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1. INTRODUCTION
A hot topic in the electronics and photonics community is
plasmonics, due to the prediction that surface plasmon polar-
itons (SPPs) can carry information faster and with less energy
loss than electronic circuits [1]. SPPs can have a penetration
depth in metal on the order of 10 nm, that is, two-orders of
magnitude smaller than the wavelength of visible light in
vacuum. This means that plasmonics allows light to be
concentrated and manipulated by structures well below the
diffraction limit from classical optics.

SPP excitation is also being investigated as a way to im-
prove the performance of photovoltaic devices. For thin solar
cells, with a thickness on the order of 1 μm, the path length of
light traveling through the cell is insufficient to absorb more
than a small fraction of the incident energy. By converting
light into SPPs, which can propagate along the dielectric–
metal interface at the back of the photovoltaic cell, it is
possible to absorb a larger fraction of the incident energy [2].

Because SPPs propagate along the interface of a metal, they
are sensitive to conditions on the surface, making SPPs well
suited for sensor applications. Such devices are often called
surface plasmon resonance sensors, and can be used, for
example, for microarray analysis of proteins [3] or DNA [4].

At a flat interface, incident light cannot couple to SPPs
due to momentum mismatch. By manipulating the surface
roughness, however, it is possible to control the coupling
of incident light into SPPs. In this paper, we consider light
reflected from randomly rough surfaces with particular
statistical properties and study the multiple scattering phe-
nomena that arise due to SPPs. Several multiple scattering
phenomena have been predicted theoretically and/or con-
firmed experimentally. For example, enhanced backscatter-
ing was predicted by McGurn et al. [5] and later confirmed

experimentally by West and O’Donnell [6]. The enhanced
backscattering phenomenon is a double scattering phenome-
non caused by constructive interference between a wave scat-
tered (at least) twice by the surface and its time-reversed
partner. The excitation of SPPs is usually involved in this proc-
ess. For weak (low rms) surface roughness, scattering proc-
esses are usually dominated by single scattering, which may
mask higher-order scattering contributions. Hence, West and
O’Donnell designed a surface whose roughness had a power
spectrum that suppresses single scattering in a certain angular
interval, allowing multiple scattering effects to be seen more
clearly [6]. The surface in question had a surface profile func-
tion dependent on only one of the axes in the surface plane;
colloquially, we refer to such surfaces as “one-dimensional.”
This power spectrum is now known as the West–O’Donnell
spectrum or the rectangular spectrum.

Enhanced forward scattering was first predicted theoreti-
cally by O’Donnell [7], who termed it the enhanced specular
peak phenomenon [8]. O’Donnell investigated the scattering
of light from surfaces with weak, one-dimensional roughness
by the use of perturbation theory and reported an enhance-
ment in the specular direction of the intensity of the light
scattered diffusely by the rough surface. To lowest order in
the surface profile function, this phenomenon appears
as an eight-order contribution to the intensity within small-
amplitude perturbation theory, and for one-dimensional
surface roughness it is caused by constructive interference
between counterpropagating SPPs; see Fig. 10 [7]. To confirm
these findings, O’Donnell and Mendéz subsequently studied
surface scattering from one-dimensional surfaces by direct
solution of the one-dimensional reduced Rayleigh equation
[9]. Their findings were later confirmed by Simonsen [10],
who also performed a detailed numerical study of this
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phenomenon, focusing on the competition between how light
couples into and out from SPPs and how one SPP can couple
to another counterpropagating SPP.

Up till now, the enhanced forward scattering phenomenon
has not been studied for two-dimensional randomly rough
surfaces either by perturbation theory or by computer
simulations. Moreover, only a few numerical studies of en-
hanced backscattering have appeared in the literature for
two-dimensional roughness. In this paper, we investigate light
scattering from two-dimensionally rough surfaces by means
of large-scale computer simulations, with a focus on phenom-
ena caused by the excitation and interference of SPPs. In
particular, we are interested in the enhanced backscattering
phenomenon and the less-studied phenomenon of forward
scattering enhancement. The understanding of such phenom-
ena could be useful for the understanding and controlling of
light–plasmon coupling in plasmonic circuits. Furthermore,
two-dimensional surface roughness leads to significant
polarization effects that cannot be taken into account in a
one-dimensional model.

This paper is organized as follows. In Section 2, we discuss
the relevant theory, including how the statistical properties of
the surface roughness decide which scattering processes are
allowed. Section 3 presents results from numerical simula-
tions, exhibiting enhanced forward scattering and enhanced
backscattering. Finally, concluding remarks are presented
in Section 4.

