geometrical choice is to specify
the typical roughness, σ(�0), obtained at a reference scale,
�0 (the wavelength for example), and we have directly from
equation (3)

σ(�x) = σ(�0)

(
�x

�0

)ζ

. (4)

Note once again that for the same roughness exponent, the
roughness measured over a given scale, �0, can be very
small—and then the surface appears to be planar and the
slopes are very small—or very large. The transition between
these two situations occurs at the specific lateral scale, �,
defined so that the slope over the distance � is unity, i.e.
σ(�) = �. This length, known as the topothesy, directly
gives an amplitude parameter and is of particular importance
when dealing with fractal properties of the surface. Although
widely used, the fractal dimension is not well defined for
a self-affine surface. The obvious reason is that the fractal
dimension characterizes primarily objects that are invariant
under isotropic scale transformations (self-similar objects). In
the case of self-affine surfaces one can easily show that a box
counting argument [12] leads to different results for the fractal
dimension, dF , depending on whether the box size, ε, is smaller
or larger than the topothesy, �. In particular, it can be shown
that the number of boxes of size ε, N (ε), needed to cover a
surface in d dimensions is

N (ε) ∝
{

εζ−d ε < �

ε1−d ε > �.
(5a)

Hence, since N (ε) ∝ ε−dF [12], it follows that the fractal
dimension becomes

dF =
{

d − ζ ε < �

d − 1 ε > �
(5b)

and therefore in general depends on scale.
Although geometrically well defined, the topothesy is not

always the most relevant amplitude parameter to use when
dealing with a given physical problem. In the following we
shall explore the scattering of an electromagnetic wave of
wavelength λ from a rough self-affine metallic surface. We
shall show that the scattering is directly controlled by the
typical slope measured over one wavelength.

To summarize, self-affine surfaces are thus characterized
by two parameters—the roughness or Hurst exponent, and an
amplitude parameter. So far, however, we have said nothing
about the range of validity of the self-affine scale invariance.
Obviously, the range of validity of this invariance cannot be
infinite in physical systems. We need to add two additional
parameters—the lower and the upper cut-offs for the scale-
invariant region, denoted by the length-scales ξ− and ξ+,
respectively. Macroscopic roughness estimators are directly
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Figure 1. A 512 × 512 pixels AFM image of a cold-rolled aluminium alloy sheet. Notice the pronounced anisotropy of the surface due to the
rolling process under which it was manufactured. The direction of the grooves is the rolling direction. After Plouraboué and Boehm [13].

controlled by these cut-offs. The global RMS roughness of
the surface, σ , depends on the upper cut-off while the global
RMS slope, s, depends on the lower cut-off according to

σ = σ(ξ+) = �1−ζ ξ ζ
+ (6a)

and
s = s(ξ−) = �1−ζ ξ

ζ−1
− . (6b)

In order to discuss scale invariance, one obviously requires
that the scale separation between the cut-offs, ξ+ − ξ−, is large
enough. However, the concept of scaling invariance does not
need a huge range of validity in order to be useful. Height
correlations measured on real surfaces are seldom perfectly
Gaussian or exponential, but provided they are short range the
approximation can be relevant. The same statement applies to
self-affine surfaces. If the characteristic length of the physical
system (the wavelength in the present case) lies within the
range of validity of scale invariance; then the use of the concept
of scale invariance can be justified. This remains relevant even
if the range of validity is somewhat limited.

3. Electromagnetic wave scattering from self-affine
surfaces

The angular distribution of the light scattered from rough
surfaces has been studied for a long time [14, 15]. This
distribution can be quantified through the experimentally
accessible quantity known as the mean differential reflection
coefficient (DRC), that we shall denote by 〈∂ Rs/∂θs〉. This
quantity is defined as the fraction of the incident power that is
scattered into an angular interval dθs about the scattering angle
θs [16, 17]. The DRC can be related to the scattering amplitude
which describes the scattering process, and it can be separated
into two terms: one term stemming from coherent or specular
scattering, and another from incoherent or diffuse scattering.
Of course, such a separation is not possible under experimental
conditions, but is quite useful in theoretical studies. The
integral of the mean DRC over all scattering angles is related
to the total reflectance of the surface.

