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We derive an analytical expression for the scattering of an s-polarized plane wave from a perfectly conducting
self-affine one-dimensional surface in the framework of the Kirchhoff approximation. We show that most of
the results can be recovered by means of a scaling analysis. We identify the typical slope taken over one
wavelength as the relevant parameter controlling the scattering process. We compare our predictions with
direct numerical simulations performed on surfaces of varying roughness parameters and confirm the broad
range of applicability of our description up to very large roughness. Finally we verify that a nonzero electrical
resistivity, provided that it is small, does not invalidate our results. © 2001 Optical Society of America
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1. INTRODUCTION
Although it has been studied for more than 50 years,1

wave scattering from rough surfaces remains a very ac-
tive field. This constant interest comes obviously from
the broad variety of its application domains, which in-
clude remote sensing, radar technology, long-range radio-
astronomy, surface physics, etc., but from the fundamen-
tal point of view, the subject has also shown great vitality
in recent years. One may particularly cite the back-
scattering phenomena either originating from direct mul-
tiple scattering2–4 or mediated by surface plasmon
polaritons.5–9 Still in the context of single scattering, a
large number of studies have also been devoted to the de-
velopment of reliable analytical approximations.10–13 In
all cases, the efficiency of any analytical approximation
relies on a proper description of the surface roughness.
In most models the height statistics are assumed to be
Gaussian correlated.

In this paper we address the question of wave scatter-
ing from rough self-affine metallic surfaces. Since the
publication of Mandelbrot’s book, The Fractal Geometry
Of Nature,14 scale invariance has become a classical tool
in the description of physical objects. In the more re-
stricted context of rough surfaces, scale invariance takes
the form of self-affinity. Classical examples of rough sur-
faces obeying this type of symmetry are surfaces obtained
by fracture15 or deposition.16 More recently it was shown
that cold rolled aluminum surfaces17 could also be suc-
cessfully described by this formalism. In dealing with
wave scattering from rough surfaces, this scale invariance
has one major consequence of interest: It is responsible
for long range correlations. After early work by Berry,18

many studies have been conducted on the effects of fractal
0740-3232/2001/051101-11$15.00 ©
surfaces on wave scattering. Most of these studies were
numerical (see, for example, Refs. 19–27); very few ana-
lytical or experimental results have been published. No-
table exceptions are due to Jakeman and his
collaborators,28,29 who worked on diffraction through self-
affine phase screens in the 1980’s and more recently on
the characterization of growth surfaces.30–32 We recently
presented a complete analytical solution to the problem of
wave scattering from a perfectly conducting self-affine
surface33 in the Kirchhoff approximation. In the follow-
ing we present a complete derivation of this expression
and deduce from it analytical expressions for the width of
the specular peak and the diffuse tail. These results are
compared with direct numerical simulations. We provide
evidence that the crucial quantitative parameter is the
slope of the surface taken over one wavelength.

2. SCATTERING SYSTEM
The scattering system considered in this paper is depicted
in Fig. 1. It consists of vacuum in the region z . z(x)
and a perfect conductor in the region z , z(x). The in-
cident plane is assumed to be the xz plane. This system
is illuminated from the vacuum side by an s-polarized
plane wave of frequency v 5 2p/l. The angles of inci-
dence and scattering are denoted by u0 and u, respec-
tively, and they are defined positive according to the con-
vention indicated in Fig. 1.

In this paper we will be concerned with
1 1 1-dimensional self-affine surfaces z 5 z(x). A sur-
face is said to be self-affine between the scales j2 and j1

if it remains (either exactly or statistically) invariant in
this region under transformations of the form
2001 Optical Society of America
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Dx → mDx, (1a)

Dz → mHDz, (1b)

for all positive real numbers m. Here H is the roughness
exponent, also known as the Hurst exponent, and it char-
acterizes this invariance. This exponent is usually found
in the range from zero to one. A statistical translation of
the preceding statement is that the probability p(Dz; Dx)
of having a height difference in the range @Dz, Dz
1 d(Dz)# over the (lateral) distance Dx is such that

p~Dz; Dx !d~Dz! 5 p~mHDz; mDx !d~mHDz!. (2)

Simple algebra based on scaling relations (1) gives that
the standard deviation of the height differences z(x
1 Dx) 2 z(x) measured over a window of size Dx can be
written as

s~Dx ! 5 l12HDxH (3a)

and the (mean) slope of the surface as

s~Dx ! 5 S l

Dx D 12H

. (3b)

In these equations, l denotes a length scale known as the
topothesy. It is defined as s(l) 5 l [or s(l) 5 1].