2. THEORY
The system under study consists of a metallic substrate in vac-
uum [Fig. 1(a)]. We assume that the vacuum–metal interface
has a randomly rough structure, and the metal is characterized
by a complex dielectric function ε2�ω�. The vacuum dielectric
constant is ε1 ≡ 1. The height of the surface is given by the
single-valued function x3 � ζ�x∥�, where x∥ � �x1; x2; 0� is
the lateral component of the position vector, x. We assume that
ζ�x∥� is at least once differentiable with respect to x1 and x2.
The angles of incidence �θ0;ϕ0� and scattering �θs;ϕs� are de-
fined positive according to the convention given in Fig. 1(b).

In this paper, we will consider randomly rough sur-
faces where ζ�x∥� constitutes a stationary random process
defined by

hζ�x∥�i � 0; (1a)

hζ�x∥�ζ�x0∥�i � δ2W�x∥ − x0∥�; (1b)

where the angle brackets denote an average over an ensemble
of surface realizations. In writing Eq. (1) we have defined the
rms height of the surface, δ � hζ2�x∥�i1∕2, and W�x∥ − x0∥�
denotes the height–height autocorrelation function of the
surface, normalized so that W�0� � 1 [12] . In the discussion
below, and when generating realizations of the surface profile
function, it is more convenient to work with the power
spectrum of the surface rather than using the autocorrelation
function directly. The power spectrum, g�k∥�, of the surface
profile function is defined by

g�k∥� �
Z

d2x∥W�x∥� exp�−ik∥ · x∥�; (2)

where k∥ � �k1; k2; 0� is the lateral component of thewave vec-
tor, k. The power spectra that will be considered in this work
are of the cylindrical form, where

g�k∥� � γ1g1�k∥� � γ2g2�k∥� (3a)

and gi (i � 1, 2) are given by [13]

gi�k∥� �
4π

k2� − k2−
θ�k∥ − k�i�− �θ�k�i�� − k∥�: (3b)

In Eq. (3a), γ1 and γ2 are real constants defined such that γ1,
γ2 ≥ 0 and γ1 � γ2 � 1. Furthermore, k∥ � jk∥j, θ�·� denotes
the Heaviside unit step function, and k�i�� are wavenumber cut-
off parameters, with k�1�− < k�1�� < k�2�− < k�2�� . The Heaviside
step functions in Eq. (3b) cause each gi to have a cylindrical
shape: gi is zero for k∥ < k�i�− , a positive constant for
k�i�− ≤ k∥ < k�i�� , and zero for k∥ ≥ k�i�� . The constants γi deter-
mine the relative amplitudes of the outer and inner cylindrical
parts of thepower spectrum.Thepower spectrumdescribedby
Eq. (3) is a two-dimensional generalization of the one used by
O’Donnell and Mendéz [9] and Simonsen [10] in their previous

Fig. 1. Sketches of the system under study (surface roughness not
shown). (a) The light of wave vector k incident on the surface causes
scattering into various propagating modes (of wave vector q) and the
excitation of SPPs (kspp). In this study, we assume ε1�ω�≡ 1, and ε2�ω�
is taken from [11]. (b) Definition of the lateral wave vectors (k∥ and
q∥) as well as the polar angles of incidence and scattering.
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numerical investigations of enhanced forward scattering from
one-dimensional randomly rough surfaces.

We note that the power spectrum used by West and
O’Donnell [6] in their experimental confirmation of enhanced
backscattering is a one-dimensional special case of Eq. (3),
with γ1 � 1 and γ2 � 0 (or vice versa).

A. Reduced Rayleigh Equation
The electric field in the vacuum above the surface �x3 >
max ζ�x∥�� can be expressed as the sum of an incident field
and a scattered field,

E�xjt� � �
E�0��xjω� � E�s��xjω�� exp�−iωt�; (4)

where ω is the angular frequency of the incident (and scat-
tered) light. The superscripts (0) and (s) on the electric field
vectors indicate the incident and scattered field, respectively.
Furthermore,

E�0��xjω� �
n
−
c
ω

�
k̂∥α1

�
k∥
�� x̂3k∥

�
E�0�
p
�
k∥
�

� �
x̂3 × k̂∥

�
E�0�
s
�
k∥
�o

exp
�
ik∥ · x∥ − iα1

�
k∥
�
x3
�
; (5a)

E�s��xjω� �
Z

d2q∥
�2π�2

�
c
ω

�
q̂∥α1

�
q∥
�
− x̂3q∥

�
E�s�
p
�
q∥
�

��x̂3 × q̂∥
�
E�s�
s
�
q∥
��

exp
�
iq∥ · x∥ � iα1

�
q∥
�
x3
�
; (5b)

where E�0�
α �q∥� and E�s�

β �k∥�, with α, β � p, s are the amplitudes
of the α-polarized and β-polarized components of these
fields with respect to the local planes of incidence and
scattering, respectively. The wave vector of the incident
light is k, which is of length jkj � ω∕c, where c is the speed
of light in vacuum. The expressions in front of the field
amplitudes are the unit polarization vectors. The wave
vector of the scattered light, q, has lateral component q∥ �
�q1; q2; 0� and is related to the angles of scattering as indi-
cated by Fig. 1(b). A caret over a vector indicates that
it is a unit vector. Finally, the functions αi�q∥�, i � 1, 2 are
defined by