Previously [9, 10], we have studied the mean DRC for self-
affine metallic surfaces. This has been done both by developing
an approximative analytic expression and by numerical
simulations. We derived a closed-form solution for the mean
DRC in s polarization within the single-scattering Kirchhoff
approximation [18]. The metal surface was approximated to be
perfectly conducting. The central ingredient of this expression
is the symmetric Lévy distribution [19], which contains the
Gaussian distribution as a special case.

We have previously derived [9, 10] in detail the mean
DRC in s polarization for a perfectly conducting self-affine
surface characterized by roughness exponent ζ and topothesy
� as given by the following expression:

〈
∂ Rs

∂θs

〉
= s(λ)

− 1
ζ a−( 1

ζ
−1)

√
2 cos θ0

cos θs +θ0
2

cos3 θs−θ0
2

L2ζ

(√
2 tan θs−θ0

2

a
1
ζ
−1s(λ)

1
ζ

)
(7a)

where

a = 2π
√

2 cos
θs + θ0

2
cos

θs − θ0

2
(7b)

and s(�x) = σ(�x)/�x is the mean (absolute) slope over a
lateral distance, �x , and is related (cf. equations (4) and (6b))
to the topothesy by

s(�x) =
(

�

�x

)1−ζ

(7c)

and finally Lα(x), with 0 < α � 2, denotes the centred
symmetric Lévy distribution of order α and is defined as

Lα(x) = 1

2π

∫ ∞

−∞
dk eikx e−|k|α . (7d)

Here from the surface normal, the angle of incidence (θ0)
is measured positively in the anticlockwise direction and the
scattering angle (θs) is measured positively in the clockwise
direction.

The result, equations (7), is derived within the Kirchhoff
approximation [15, 18]. This single-scattering approximation
consists of replacing every point at the surface by the local
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tangent plane. It allows us to use Fresnel formulae to obtain a
local reflection coefficient. The existence of a finite lower cut-
off for the scale-invariant regime ensures that one can define
a tangent plane. It should also be stressed that in obtaining
equations (7) one has implicitly assumed that the upper cut-off
for the scaling region is infinite, with the consequence that one
only obtains incoherent scattering.

As mentioned above, the width and the height of the
incoherent peak are mainly controlled by the slope measure
over the wavelength. Using a Taylor expansion of the Lévy
function we obtain respectively for the height of the peak and
its width at half maximum〈

∂ Rs

∂θs

〉∣∣∣∣
θs=θ0

� ( 1
2ζ

)

2
√

2πζ(2
√

2π cos θ0)
1
ζ
−1s(λ)1/ζ

(8)

and

w(ζ, s(λ), θ0) � 2

√√√√( 1
2ζ

)

( 3
2ζ

)
(2

√
2π cos θ0)

1
ζ
−1s(λ)1/ζ (9)

where  corresponds to the gamma function. Note that
although incoherent in nature, the peak can be extremely sharp
for small values of the slope. Within the framework of this
calculation we see that the scattering is mainly controlled
by two parameters, the slope measure over the wavelength,
s(λ), and the roughness exponent ζ . In a equivalent way, the
scattering from short-range correlated surfaces is controlled
by the standard deviation of the roughness, and the correlation
length [14, 15]. We saw above that these two additional
parameters that bound the scale-invariant region are necessary
to fully describe self-affine surfaces. What is the effect of
these bounds on the scattering? The existence of a lower cut-
off allows us to have a small-scale regularization of the surface
and therefore justifies the use of the Kirchhoff approximation.
Beyond this trivial assertion it appears that the lower cut-off
does not play any role in the far-field scattering: all sub-
wavelength details are smoothed out by the wave equation and
the effective lower cut-off of the system is the wavelength.
This assertion obviously does not apply to the near field. In
this case, the surface fields are highly fluctuating and localized.
Further, the amplitude of the fluctuations is directly controlled
by the geometrical lower cut-off of the surface [8]. These
fluctuations are, in fact, caused by sub-wavelength evanescent
modes [8]. However, the upper cut-off, ξ+, as we recall, did
not enter explicitly into the above calculations and the results
were actually obtained by assuming an infinite upper cut-off.
However, as mentioned in [3], the effect of a finite upper cut-off
is rather easy to handle. Provided ξ+ � λ, we can consider that
the incoherent part of the scattering remains unchanged while
in addition a small coherent peak appears, whose amplitude
is controlled by the global standard deviation of the surface
roughness, which now, according to equation (6a), is finite,
since ξ+ is not infinite. In particular, the coherent contribution
to the mean DRC depends directly on ξ+ through the global
RMS roughness, σ = �1−ζ ξ