Alternatively, Eq. (3a) can be written in the form

s~Dx ! 5 s~l!S Dx

l
D H

5 ls~l!S Dx

l
D H

, (4)

where we use the wavelength l of the scattering problem
as the normalization length. Here s(l) and s(l) are, re-
spectively, the typical height difference and slope over
one wavelength as defined by Eqs. (3). Note that we
could have used any length scale for the normalization,
such as, for instance, the topothesy. However, the choice
made here was dictated by the physical problem studied.
Using similar scaling arguments, one can show that the
power density function of the height profile P(k) depends
on the wave number k as a power law:

Fig. 1. Scattering geometry considered in this paper.
P~k ! 5 U E
2`

`

z~x !exp~ikx !dxU2

} k2122H. (5)

In the case of a Gaussian height distribution, the prob-
ability p(Dz; Dx) reads as

p~Dz; Dx ! 5
lH21

A2ps~l!DxH
expH 2

1

2 F lH21Dz

s~l!DxHG2J . (6)

The self-affine profile is thus fully characterized by the
roughness exponent H, the slope s(l) (which is nothing
but an amplitude parameter), and the bounds of the self-
affine regime j2 and j1 .

Numerous methods have been developed to estimate
these parameters (see, for example, Ref. 34); most of them
use the expected power-law variation of a roughness esti-
mator computed over spatial ranges of varying size. This
roughness estimator can be a height standard deviation,
the difference between the maximum and the minimum
height, etc. It is also classical to use directly the power
density function of the profile. More recently the wavelet
analysis has been shown to offer a highly efficient method
to compute the roughness exponent of self-affine
surfaces.35

3. SCATTERING THEORY
In the following we consider the scattering of s-polarized
electromagnetic waves from a one-dimensional, random,
Gaussian self-affine surface z 5 z(x). It will be assumed
that the lower limit of the self-affine regime j2 is smaller
than the wavelength l of the incident wave. For the
present scattering system, where the roughness is one di-
mensional, the complexity of the problem is reduced sig-
nificantly. The reason is that there is no depolarization,
and therefore the original three-dimensional vector scat-
tering problem reduces to a two-dimensional scalar prob-
lem for the single nonvanishing second component for the
electric field, F(x, zuv) 5 Ey(x, zuv), which should sat-
isfy the (scalar) Helmholtz equation

S ]x
2 1 ]z

2 1
v2

c2 DF~x, zuv! 5 0, (7)

with vanishing boundary condition on the randomly
rough surface z 5 z(x) and the outgoing wave condition
at infinity. In the far-field region, above the surface, the
field can be represented as the sum of an incident wave
and scattered waves:

F~x, zuv! 5 F0~x, zuv! 1 E
2`

` dq

2p
R~quk !

3 exp@iqx 1 ia0~q, v!z# (8)

where the plane incident wave is given by

F0~x, zuv! 5 exp@ikx 2 ia0~k, v!z# (9)

and R(quk) is the scattering amplitude. In the above ex-
pressions we have defined

a0~q, v! 5 A~v/c !2 2 q2,

Ra0~q, v! . 0, Ia0~q, v! . 0. (10)
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Furthermore, the (longitudinal) momentum variables q
and k are, in the radiative region, related to the scatter-
ing angle and the incident angle by

k 5
v

c
sin u0 , (11a)

q 5
v

c
sin u, (11b)

respectively, so that the z components of the incident and
the scattering wave vectors become

a0~k, v! 5
v

c
cos u0 , (11c)

a0~q, v! 5
v

c
cos u. (11d)

The mean differential reflection coefficient (DRC), also
known as the mean scattering cross section, is an experi-
mentally accessible quantity. It is defined as the fraction
of the total, time-averaged, incident energy flux scattered
into the angular interval (u, u 1 du). It can be shown to
be related to the scattering amplitude by the following
expression36:

K ]Rs

]u
L 5

1

L

v

2pc

cos2 u

cos u0
^uR~quk !u2&. (12)

Here L denotes the length covered by the self-affine pro-
file as measured along the x direction, and the other
quantities were defined earlier in the paper. The angle
brackets denote an average over an ensemble of realiza-
tions of the rough-surface profiles. Moreover, the mo-
mentum variables appearing in Eq. (12) are understood to
be related to the angles u0 and u according to Eqs. (11).

We now impose the Kirchhoff approximation, which
consists of locally replacing the surface by its tangential
plane at each point and thereafter using the (local)
Fresnel reflection coefficient for the local angle of inci-
dence to obtain the scattered field. Notice that dealing
with a surface whose scaling invariance range is bounded
by a lower cutoff j2 does ensure that the tangential plane
is well defined at every point. Within the Kirchhoff ap-
proximation the scattering amplitude can be expressed
as36:

R~quk ! 5
2i

2a0~q, v!
E

2L/2

L/2

dx exp@2iqx 2 ia0~q, v!z~x !#

3 N0~xuv!, (13a)

where N0(xuv) is a source function defined by

N0~xuv! 5 2]nF0~x, zuv!uz5z~x ! . (13b)

Here ]n denotes the (unnormalized) normal derivative de-
fined as ]n 5 2z8(x)]x 1 ]z .