αi�q∥� �
�
εi

�
ω

c

	
2
− q2∥



1∕2
;

× Re αi�q∥� > 0; Im αi�q∥� > 0: (6)

A linear relation is assumed to exist between the amplitudes
E�s�
α �q∥� and E�0�

β �k∥� �α; β � p; s�, which we express in terms of
the scattering amplitudes Rαβ�q∥jk∥� [14]:

E�s�
α
�
q∥
� � X

β�p;s

Rαβ

�
q∥jk∥

�
E�0�
β

�
k∥
�
:

In order to obtain an equation for the scattering amplitudes,
we first write down an expression for the transmitted field,
E�t��xjω�, which is valid in the region x3 < min ζ�x∥� below
the surface. We then assume the Rayleigh hypothesis, which
states that for a sufficiently smooth surface, j∇ζ�x∥�j ≪ 1,
these asymptotic expressions for the fields are valid also in
the surface roughness region �min ζ�x∥� < x3 < max ζ�x∥��

[15,16] and can be used to fulfill the boundary conditions
satisfied by the electric and magnetic fields at the surface
x3 � ζ�x∥�. From the resulting set of coupled matrix integral
equations, it is possible to eliminate the amplitudes of the
transmitted (reflected) field so that a single matrix integral
equation results for the amplitudes corresponding to the field
above (below) the surface. The resulting equation is known as
the reduced Rayleigh equation for reflection (transmission).
For details regarding the derivation of the reduced Rayleigh
equation, we refer to [13] and [17].

If the scattering amplitudes are organized as the 2 × 2
matrix

R
�
q∥jk∥

� � �
Rpp

�
q∥jk∥

�
Rps

�
q∥jk∥

�
Rsp

�
q∥jk∥

�
Rss

�
q∥jk∥

� 	; (7)

the reduced Rayleigh equation for reflection from a two-
dimensional surface can be written in the form [13,17,18]

Z
d2q∥
�2π�2

I
�
α2
�
p∥
�
− α1

�
q∥
���p∥ − q∥

�
α2
�
p∥
�
− α1

�
q∥
� M��p∥jq∥�R�q∥jk∥�

� −
I�α2

�
p∥
�� α1

�
k∥
���p∥ − k∥

�
α2
�
p∥
�� α1

�
k∥
� M−

�
p∥jk∥

�
; (8a)

where

I�γjQ∥� �
Z

d2x∥ exp�−iγζ�x∥�� exp�−iQ∥ · x∥�; (8b)

and

M��p∥jq∥��
 
p∥q∥�α2

�
p∥
�
p̂∥ ·q̂∥α1

�
q∥
�
−ω

cα2
�
p∥
��
p̂∥×q̂∥

�
3

�ω
c

�
p̂∥×q̂∥

�
3α1
�
q∥
�

ω2

c2
p̂∥ ·q̂∥

!
:

(8c)

The integral in Eq. (8b) is evaluated by expanding the expo-
nential exp�−iγζ�x∥�� in powers of its argument and integrating
the resulting series term by term by the fast Fourier transform.
In practice, the sum is truncated at a finite order sufficient to
give convergent results (n � 20 was used in this work). The
integration domain used for the integral in Eq. (8a) is trun-
cated to cover the circular region q∥ ≤ Q∕2, and the integration
was converted to a finite sum over this domain by a two-
dimensional version of the standard midpoint quadrature
scheme. From this sum, we can obtain a linear system of equa-
tions (one for each value of p∥), which can be solved to
find Rαβ�q∥jk∥�.