ζ
+ (cf. equation (6a)), and one can

show that [15]〈
∂ Rs

∂θs

〉
coh.

∝ exp

[
−

(
2π

λ
σ(cos θs + cos θ0)

)2]
. (10)

For a plane incident wave the function of proportionality is the
Dirac delta function δ(θs −θ0), while for a finite-sized incident
beam it is a smooth function decaying away from θs = θ0.
The amplitude of the coherent peak, given by equation (10),
drops off very fast when the upper cut-off ξ+ is increased due
to the exponential function. The experimental measurements
of these peaks have been intensively used in recent years to
follow the development of roughness and spatial correlations
for surfaces generated by deposition processes [4].

Recently, we compared the mean DRC in the Kirchhoff
approximation with results obtained from rigorous numerical
simulations [9, 10] and found agreement in the central angular
region around θs = θ0. However, the tails of the mean
DRC obtained from the Kirchhoff approximation showed a
systematic overestimation of the scattering as compared with
the simulation results. This, we believe, corresponds to the
failure of the Kirchhoff approximation to include shadowing
and multiple-scattering effects which become non-negligible
for grazing incidence and scattering. In the central region,
the agreement between the Kirchhoff approximation and
the numerical rigorous simulations is however striking (cf.
section 4). As an illustration of the quality of this agreement
we show here that we can even observe second-order effects
predicted in the framework of the Kirchhoff approximation.
It appears that the location of the incoherent peak is slightly
shifted from the specular position for non-zero angles of
incidence [10]. In this case the incoherent peak is located
at θs = θ0 + �θ0, where �θ0 (�θ0 ∼ w2 
 w) scales as

�θ0 � −2ζ − 1

ζ

( 1
2ζ

)

( 3
2ζ

)
tan θ0(2

√
2π cos θ0)

2
ζ
−2s(λ)2/ζ

= −2ζ − 1

4ζ
tan θ0w

2(ζ, s(λ), θ0) (11)

where the expression for the width, w(ζ, s(λ), θ0), has been
given earlier by equation (9). This second-order effect can be
obtained [10] through an expansion of the Lévy distribution
around zero. As shown in figure 2, our numerical estimations
for the angular shift are consistent with our predictions.
The simulations were performed for rather rough aluminium
surfaces and the locations of the peaks were simply estimated
by a parabolic fit in the angular regions around the peaks.

Such simulations were performed by formulating the
Maxwell equations as a coupled set of integral equations. This
is achieved by taking advantage of Green’s second integral
identity in the plane as well as the boundary conditions
satisfied by the fields and their normal derivatives on the self-
affine surface. These integral equations can be converted
into matrix equations and solved for the sources—the fields
and their normal derivatives evaluated at the surface. From
the knowledge of these sources, the scattered field at any
point above the surface and therefore the mean DRC may be
calculated. The whole detailed procedure for performing such
Monte Carlo simulations can be found in [16, 17].