By substituting the expression for the scattering ampli-
tude, Eq. (13a), into Eq. (12), one obtains an expression
for the mean DRC in terms of the source function
N0(xuv): the normal derivative of the total field evalu-
ated on the rough surface. After some straightforward
algebra where one takes advantage of the fact that the
self-affine surface-profile function z(x) has stationary in-
crements, one obtains the following form for the mean
DRC:

K ]Rs

]u
L 5

v

2pc

1

cos u0
S cos@~u 1 u0!/2#

cos@~u 2 u0!/2#
D 2

3 E
2L/2

L/2

dv expF i
v

c
~sin u 2 sin u0!vGV~v !,

(14a)

where

V~v ! 5 K expF2i
v

c
~cos u 1 cos u0!Dz~v !G L , (14b)

with Dz(v) 5 z(x) 2 z(x 1 v). Note that the statistical
properties of the profile function, z(x), enters Eqs. (14)
only through V(v). With the height distribution
p(Dz; Dx) introduced in Eq. (6), one may now analytically
calculate the ensemble average contained in V(v). For a
Gaussian self-affine surface one gets

V~v ! 5 E
2`

`

dz expF2i
v

c
~cos u 1 cos u0!zGp~z; v !

5 expH 2Fv

c

cos u 1 cos u0

A2
s~l!l12HvHG 2J . (15)

By making the change of variable in Eq. (14),

u 5 vFv

c

cos u 1 cos u0

A2
s~l!l12HG 1/H

, (16)

and letting the length of the profile extend to infinity, L
→ `, one finally obtains the following expression for the
mean DRC:

K ]Rs

]u
L 5

s~l!21/Ha2~1/H21 !

A2 cos u0

cos
u 1 u0

2

cos3
u 2 u0

2

3 L2H
S A2 tan

u 2 u0

2

a1/H21s~l!1/H
D , (17a)

where

a 5 2pA2 cos
u 1 u0

2
cos

u 2 u0

2
, (17b)

and (0 , a < 2)

La~x ! 5
1

2p
E

2`

`

dk exp~ikx !exp~2ukua!. (17c)

The quantity La(x) is known as the centered symmetric
Lévy stable distribution of index (or order) a.37 This dis-
tribution can be expressed only in closed form for some
particular values of a: a 5 1 and a 5 2 correspond to
the Cauchy–Lorentzian and the Gaussian distributions
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respectively; L1/2 and L1/3 can be expressed from special
functions. When the a index in the Lévy distribution
La(x) is lowered from its upper value a 5 2 (Gaussian
distribution), the resulting distribution develops a
sharper peak at x 5 0 while at the same time its tails be-
come fatter. It is interesting to note from Eqs. (17) that
the wavelength, l 5 2pc/v, comes into play only through
the slope s(l). The behavior of the scattered intensity is
thus determined entirely by this typical slope s(l) and
the roughness exponent H.

In Fig. 2 we show the mean DRC as obtained from Eqs.
(17) for Hurst exponent H 5 0.7 and different values of
the slope s(l) ranging from 0.016 to 0.25. The angles of

Fig. 2. Mean DRC ^]Rs /]u& versus scattering angle u for a per-
fectly conducting self-affine surface. The plotted curves are the
prediction of Eqs. (17). The Hurst exponent in all cases is H
5 0.7, and the topothesies l range from l 5 1022l @s(l)
5 0.016# down to 1026l @s(l) 5 0.25#, as indicated in the fig-
ures. The incident angles were (a) u0 5 0° and (b) u0 5 50°.
incidence were u0 5 0° [Fig. 2(a)] and 50° [Fig. 2(b)]. It
is observed from these figures that as the amplitude pa-
rameter s(l) is decreased while the other parameters are
kept fixed, the portion of the scattered intensity scattered
diffusely is reduced, while the power-law behavior found
for the nonspecular directions survives independently
(within single scattering) of the amount of light scattered
specularly. Furthermore, as the Hurst exponent is de-
creased (results not shown), thereby making the topogra-
phy rougher at small scale, the mean DRC gets a larger
contribution from diffusely scattered light. This is a di-
rect consequence of the properties of the Lévy distribution
mentioned above.

In order to consider the features of the mean DRC,
which can be seen in Fig. 2, we now discuss the behavior
of the specular and diffuse contribution to ^]Rs /]u&, i.e.,
close to and far away from the scattering angle u 5 u0 .

A. Specular Contribution
We start by considering the specular contribution to the
mean DRC. This is done by taking advantage of the
asymptotic expansion of the Lévy distribution around
zero38:

La~x ! 5
1

pa
GS 1

a
D F1 2

G~3/a!