For the simulations presented in this paper, we have used
numerically generated, discrete realizations of the surface
profile function. These realizations covered a square area
of size L × L in the x1x2 plane, determining the integration
limits in Eq. (8b). The surface realizations were discretized
onto a quadratic, equidistant grid of Nx × Nx points. Each
realization was generated by a two-dimensional version of
the Fourier filtering method presented in, for instance,
[19,20]. For a detailed discussion of how one can proceed
to solve the reduced Rayleigh equation numerically, we refer
to [21].
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B. Mean Differential Reflection Coefficient
When the incident field is known, the quantity Rαβ�q∥jk∥� com-
pletely specifies the total electromagnetic field in the region
x3 > max ζ�x∥�. However, Rαβ�q∥jk∥� is not directly measur-
able in experiments. A quantity well suited for experimental
studies is the mean differential reflection coefficient (MDRC),
h∂Rαβ∕∂Ωsi, which is defined as the time-averaged fraction of
the incident power scattered into the solid angle dΩs about the
scattering direction, q̂. The relationship between Rαβ�q∥jk∥�
and the MDRC can be written as [13]

�
∂Rαβ

∂Ωs


� 1

L2

ω2

4π2c2
cos2 θs
cos θ0

���Rαβ

�
q∥
��k∥���2�: (9)

Because we are studying weakly rough surfaces, light scat-
tered coherently (specularly) by the rough surface will domi-
nate. However, some of the light incident on the surface will
also be scattered incoherently (diffusely) by the rough sur-
face. In theoretical and numerical studies, it is advantageous
to separate these two contributions.

By light scattered coherently by the surface, we mean scat-
tered light that is in phase from one surface realization to the
next, so that the intensity of light scattered coherently (from β
to α polarization) will be proportional to jhRαβ�q∥jk∥�ij2. The
contribution to the MDRC from the light that has been scat-
tered incoherently by the rough surface is defined as [13]

�
∂Rαβ

∂Ωs


incoh

� 1

L2

ω2

4π2c2
cos2 θs
cos θ0

×
��jRαβ

�
q∥
��k∥���2� − ���Rαβ

�
q∥
��k∥����2�: (10)

The contribution to the MDRC from the light scattered coher-

ently is therefore given by the difference between Eqs. (9) and
(10). We will see below that enhanced backscattering and en-
hanced forward scattering are both phenomena observed in
the incoherent component of the MDRC, even if in the case
of enhanced forward scattering it is observed in the specular

direction.
We also note that the quantity Rαβ�q∥jk∥� can be used to

construct the Mueller matrix for reflection from a rough sur-
face [22]. The Mueller matrix contains all linear transforma-
tions of the polarization of light undergoing scattering from
a rough surface, including polarization and depolarization.

C. SPPs
SPPs are electromagnetic modes that are confined to
dielectric–metal interfaces, where the dielectric function of
the cladding is positive and the (real part of the) dielectric
function of the substrate is smaller than the negative of the
dielectric function of the cladding [23]. The dispersion relation
of SPPs at a flat vacuum–metal interface is [23]

kspp�ω� �
ω

c

�
ε2�ω�

ε2�ω� � 1

	
1∕2
; (11)

where kspp�ω� is the length of the wave vector of the SPP
mode. For silver at wavelength λ � 457.9 nm (in vacuum),
for which the dielectric function is ε2�ω� � −7.5� 0.24i
[11], it follows that kspp � �1.074� 0.003i�ω∕c (ω � 2πc∕λ).
The imaginary part of kspp can be interpreted as an inverse

decay length of the SPP mode, whereas the real part corre-
sponds to the wave number of the mode.

Multiple scattering phenomena such as the enhanced back-
scattering and enhanced forward scattering are, for weakly
rough surfaces, typically caused by the incident light exciting
SPPs that are subsequently scattered zero or more times be-
fore coupling into a mode propagating away from the surface
[12]. In particular, in one-dimensional small-amplitude pertur-
bation theory, the lowest-order contribution to the enhanced
forward scattering peak in the MDRC has its origin in quad-
ruple scattering processes [7, Fig. 10].

D. Allowed and Forbidden Scattering Processes
From small-amplitude perturbation theory [12,24], it can be
shown that a single scattering event from lateral wave vector
k∥ to q∥ is allowed only if the power spectrum evaluated at the
wave vector transfer ksc is nonzero, that is,

g�ksc� > 0; ksc � q∥ − k∥: (12)

This condition holds for scattering between propagating
modes; between evanescent modes; and from propagating
to evanescent modes and vice versa. For isotropic power
spectra, such as those studied in this paper [Eq. (3)], the
requirement of Eq. (12) simplifies to

g�jkscj� > 0: (13)

To better understand the physical implications of the con-
dition in Eq. (13), and to facilitate our interpretation of the
simulation results presented later in this paper, we present
a visual model for discussing relevant scattering processes
in Fig. 2. Before starting the discussion, we remind the reader
that modes for which k∥ ≤ ω∕c are propagating in the vacuum,
whereas for k∥ > ω∕c the corresponding fields are evanescent,
that is, the field amplitudes decay exponentially along both
directions perpendicular to the surface. Moreover, at the
wavelength λ � 457.9 nm, assumed in the simulations pre-
sented below, the vacuum–silver interface supports SPPs of
lateral wave vector kspp � 1.074ω∕c (see Section 2.C). For
simplicity, we have neglected the imaginary part of the
wavenumber, as it is small compared to its real part.