4. Application to the characterization of an
industrial aluminium surface

Aluminium is a metal that is abundant in the earth’s crust.
However, it does not appear naturally in pure form, but instead
has to be extracted from certain types of ore. It was therefore
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Figure 2. Shift of the incoherent peak of the mean DRC from the specular angular position versus angle of incidence for a slope of
s(λ) = 0.06 (left) and versus the slope s(λ) for an angle of incidence θ0 = 60◦ (right). The wavelength of the incident light was
λ = 0.6328 µm. We considered self-affine aluminium surfaces of roughness exponent ζ = 0.9; the surface length was
L = 63.28 µm = 100λ discretized at M = 512 evenly distributed points. For the dielectric constant of aluminium at the wavelength of the
incident light we used ε(ω) = −56.15 + i20.92 [22]. The simulation results were obtained by averaging over N = 5000 surface realizations.
The symbols correspond to results obtained from rigorous numerical simulations. The location of the incoherent peak was estimated by a
parabolic fit in the specular region of the mean DRC. The solid curves correspond to the analytic predictions of the angular shifts obtained
from the Kirchhoff approximation and given by equation (11).

of great industrial importance when Charles Martin Hall in
the late 1880s invented a cheap process, based on electrolysis,
for producing aluminium of high purity. Since then the use
of aluminium has increased dramatically, partly because of its
light weight, its conducting properties and ease of recycling,
and today it finds its use in most parts of daily life—from the
soda cans and aluminium foils in the kitchen to the bodies of
aircrafts and some cars.

Aluminium plates are highly appreciated in many
cooperative sectors. They are typically produced in rolling
mills from huge aluminium bars that through rolling are
gradually reduced to the desired thickness. The basic rolling
process consists of two rotating steel cylinders with parallel
main axes. They are separated by a distance—the roll-gap—
of which the value is guided by the thickness of the plates one
wants after that stage of the process. By forcing an aluminium
plate of thickness larger than the roll-gap through the rotating
rolls, the thickness of the plate is reduced. However, from
mass conservation one easily realizes that the velocity of the
incoming part of the plate must be smaller then that of the
outgoing, and that these two velocities are both different from
that of the rolls. Hence, it should be intuitively clear that
plastic deformations as well as slipping between the steel rolls
and the aluminium will take place in, or close to, the gap of the
rolls. Thus, any dirt located in the rolling zone or roughness
features of the surface of the rolls might result at the surface of
the plates in elongated structures along the rolling direction.
Such structures are known as rolling stripes, and are typical
characteristics of rolled aluminium products.

In figure 1 we show an AFM image of the surface of an
aluminium plate produced by (cold) rolling (after [13]). One
immediately observes that this surface is far from being without
any structure, and the rolling stripes are specially apparent.
Recently it was shown that such surfaces show self-affine
scaling behaviour [13] over a spatial region ranging from 50 nm
up to 50 µm.

Instead of making AFM measurements, is it possible to
instead use electromagnetic probes to characterize such metal
surfaces? The advantages would be that optical techniques
are inexpensive and versatile and that they can be incorporated
into many different experimental set-ups [21]. They can also be
used for in situ studies of surface growth without hampering the

growth process itself as most probably the tip of an AFM would
do. Furthermore, and even more important, optical techniques
can cover large surface areas that can be many orders of
magnitude larger than what can be probed by microscopy
techniques in one single measurement. This is often crucial
in order to guarantee that the surface area under study is
representative of the whole macroscopic surface. However,
to be able to extract surface information from electromagnetic
scattering data, one has to be able to interpret such scattering
data with confidence. Below, we shall give examples of how
this can be done.

Scattering experiments from the surface topography de-
picted in figure 1 were recently performed by Vandem-
broucq et al [20]. Some of their results for the mean differential
reflection coefficients 〈∂ Rs/∂θs〉 versus scattering angle θs are
reproduced as open circles in figure 3 in log–linear (main fig-
ures) and linear–linear scales (insets). The wavelength of the
s-polarized incident light was λ = 0.6328 µm, which corre-
sponds to the wavelength of a He–Ne laser, and the angles of
incidence used were θ0 = 0◦ and θ0 = 65◦ for the left-and
right-hand panels of figure 3 respectively. It is crucial to re-
alize for what follows that the scattered light was collected
by a thin vertical slit, adjusted to integrate the scattering con-
tributions corresponding to the direction perpendicular to the
rolling direction. Such an experimental set-up makes the scat-
tering geometry effectively one dimensional. Note also from
figure 3 that the backscattering direction, θs = −θ0, is hard to
resolve experimentally due to the incident beam. It should be
mentioned, since Vandembroucq et al used arbitrary units in
their measurements, that they only measured the mean DRC
up to a multiplicative constant. We have therefore used the
freedom to adjust this constant to make the comparisons with
simulation results more apparent.