2G~1/a!
x2G 1 O~x4!. (18)

By substituting this expression into Eqs. (17), one finds
that the mean DRC around the specular direction u
5 u0 should behave as follows (du ! 1):

K ]Rs

]u
L U

u5u01du

5
G~1/2H !

2A2pH~2A2p cos u0!1/H21s~l!1/H

3 H 1 1 du
1 2 2H

2H
tan u0 1

~du!2

4

3 F 1

H
2

~2H 2 1 !~1 2 H !

2H2 tan2 u0

2
G~3/2H !

G~1/2H !~2A2p cos u0!2/H22s~l!2/HG J . (19)

From this expression it follows that the amplitude of the
specular peak should scale as

K ]Rs

]u
L U

u5u0

.
G~1/2H !

2A2pH~2A2p cos u0!1/H21s~l!1/H
(20)

and that the peak’s half-width at half-maximum, w,
should be given by

w~H, s~l!, u0! . 2FG~1/2H !

G~3/2H !
G1/2

~2A2p cos u0!1/H21

3 s~l!1/H. (21)

It is worth noting that in the above expression the
width of the specular peak depends on the wavelength l
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via the typical slope over one wavelength s(l). In the
case of Gaussian correlations, there would have been no
dependence on the wavelength, the peak width w being
simply proportional to the ratio s/t, root mean square
(RMS) roughness over correlation length.

In order to test the quality of the specular expansion,
Eq. (19), we show in Fig. 3 a comparison of this expression
with the full single-scattering solution obtained from Eqs.
(17) for a surface of roughness exponent H 5 0.7 and of
slope over the wavelength s(l) 5 0.063 (l 5 1024l) in
the case of normal incidence. The amplitude of the
specular peak is seen to be nicely reproduced, but this ex-
pansion is valid only within a rather small angular inter-
val around the specular direction u 5 u0 .

It is interesting to note that in the case of a nonzero
angle of incidence, u0 Þ 0°, the specular peak is shifted
slightly away from its expected position u 5 u0 owing to
the presence of a nonvanishing term in Eq. (19) that is
linear in du. In this case the apparent specular peak is
located at u 5 u0 1 Du0 , where Du0(Du0 ; w2 ! w)
scales as

Du0 . 2
1 2 2H

H

G~1/2H !

G~3/2H !

3 tan u0~2A2p cos u0!2/H22s~l!2/H

.
1 2 4H

4H
tan u0w2@H, s~l!, u0#. (22)

Such a shift has not, to our knowledge, been reported ear-
lier for non-self-affine (or nonfractal) surfaces. Hence,
because of the self-affinity of the random surface, we pre-
dict a shift, Du0 , in the specular direction in comparison

Fig. 3. Full single-scattering solution (solid curve), Eqs. (17), for
the mean differential reflection coefficient versus scattering
angle u for a perfectly conducting self-affine surface compared
with its specular (short dashed curve) and diffuse (long dashed
curve) expansions as given by relations (19) and (24), respec-
tively. The surface parameters used were H 5 0.7 and l
5 1024l @s(l) 5 0.063#, and the light was incident normally
onto the rough surface.
with its expected position at u 5 u0 . Notice that this
shift vanishes for a Brownian random surface (H
5 1/2). Moreover, for a persistent surface-profile func-
tion (H . 1/2) the shift is negative, whereas it becomes
positive for an antipersistent profile (H , 1/2). Unfortu-
nately, the specular shift Du0 is probably too small to be
observable experimentally for realizable self-affine pa-
rameters.

B. Diffuse Component
We now focus on the diffuse component of the mean dif-
ferential reflection coefficient, i.e., the region where u is
far away from u 5 u0 . Now, using the expansion of the
Lévy distribution at infinity (the Wintner development),38

La~x ! 5
G~1 1 a!

puxu11a
sinS ap

2 D 1 OS 1

uxu112aD , (23)

we get the following expression for the diffuse component
of the mean DRC (u Þ u0)

K ]Rs

]u
L .

G~1 1 2H !sin~pH !

~4p!2H21

s~l!2

cos u0

Ucos
u 1 u0

2
U322H

Usin
u 2 u0

2
U112H .

(24)

In Fig. 3 the above expression is compared with the
prediction of Eqs. (17). We observe an excellent agree-
ment for angular distances larger than 10°. Moreover, it
should be noticed from Eq. (24) that the mean DRC is pre-
dicted to decay as a power law of exponent 21 2 2H as
we move away from the specular direction. For smooth
surfaces (corresponding to small values of s(l)) this be-
havior results directly from a perturbation approach
where the scattered intensity is derived directly from the
power density function of the surface. As shown above,
in the case of self-affine surfaces the latter is a power law
of exponent 21 2 2H. Our results extend, then, the va-
lidity of this power-law regime to steeper surfaces.