In passing, we note that the polarization state of light can be
modified at each scattering event, subject to the requirement
that SPPs are always p-polarized. We will, however, not
discuss polarization effects of single scattering events in
this section.

We will now discuss Fig. 2, which was produced under the
assumption that the surface power spectrum is identical to
that in Eq. (3) and characterized by the values for k�i��
used in the later simulations (Section 3): k�1�− � 0.782ω∕c,
k�1�� � 1.366ω∕c, k�2�− � 2.048ω∕c, and k�2�� � 2.248ω∕c. The annu-
lar regions, indicated by blue shaded regions in Fig. 2, re-
present the nonzero parts of the surface roughness power
spectrum.

First, we consider the scattering process k∥ → q∥ [Fig. 2(a)]
that corresponds to the lateral wave vector (or momentum)
transfer ksc. In Fig. 2(a) the incident lateral wave vector,
k∥, is placed so that it starts at the origin of wave vector space,
O; the same is done for q∥. We superpose blue shaded regions
representing the power spectrum so that the center of the
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power spectrum is located at the end of k∥. Thus, if ksc indi-
cates a point inside the blue shaded regions (the power spec-
trum), the scattering process k∥ → q∥ is allowed. Moreover, at
the same time, if q∥ ≤ ω∕c, the process k∥ → q∥ results in a
scattered mode that can propagate away from the surface.
On the assumption that both k∥ and q∥ are propagating in
vacuum, one realizes that k∥ [for the value of k∥ used in
Fig. 2(a)] can be converted into q∥ through a single interaction
with the surface roughness (single scattering) only within a
crescent-like region. This region is defined by the shaded blue
region that resides inside the circle q∥ � ω∕c, indicated in
black in Fig. 2(a). Outside this crescent region, the scattering
process is either not allowed or q∥ > ω∕c, meaning that the
mode is evanescent (nonpropagating). When later studying

the full angular distribution of the scattered light (Fig. 3),
we will see that this observation is important.

We now turn to the possibility of exciting SPPs by the in-
cident light, a situation addressed in Fig. 2(b). The excitation
k∥ → kspp of SPPs is subject to the constraints in Eq. (13). In
particular, we have that the excitation of an SPP by the
incident field characterized by k∥ is only allowed if

k�1�− < jkspp − k∥j < k�1�� ; (14)

or (less relevant for the parameters used in this study, due to
the large θ0 required)

Fig. 2. Four scattering processes important for understanding the results of this study. A detailed discussion of the figure is found in the text. All
subfigures (a)–(d) are drawn to correct and identical scale for the parameters k�i�� and ε2 used throughout this study. The blue annular regions
indicate the nonzero parts of the power spectrum, that is, the ranges of ksc allowed by the power spectrum. The lengths of k∥ in (a) and (b)
correspond to �θ0;ϕ0� � �27°; 45°�.
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k�2�− < jkspp − k∥j < k�2�� : (15)

Consequently, it is only possible (for the power spectrum used
in this study) to excite SPPs for small (or very large) angles of
incidence. The excitation of an SPP is shown in Fig. 2(b). The
black ring indicates the length of the possible SPP wave vec-
tors. In the plane of incidence, SPPs cannot be excited by the
incident light for angles of incidence θ0 > 17°. For out-of-
plane scattering, however, SPP excitation is allowed also
for θ0 > 17°. This is qualitatively different from scattering
from a one-dimensionally rough surface.

E. Enhanced Backscattering
For weakly rough surfaces, the presence of the enhanced
backscattering phenomenon typically requires the excitation
of SPPs. For strongly rough surfaces, on the other hand,
it can take place through multiple scattering between vac-
uum-propagating modes [25,26]. For the weakly rough surfa-
ces discussed here, the SPP channel is by far the dominant

contribution to the backscattering enhancement. As such,
the presence of the enhanced backscattering phenomenon
for weakly rough surfaces requires first that incident light
can couple to SPPs, that is, g�jkspp − k∥j� > 0, as discussed
in the previous paragraph. Second, the existence of enhanced
backscattering requires that SPPs can couple out into the
antispecular direction, that is, that g�j − k∥ − ksppj� > 0. This
implies, with the power spectrum used here, that

k�1�− < jkspp � k∥j < k�1�� : (16)

Coupling from SPPs to vacuum-propagating modes is illus-
trated in Fig. 2(c). For the parameters used in this study,
the outer cylindrical part of the power spectrum essentially
does not contribute to the scattering process kspp → k∥,
as k�2�− ≈ ω∕c� kspp.