The dashed curves in figure 3 represent the best fits of the
mean DRC to the single-scattering Kirchhoff approximation,
equations (7), to the experimental data. These fits correspond
to the roughness parameter ζ = 0.78 and a topothesy of
� = 2.79 × 10−11 m = 4.39 × 10−5λ, and the wavelength
of the incident light was the same as used in the experiments,
λ = 0.6328 µm. From figure 3, we observe that the
analytic expression, equations (7), rather accurately predicts
the angular dependence of the mean DRC around the specular
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Figure 3. The mean differential reflection coefficient (DRC), 〈∂ Rs/∂θs〉, versus scattering angle, θs , for an aluminium self-affine surface of
the type shown in figure 1 in log–linear (main panels) and linear–linear scale (insets). The incident light, of wavelength λ = 0.6328 µm,
was s polarized and was incident onto the cold-rolled aluminium surface at angles of incidence (left) θ0 = 0◦ and (right) θ0 = 65◦. The open
circles represent the experimentally obtained scattering data obtained for the rough aluminium surface [20]. The solid curves are the results
of rigorous numerical Monte Carlo simulations for the mean DRC of a self-affine aluminium surface of Hurst exponent ζ = 0.78 and
topothesy � = 2.79 × 10−11 m = 4.39 × 10−5λ. For the surface length we assumed L = 63.28 µm = 100λ, that was discretized at
M = 1024 evenly distributed points. For the dielectric constant of aluminium at the wavelength of the incident light we used
ε(ω) = −56.15 + i20.92 [22]. The simulation results were obtained by averaging over N = 1500 independent surface realizations. For the
incident light we used a finite-sized beam of half width g = 6.4 µm. The dashed curves are the prediction of equations (7) assuming the
same roughness parameter and topothesy as for the surfaces used in the rigorous simulations. Note that since equations (7) assume a perfect
conducting surface the normalization of the simulation results and the analytic approximation is a little different. Since the experimental
data were obtained in arbitrary units, we have adjusted them by a constant amplitude to be able to compare with the simulation and analytic
results.

(This figure is in colour only in the electronic version)

direction θs = θ0, where the main scattered power is
distributed. In particular, for normal incidence (θ0 = 0◦), the
analytic Kirchhoff result is accurate for scattering angles |θs | �
50◦. This region represents as much as 98.5% of the scattered
energy, even though it overestimates the mean DRC for large
scattering angles. The reason for these overestimations is most
probably that multiple-scattering effects are not included. One
should also recall that when using equations (7), the metallic
self-affine surface is assumed to be a perfect conductor. This
implies that the integral of the mean DRC over all scattering
angles should be unity, i.e. all incident energy is scattered (and
nothing absorbed). For the real aluminium surface, however,
this quantity will be a little less than unity due to absorption.

In order to investigate multiple-scattering effects, we have
performed rigorous computer simulations for the mean DRC
of a self-affine surface characterized by the same parameters
as above, i.e. by ζ = 0.78 and � = 4.39 × 10−5λ.
The Monte Carlo simulations were performed as described
at the end of section 3. These results were obtained for a
surface of length L = 63.28 µm = 100λ discretized over
M = 1024 evenly distributed points. We used the dielectric
constant of aluminium at the wavelength of the incident light
ε(ω) = −56.15 + i20.92 [22]. The results were averaged over
N = 1500 independent realizations. Furthermore, to suppress
edge effects, we used an incident finite-sized beam of half-
width g = 6.4 µm.