4. SCALING ANALYSIS
It is interesting that most of the nontrivial scaling results
derived above can be retrieved through simple dimen-
sional arguments. Let us examine the intensity scat-
tered in the direction u; in a naı̈ve Huygens framework
two different effects will compete to destroy the coherence
of two source points on the surface: (1) the angular dif-
ference separating u from the specular direction and (2)
the roughness. Considering two points separated by a
horizontal distance Dx and a vertical distance Dz, we can
define the retardation that is due to these two effects:

Dcang 5 ~sin u 2 sin u0!Dx,

Dcrough 5 ~cos u 1 cos u0!Dz.

This allows us to define two characteristic (horizontal)
lengths dang and drough of the scattering system corre-
sponding to the distances between two points of the sur-
face such that Dcang and Dcrough are equal to the wave-
length l. Taking into account the self-affine character of
the surface, we get



1106 J. Opt. Soc. Am. A/Vol. 18, No. 5 /May 2001 Simonsen et al.
dang 5
l

sin u 2 sin u0
,

drough 5
l

~cos u 1 cos u0!1/H s~l!21/H.

The coherence length on the surface depends on the rela-
tive magnitude of these two characteristic lengths. For
scattering angles close to the specular direction, we have
drough ! dang and for large scattering angles dang
< drough , and the diffuse tail is controlled by the angular
distance to the specular direction. In general we can
evaluate the competition of these two effects and their
consequences on the scattering cross section by the simple
ratio of the two characteristic lengths:

x 5
drough

dang
5

sin u 2 sin u0

~cos u 1 cos u0!1/H s~l!21/H.

We can then describe our scattering system with this
unique variable x, which takes into account the incidence
and scattering directions, the roughness parameters of
the surface, and the wavelength. A direct application is
the determination of the angular width w of the specular
peak. The transition between the specular peak and the
diffuse tail is simply defined by x 5 1, which leads to

w . @2s~l!#1/H~cos u0!1/H21,

which is identical to the exact result (21) apart from a nu-
merical constant. Assuming that most of the intensity is
scattered within the specular peak, we obtain through en-
ergy conservation:

K ]Rs

]u
L U

u5u0

.
1

w
. @2s~l!#21/H~cos u0!121/H.

Neglecting the numerical constants, we can thus re-
write the scattering cross section as

K ]Rs

]u
L 5

~cos u0!121/H

s~l!1/H C~x!.

When approaching the specular direction, we note that
dang diverges, whereas drough saturates at a finite value in-
dependent of the angular direction. In this specular di-
rection, the scattering process is thus controlled by only
the latter length and does not depend on the ratio x
5 drough /dang . This imposes that

C~x! . 1, ~x ! 1 !.

The argument x being inversely proportional to the quan-
tity s(l)1/H, which is nothing but a roughness amplitude
parameter, the behavior of C for large arguments can be
found by matching our expression to the limit of very
smooth surfaces. In this limit a simple perturbation ap-
proach leads to

K ]Rs

]u
L } PF2p

l
~sin u 2 sin u0!G ,

where P is the power density function of the height pro-
file. In the case of a self-affine profile of roughness expo-
nent H, we have P(k) } k2122H. One can verify that this
can be consistent only with the same power-law behavior
for C:

C~x! } x2122H, ~x @ 1 !.

5. NUMERICAL SIMULATION RESULTS
AND DISCUSSION
The results obtained in the previous sections were all
based on the Kirchhoff approximation and will therefore
be accurate only in cases in which single scattering is
dominating. In this section, however, we will therefore
no longer restrict ourselves to single scattering but in-
stead will include any higher-order scattering process.
This is accomplished by a rigorous numerical-simulation
approach that will be described below. This approach
will also serve as an independent check of the correctness
of the analytic results [Eqs. (17)] and the results that can
be derived therefrom. Furthermore, it will provide valu-
able insight into which part of the parameter space is
dominated by single-scattering processes and thus where
formulas (17) can be used with confidence.

The rigorous numerical-simulation calculations for the
mean DRC were performed for a plane incident
s-polarized wave scattered from a perfectly conducting
rough self-affine surface. Such simulations were done by
the now quite standard extinction theorem technique.36

This technique amounts to using Green’s second integral
identity to write down the following inhomogeneous Fred-
holm equation of the second kind for the source function
N(xuv) (see Refs. 39 and 40):

N~xuv! 5 2N0~xuv! 2 2PE dx8

3 ]nG0~x, zux8, z8!uz85z~x8!N~x8uv!. (25a)