For one-dimensionally randomly rough surfaces [7,10], the
scattered wave vectors are confined to the plane of incidence,
and all quantities in Eqs. (12)–(16) can be written as scalars.
Thus, there is a sharp and well-defined angular cutoff for the
excitation of SPPs in this case. For two-dimensionally rough
surfaces, however, incident light can couple to SPPs that do
not propagate in the plane of incidence. This can
allow scattering processes that would be forbidden in the
one-dimensional case, and any limits derived using the one-
dimensional model will become “fuzzy” for two-dimensional
surfaces.

F. Enhanced Forward Scattering
For SPPs to contribute to enhanced forward scattering, it is
required that the power spectrum allows both the excitation
and counterpropagation of SPPs, as well as coupling from
SPPs to vacuum-propagating modes in the specular direction.

For the scattering of an SPP of wavevector k�1�spp to an
SPP of wavevector k�2�spp to be allowed, it is required that
g�jk�2�spp − k�1�sppj� > 0. For the power spectrum used in this
study, this condition is fulfilled if

k�1�− < jk�2�spp − k�1�sppj < k�1�� (17)

or

k�2�− < jk�2�spp − k�1�sppj < k�2�� : (18)

The counterpropagation requirement is the rationale for add-
ing the outer annulus to the power spectrum of Eq. (3). This
annulus is narrow and centered at k∥ � 2kspp, meaning that
it facilitates scattering where jkscj ≈ 2kspp, that is, counterpro-
pagation of SPPs. This corresponds to the fulfillment of
Eq. (18) and is illustrated by the green vectors in Fig. 2(d)
(k�2�spp and k�2;1�spp ).

We note that for two-dimensionally rough surfaces it is pos-
sible for an SPP to be scattered out of plane by the g1 part of
the power spectrum. This can happen when Eq. (17) is
fulfilled, as shown in red in Fig. 2(d), where the resulting
lateral wave vector is denoted k�3�spp.

The principles discussed above are also valid for systems
consisting of a metallic substrate on which a dielectric thin
film has been deposited, with a vacuum or lossless dielectric
cladding, where either interface of the film is randomly rough
[27]. The generalization to different power spectra should also

Fig. 3. Full angular distribution of the incoherent contribution to the
MDRC, assuming the surface properties stated in the text. The angles
of incidencewere �θ0;ϕ0� � �12.5°; 45°�. The subplots show scattering
(b) from p polarization to p polarization, (e) s → p, (c) p → s, and (f)
s → s. In (a), the incident light was p-polarized, but the polarization of
the scattered light was not recorded, and in (d) the incident light was
s-polarized. The enhanced forward scattering peak is most easily seen
in the p → p configuration (b). The sharp circular edge, centered on
k∥, is caused by the suppression of single scattering due to the form
of the power spectrum; see discussion in Section 2.D, Eq. (3), and
Fig. 2(a).
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be obvious. We note that if the power spectrum of the ran-
domly rough surface is, for example, Gaussian, the single
scattering contribution to the MDRC is typically dominant.
In such cases, it can be challenging to separate single scatter-
ing effects from multiple scattering effects.

3. RESULTS
In this section, we present results for the MDRC when light is
scattered from rough silver surfaces. For all the results pre-
sented here, the (vacuum) wavelength of the incident light
was λ � 457.9 nm, and the dielectric function of the Ag
substrate at this wavelength is ε2 � −7.5� 0.24i. The vacuum
dielectric function is ε1 � 1. The rough surfaces were charac-
terized by the power spectrum of Eq. (3), defined by the
wavenumber parameters k�1�− � 0.782ω∕c, k�1�� � 1.366ω∕c,
k�2�− � 2.048ω∕c, and k�2�� � 2.248ω∕c. Furthermore, the ampli-
tudes γi were chosen such that γ2∕γ1 � 0.75, which was found
in [10] to give a relatively strong enhanced forward scattering
effect. The rms surface roughness was taken to be δ � 0.025λ;
the edge of the square region covered by the rough surface
was L � 36λ; and this region was discretized at a grid of Nx �
359 points along each of the x1 and x2 directions.

As the Nyquist theorem [28] relates resolution in position
space and wave vector space, the values of Nx and L lead
to the following numerical parameters: the wavenumber cut-
off in the integral in Eq. (8a) was Q∕2 � 2.493ω∕c; the resolu-
tion in q∥ wasΔq � 0.0279ω∕c; andNq � 180 values of q∥ were
resolved along each of the q1 and q2 axes [21]. The results pre-
sented were obtained by averaging the results over an ensem-
ble of 10,825 surface realizations. Simulating the scattering
from one surface realization took approximately 17 min on
a machine with two six-core AMDOpteron 2.4 GHz processors
and required about 12 GB of memory. For a discussion of the
details of how the calculations were performed, we refer
to [21].