The solid curves in figure 3 represent the results for the
mean DRC obtained from such rigorous computer simulations.
We observe that the agreement with the experimental scattering
results is rather good. In particular, for normal incidence the
agreement is almost perfect for all scattering angles and over
three orders of magnitude in intensity. The Monte Carlo result
is in this case also able to catch the angular dependence of the

mean DRC for the largest scattering angles where we earlier
saw that the single-scattering Kirchhoff approximation failed
by overestimating the mean DRC. This is an effect of including
multiple-scattering effects in the analysis. Doing so will
‘redistribute’ into smaller scattering angles power that would
according to a single-scattering theory have been reflected into
large scattering angles (in absolute value). However, for non-
normal incidence, here exemplified by the right-hand panel of
figure 3 corresponding to an angle of incidence θ0 = 65◦, the
agreement between the experimental and Monte Carlo results
becomes less good for angles θs < 30◦. At this point the
intensity level has already dropped by 1.5 orders of magnitude
compared with the value at the peak. For the scattering angles
θs > 30◦ the agreement between the simulation results and the
experimental data is good. This latter angular interval accounts
for 97% of the scattered energy. The discrepancy between the
simulation and experimental results for the mean DRC that can
be observed in the right-hand panel of figure 3 we believe is
caused by the scattering surface in fact being two dimensional
and not one dimensional as assumed in order to generate the
simulation results.

Since we also had access to AFM measurements of
the topography of the surfaces used in the scattering
experiments [13, 20], we can compare the self-affine surface
parameters obtained indirectly from the experimental and
simulation scattering results with those obtained directly from
the measured surface topography. From the simulation results
one recalls that we obtained a roughness exponent of ζ = 0.78
and a topothesy of � = 4.39 × 10−5λ with λ = 0.6328 µm,
or equivalently a slope over a wavelength (cf. equation (7c))
of s(λ) = 0.11. On the other hand, directly from the surface
topography, measured by AFM in a direction perpendicular to
the rolling direction, one obtains [20] ζ = 0.80 ± 0.05 and
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s(λ) = 0.11 ± 0.01. These results are therefore in excellent
agreement with each other.

Hence, based on the obvious good agreement between the
simulation and the single-scattering Kirchhoff results on the
one hand, and the experimental scattering data on the other
hand, we have demonstrated that electromagnetic scattering
data can be used to characterize (industrial) self-affine
metallic surfaces with confidence. Due to the extremely low
computational cost of the analytic single-scattering Kirchhoff
approximation result, equations (7), as compared with the
rigorous numerical simulations, the analytic results presented
here might be used for (almost) real-time in situ studies of
self-affine surfaces. This may be of interest for example in
sputtering and polishing experiments as well as for various
surface deposition processes [12].

5. Conclusion

The scattering of s-polarized visible light from metallic
self-affine surfaces has been studied. We showed that a
Kirchhoff approximation reproduces nicely experimental and
direct numerical simulation results for the scattering in the
‘central angular region’. The quality of the agreement between
the Kirchhoff approximation and numerical results is such
that we could find evidence for a second-order effect: a
slight shift of the incoherent peak from the specular direction
in the case of finite angles of incidence. This is, to our
knowledge, the first time that this effect has been numerically
verified. Comparisons of experimental light scattering data
collected from an aluminium sheet and rigorous numerical
Monte Carlo simulation results proved to be extremely
successful. For normal incidence such simulations predicted
the experimental angular distribution of the scattered light for
all scattering angles and over three orders of magnitude in
intensity. The fact that we also obtained consistent results
for grazing scattering angles shows that the discrepancies
between the Kirchhoff approximation and the experimental
results for these angles of incidence originate from the fact
that multiple-scattering and shadowing effects were neglected
in the Kirchhoff approximation and not from a failure of the
self-affine description of the surface roughness. Based on the
predictive power of the Kirchhoff approximation result and
the Monte Carlo approach we showed that electromagnetic
scattering can be used with great confidence in inverse
scattering problems with the intention of characterizing self-
affine surfaces. The surface parameters obtained from light
scattering data were in perfect agreement with what could
be obtained from direct surface topography measurements.
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