In this equation

N~xuv! 5 ]nF~x, zuv!uz5z~x ! , (25b)

where ]n 5 2z8(x)]x 1 ]z is the (unnormalized) normal
derivative of the total electric field F 5 Ey evaluated on
the randomly rough self-affine surface, N0(xuv) has been
defined earlier in the paper as the normal derivative of
the incident field, and P is used to denote the principal
part of the integral. Moreover, G0(x, zux8, z8) is the
(two-dimensional) free-space Green’s function defined by

G0~x, zux8, z8! 5 ipH0
~1 !S v

c
ur 2 r8u D , (25c)

where r 5 (x, z), r8 5 (x8, z8) and H0
(1)(x) denotes the

zeroth-order Hankel function of the first kind.41 By tak-
ing advantage of Eq. (13a), which relates the scattering
amplitude to the normal derivative of the total field on
the random surface, the scattering amplitude can easily
be calculated and from there the mean differential reflec-
tion coefficient. It should be noticed that the Kirchhoff
approximation used in Section 4 to obtain the analytical
results [Eqs. (17)] is obtained from Eq. (25a) by neglecting
the last (integral) term, which represents multiple scat-
tering. By using a numerical quadrature scheme,42 one
can solve the integral equation Eq. (25a) for any given re-
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alization of the surface profile z(x). From the knowledge
of N(xuv) one might then easily calculate the mean DRC.

Randomly rough Gaussian self-affine surfaces of a
given Hurst exponent were generated by the Fourier fil-
tering method43 [see Eq. (5)], i.e., in Fourier space, to fil-
ter complex Gaussian random uncorrelated numbers by a
decaying power-law filter of exponent 2H 2 1/2 and
thereafter transforming this sequence into real space.
We then adjusted the topothesies (or slopes) of the sur-
faces to the desired values l by taking advantage of Eqs.
(3). This was done by first calculating the topothesy l0 of
the original surface over its total length and thereafter
rescaling the profile by (l0 /l)12H, where l is the desired
topothesy. In order to have enough statistical informa-
tion to be able to calculate a well-defined topothesy l0 , we
in fact used a window size slightly smaller than the total
length of the surface.

By the methods just described we performed rigorous
numerical simulations for the mean DRC, ^]Rs /]u&, in
the case of an s-polarized plane incident wave of wave-
length l 5 2pc/v 5 612.7 nm that is scattered from a
perfectly conducting self-affine surface characterized by
the Hurst exponent H and the topothesy l. For all simu-
lation results shown, the length of the surface was L
5 100l and the spatial discretization length was Dx
. l/10. All simulation results presented were averaged
over Nz 5 1000 surface realizations (or more). Further-
more, in order to check the quality of the numerical simu-
lations, we checked both reciprocity and unitarity for all
simulation results. We found for all cases considered
that the reciprocity was satisfied within the noise level of
the calculations, and the unitarity was fulfilled within an
error of a fraction of a percent.

In Fig. 4 the mean DRC’s for surfaces characterized by
the parameters H 5 0.7 and l 5 1024l @s(l) 5 0.063#
are presented. The angles of incidence of the light were
u0 5 0° and 50°, as indicated in the figures. The solid
curves represent the numerical (multiple-scattering)
simulation results, and the dashed curves are the (single-
scattering) prediction of Eqs. (17). As can be seen from
Fig. 4(a), the correspondence is quite good between the
analytic results and those obtained from the numerical
simulations. To allow a better comparison for large scat-
tering angles, we present in Fig. 4(b) the results of Fig.
4(a) but now in a linear-log scale. From this figure it is
apparent that for the largest scattering angles there are
some disagreements between the analytic and the nu-
merical results. The analytic results tend to overesti-
mate the mean DRC in these regions. This discrepancy
stems from the fact that multiple scattering is not in-
cluded in the analytical results. Part of the light that ac-
cording to single scattering would have been scattered
into large scattering angles is now due to multiple-
scattering processes, scattered back into smaller angles.
This results in smaller values for ^]Rs /]u& for the largest
scattering angles. Since the unitarity condition,
*2p/2

p/2 ^]Rs /]u&du 5 1, is satisfied for a perfectly reflecting
surface, this large-angle reduction of the mean DRC has
to be compensated by an increase for other scattering
angles. In the case of normal incidence (u0 5 0°), say,
this increase can be seen in the region near uuu ; 25°,
where the numerical simulation results are larger than
the corresponding single-scattering results. The same
behavior can be observed for an angle of incidence of 50°.