In Fig. 3, we present the full angular distribution of the
MDRC, including polarization effects. Figures 3(a)–3(c) show
the MDRC for p-polarized incident light, and in Figs. 3(d)–3(f)
the incident light was s-polarized. In the upper row, the polari-
zation of the scattered light was not recorded; in the second
row, only the p-polarized component of the scattered light was
recorded; and in the third row, only the s-polarized compo-
nent of the scattered light was recorded. The full angular in-
tensity distribution displays important information hidden
from the reader of in-plane or out-of-plane cuts of the MDRC
(e.g., Fig. 4). Notably, we observe that the intensity distribu-
tion depends on which linear polarization is used to illuminate
the surface as well as which linear polarization is recorded
in the (simulated) detector. Furthermore, the crescent regions
of the MDRC of high intensity show for which angles of
scattering single scattering is allowed, as per the theoretical
discussion in Section 2.D.

One of the significant differences between the light scatter-
ing from one-dimensional and two-dimensional rough surfa-
ces is the absence of polarization effects in the former case
(assuming the plane of incidence to be perpendicular to the
grooves of the surface). Notably, for light scattering from
rough two-dimensional surfaces, the light scattered out-of-
plane is significantly cross-polarized.

The enhanced forward scattering phenomenon expresses
itself as a peak in the specular direction of the intensity of

the light scattered incoherently by the rough surface. For this
reason, in Figs. 4 and 5 we present the incoherent component
of the MDRC in the plane of incidence (i.e., for ϕs � ϕ0).

Figure 4 shows the incoherent component of the MDRC for
θ0 � 12.5°, for all combinations of incident and scattered po-
larizations. Because SPPs can only be excited in p polariza-
tion, it is reasonable to assume that light scattered through
the temporary creation of an SPP will be predominantly p-
polarized. When examining Fig. 4, we only observe enhanced

Fig. 4. In-plane (i.e., for ϕs � ϕ0) part of the MDRC for light scat-
tered from a rough silver surface with rms roughness δ � 0.025λ.
The angles of incidence were �θ0;ϕ0� � �12.5°; 45°�. The results were
obtained by averaging over 10,825 surface realizations. The most
prominent enhanced forward scattering peak is in p → p polarization,
but a small contribution in s → p polarization can also be seen. En-
hanced backscattering is observed in all polarization combinations.

Fig. 5. p → p contribution to the MDRC for the same surface proper-
ties as in Fig. 4 for several different angles of incidence. In all cases,
we observe the enhanced forward scattering peak. The effect is most
powerful in the vicinity of θ0 ≈ 12°. For polar angle of incidence
θ0 � 29.5°, it is not possible to achieve enhanced forward scattering
through the in-plane SPP channel; hence, the peak at θs � 29.5° has a
different explanation.
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forward scattering, that is, a peak in the forward direction, for
p → p and s → p scattering. We also note that the enhanced
forward scattering peak is much more well defined in p → p
than in s → p scattering. It is worth noting that for angles
θs > −34.4°, in-plane single scattering of light is forbidden
due to the power spectrum used [Eq. (3) and Fig. 2]. Conse-
quently, the “edge” seen at the left-hand side of Fig. 4 is mainly
caused by the single scattering of light for angles θs ≤ −34.4°.

By studying the θ0 dependence of h∂Rpp∕∂Ωsi (Fig. 5), sev-
eral effects caused by the shape of the power spectrum can
be observed. The positions of the “edges” caused by the
suppression of single scattering are directly related to the
power spectrum: to the leading order in the surface profile
function, the intensity of single scattering is proportional to
the power spectrum of the surface [12,24]. For the surface
parameters assumed here, single scattering is forbidden for
jq∥ − k∥j < k�1�− � 0.782ω∕c. Thus, the cylindrical shape of
the power spectrum leads to a region around k∥ into which
less light is scattered, as single scattering is suppressed here.

Also in Fig. 5, a sharp edge is observed for the case of
θ0 � 29.5°, at θs ≈ −60°. The location of this edge is given
by the outer edge of the inner cylinder of the power spectrum,
k�1�� . Due to the power spectrum vanishing between the inner
and outer cylinder [Eq. (3)], single scattering is forbidden
for θs < −60°.

Of greater interest, and one of the main points of this paper,
are the peaks observed in the forward and backward direc-
tions. The vertical dotted lines in Figs. 4 and 5 show the ex-
pected positions of the enhanced forward scattering peaks,
and we see that in each case, these coincide with the observed
peaks. The effect is most pronounced for the polar angle of
incidence around θ0 ≈ 12°. For angles of incidence above
17°, it is not possible for SPPs to be excited in the plane of
incidence because the power spectrum in Eq. (3) is zero
for k∥ � kspp > k�1�� for in-plane scattering [10]. Nevertheless,

a peak in the incoherent part of the MDRC and in the specular
direction is visible for θ0 � 29.5°. Our interpretation is that the
origin of this peak is the presence of the g2 part of the power
spectrum; see Fig. 7(b) and the corresponding discussion.