We give in Fig. 5 the numerical simulation results for
five different values of the topothesy ranging from l
5 1026l @s(l) 5 0.016# to 1022l @s(l) 5 0.25#. These
multiple-scattering results should be compared with the
results of Fig. 2, which show the corresponding curves ob-
tained from Eqs. (17). The roughness exponent used in
the simulations leading to the results of Fig. 5 was in all

Fig. 4. Comparison plotted in (a) linear and (b) linear-log scale
of the mean DRC ^]Rs /]u& versus scattering angle u for a per-
fectly conducting self-affine surface obtained by a rigorous
numerical-simulation approach (solid curves) and therefore in-
cluding all possible multiple-scattering processes, and the single-
scattering results obtained from Eqs. (17) (dashed curves). The
surface parameters were H 5 0.7 and l 5 1024l @s(l) 5 0.063#
with l 5 612.7 nm. The angles of the incident light were 0° and
50° as indicated in the figure.
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cases H 5 0.7, while for the angles of incidence we used
u0 5 0° [Fig. 5(a)] and u0 5 50° [Fig. 5(b)]. The height
standard deviation as measured over the whole length of
the surface, L 5 100l, according to Eq. (3) ranged from
s(L) 5 0.4l for the smallest topothesy up to as large as
6.3l for the largest. The fact that we did not really use
the total length L during the surface generation when ad-
justing the topothesy but instead used a slightly smaller
fraction of this length did not seem to affect the height
standard deviation to a large degree. In fact, it was
found numerically that the RMS heights of the generated
surfaces were only a few percent lower than the one ob-
tained from using Eq. (3), and we will therefore in the fol-
lowing use this equation in estimating the RMS height of
the surfaces. According to optical criterion these surface
roughnesses correspond to rather rough surfaces. In par-

Fig. 5. Same as Figs. 2 (single-scattering results), but now with
a rigorous numerical-simulation approach (see text for details)
that incorporates all higher-order scattering processes.
ticular, one observes from Fig. 5 that in the case of l
5 1022l a specular peak is hard to define at all in the
mean DRC spectra. This is a clear indication of a highly
rough surface and thus a very severe test of our theory.

To further compare the analytic results derived earlier
with those obtained from the numerical simulation ap-
proach, in Fig. 6 we have plotted the amplitude of the
specular peaks (circles) ^]Rs /]u&uu5u0

and their widths
(squares) w(H, l/l, u0), as obtained from the numerical
simulation results shown in Fig. 5. The solid lines of this
figure are the analytic predictions for these quantities as
given respectively by relations (20) and (21). As can be
seen from this figure, the analytic predictions are in ex-
cellent agreement with their numerical simulation coun-
terparts. In particular this confirms the decaying and
the increasing power laws in topothesy of the exponent
1/H 2 1 for these two quantities, respectively.

From Eqs. (17) we observe that if we replot the mean
DRC times the inverse of the prefactor of the Lévy distri-
bution versus its argument, all mean DRC curves corre-
sponding to the same Hurst exponent should (within
single scattering) collapse onto one and the same master
curve. This master curve should be the Lévy distribu-
tion, L2H(x), of order 2H. Notice that this data collapse
should hold true for arbitrary values for the angle of inci-
dence and topothesy. The failure of such a data collapse
(onto L2H) indicates essential contributions from
multiple-scattering effects. The range of scattering
angles where such processes are important can therefore
be read off from such a plot. Furthermore, since the tails
of the Lévy distribution L2H(x) drop off as x22H21 [see Eq.
(23)], such rescaled mean DRC plots can be used to mea-
sure the Hurst exponent of the underlying self-affine sur-
faces for which the light-scattering data have been ob-

Fig. 6. Specular peak amplitude, ^]Rs /]u&uu5u0
, and its half-

width at half-maximum, w(H, l/l, u0) as a function of topothesy
l. The angle of incidence was in both cases u0 5 0°. The solid
lines are analytical results obtained from relations (20) and (21),
and the circles (amplitudes) and the squares (widths) were ob-
tained from the numerical simulations results shown in Fig. 5(a).
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tained. To check these predictions for our numerical-
simulation results, we present in Fig. 7 such a rescaling of
the data originally presented in Fig. 5(b). Only data ly-
ing to the left of the specular peak have been included,
i.e., only data for scattering angles u , u0 5 50°. As can
be seen from this figure, the various scattering curves fall
nicely onto the master curve (solid curve) in regions
where single scattering is dominating. When multiple-
scattering processes start making a considerable contri-
bution, the scattering curves start to deviate from this
master curve. This observation could be used in practi-
cal applications to determine for what regions the scatter-
ing is dominated by single-scattering processes. For the
lowest topothesy considered here, l 5 1026l, a power law
extends nicely over large regions of scattering angles—a
signature of the diffuse scattering from self-affine sur-
faces. According to relation (24) the exponent of this
power law should be 21 2 2H. A regression fit to the
scattering curve corresponding to the topothesy l
5 1026l gives H 5 0.73 6 0.02, where the error indi-
cated is a pure regression error. The real error is of
course larger. With the knowledge of the Hurst exponent
obtained from the decay of the diffuse tail of the mean
DRC, we might now, on the basis of the amplitude of the
specular peak, obtain an estimate of the topothesy of the
surface. From the numerical simulation result we have
that ^]Rs /]u&uu5u0

. 17.9, which together with relation
(20) gives l 5 0.97 3 1026l, where we have used the
value found above for the Hurst exponent. These two re-
sults fit quite nicely with the values H 5 0.7 and l
5 1026l used in the numerical generation of the under-
lying self-affine surfaces.

It should be noticed that for the numerical results pre-
sented in this paper, we have not considered topothesies
smaller than l 5 1026l. However, since, as also indi-
cated by our numerical results, lowering the topothesy

Fig. 7. Rescaled version of the rigorous numerical-simulation
results shown in Fig. 5(b). Only the data corresponding to u
, 50° are included. In the rescaled coordinates all data (sym-
bols) should within the single-scattering approximation collapse
onto a Lévy distribution of order 2H (solid curve).
will favor single-scattering processes over those obtained
from multiple scattering, the analytic results [Eqs. (17)]
will trivially be valid for low values of the topothesy.
This has also been checked explicitly by numerical simu-
lations (results not shown).

So far in this paper we have assumed that the metal
was a perfect conductor. Obviously this is an idealiza-
tion, and even the best conductors known today are not
perfect conductors at optical wavelengths. By relaxing
the assumption of the metal being perfectly conducting to
instead being a good conductor, i.e., a real metal, we are
no longer in position to obtain a closed-form solution of
the scattering problem, the reason being that the bound-
ary conditions are no longer local quantities. In this case
we therefore have to resort to numerical calculations. In
order to see how well our analytic results [Eqs. (17)] de-
scribe the scattering from real metals (in contrast to per-
fect conductors), in Fig. 8 we give the mean DRC, as ob-
tained from numerical simulations,36 for a self-affine
silver surface of Hurst exponent H 5 0.7 and topothesy
l 5 1024l. We recall that this choice for the topothesy
corresponds to a rather rough surface where the RMS
height measured over the whole length of the surface is
s(L) ; 1.45l. Furthermore, the angles of incidence
were u 5 0° and 50°, and the wavelength of the incident
light was l 5 612.7 nm. At this wavelength the dielec-
tric constant of silver is «(v) 5 217.2 1 0.50i.44 The
dashed curves of Fig. 8 represent the predictions from
Eqs. (17), and as can be seen from this figure, the corre-
spondence is rather good. It is interesting to see that the
agreement between the analytical and the numerical re-
sults is of the same quality as that found for the perfect
conductor [see Fig. 4(b)]. This indicates that the analytic
results given by Eqs. (17) are rather robust and tend also
to describe well the scattering from a good, but not neces-
sarily perfect, reflector. Simulations equivalent to those
reported for silver have also been performed for alumi-

Fig. 8. Same as Fig. 4(b), but now with a real metal (silver) in-
stead of a perfect conductor. The value of the dielectric constant
of silver at the wavelength of the incident light (l 5 612.7 nm)
was «(v) 5 217.2 1 0.50i.
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num (results not shown), which has a dielectric function
that is more than three times higher at the wavelength
(l 5 612.7 nm) used here. The conclusions found above
for silver also hold true for aluminum. We find it inter-
esting to note that such self-affine aluminum surfaces
were recently reported to be seen for cold rolled
aluminum.17 The Hurst exponents were measured to be
H 5 0.93 6 0.03 and H 5 0.50 6 0.05 for the transverse
and longitudinal directions, respectively.

Before closing this section we would like to mention
that for real metals the numerical-simulation approach
based on Eq. (25a) and used above can no longer be used
directly. Instead, a coupled set of inhomogeneous Fred-
holm integral equations of the second type has to be
solved for the electric field, which is nonzero on the sur-
face of a real metal, and its normal derivative divided by
the dielectric constant of the metal. Details of this ap-
proach can be found in, for example, Ref. 36.

6. CONCLUSIONS
We have considered the scattering of s-polarized plane in-
cident electromagnetic waves from randomly rough self-
affine metal surfaces characterized by the roughness ex-
ponent H and the topothesy l [or slope s(l)]. By
considering perfect conductors, we derived within the
Kirchhoff approximation a closed-form solution for the
mean differential reflection coefficient in terms of the pa-
rameters characterizing the rough surface—the Hurst ex-
ponent and the topothesy (or slope)—and the wavelength
and the angle of incidence of the incident light. These
analytic predictions (written from a Lévy distribution of
index 2H) were compared against results obtained from
extensive, rigorous numerical simulations based on the
extinction theorem. An excellent agreement was found
over large regions of parameter space. Finally, the ana-
lytic results, valid for perfect conductors, were compared
with numerical-simulation results for a (nonperfectly con-
ducting) silver self-affine surface. It was demonstrated
that also in this case the analytic predictions gave quite
satisfactory results even though strictly speaking they
were outside their region of validity.
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