In accordance with previous work on light scattering from
two-dimensionally randomly rough surfaces [17–19,21,22,27],
we observe enhanced backscattering in Figs. 4 and 5. The en-
hanced backscattering peak is located in the retroreflection
direction, θs � −θ0. The effect is present in both copolarized
and cross-polarized scattering. This is in contrast to the case
of one-dimensional surface roughness, where enhanced back-
scattering can only be observed in the p → p polarization
configuration.

A complete scan of the angles of incidence for which one
observes enhanced backscattering and enhanced forward
scattering is presented in Fig. 6. In these figures, the enhanced
backscattering peak and the enhanced forward scattering
peak are shown as “ridges” in the color map. As the ridges
follow the �θs directions very well, we conclude that they in-
deed represent the phenomena of enhanced backscattering
and enhanced forward scattering. For enhanced forward scat-
tering, which is a quadruple scattering effect, the peak is
somewhat broader than the enhanced backscattering peak,
which is a double (or higher-order) scattering effect. Briefly
put, the two-dimensional nature of the rough surface allows
for more freedom in the choice of scattered wave vectors,
leading to a wider peak.

For comparison with the results shown in Fig. 5, we have
also performed simulations for the cases where γ1 � 1, γ2 � 0
[Fig. 7(a)], or where γ1 � 0, γ2 � 1 [Fig. 7(b)]. In the former
case, only the inner annulus of the power spectrum is present,
and in the latter case, only the outer annulus is present. The
other simulation parameters were as follows. The edges of the
simulation domain in the x1x2 plane was L � 30λ and was dis-
cretized at Nx � 319 points along each of the lateral axes. The

Fig. 6. Contour plots of the incoherent, in-plane, and p → p part of the MDRC as a function of angle of incidence (θ0) and scattering (θs). We
assume ϕs � ϕ0 in these figures. (a) The enhanced backscattering peak is shown as a purple “ridge” at θs � −θ0. The oscillatory behavior with angle
of incidence that the enhanced backscattering peak seems to exhibit in (a) is believed to be an artifact of the interpolation routine used to produce
the figure from the discrete simulation data. (b) The enhanced forward scattering peak is shown as a purple “ridge” at θs � θ0. Note that the color
map has been truncated [cf. (a)] to show the peak more clearly.
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dielectric function, the power spectrum parameters k�i�� ,
and the rms surface roughness parameters were the same
as before. The parameters Nx and L were reduced for
these simulations in order to save computer resources. This
also leads to a different discrete set of θs being resolved
(cf. Fig. 5).

The results for γ1 � 1, γ2 � 0 are presented in Fig. 7(a). In
this case, incident light can couple to SPPs, but it is not pos-
sible to couple from one SPP to another SPP traveling in the
opposite direction (counterpropagation). Thus, enhanced
backscattering, which to the lowest order is a double scatter-
ing process, is allowed. Enhanced forward scattering, on the
other hand, is a quadruple scattering process, dependent on
scattering from SPPs to counterpropagating SPPs. Hence,
there is no enhanced forward scattering peak when γ2 � 0.
The shoulder visible in Fig. 7(a) does not move as θ0 in-
creases, meaning that it is not related to the enhanced forward
scattering phenomenon but is a result of the shape of the
power spectrum.

In Fig. 7(b), we show the results for γ1 � 0, γ2 � 1. In this
case, both single scattering and coupling from incident light to
SPPs are prohibited. Instead, incident light will excite evanes-
cent modes which are not resonant modes of the surface.
These may be scattered several times before coupling out into
vacuum-propagating modes. The width of the triangular struc-
ture seen in the MDRC in Fig. 7(b) is determined by the width
of the outer annulus of the power spectrum.

In order to verify the correctness of the numerical results,
the total reflected power normalized by the total incident
power was calculated. In all cases it was found to be lower
than 1, which is expected due to absorption. If one (artifi-
cially) assumes the substrate to be lossless, the normalized
reflected power should in principle be identical to 1. For
the surface parameters used in this study, and with
Im�ε2� � 0, the normalized total reflected power was 1.000�
0.007 for all angles of incidence. We stress that the conserva-
tion of energy is a necessary, but not sufficient, criterion for
the validity of the simulation results [21].

4. CONCLUSION
In conclusion, we have studied, by a nonperturbative numeri-
cal method, two phenomena observed in rough surface scat-
tering, namely enhanced forward scattering and enhanced
backscattering. These are both phenomena observed in the
diffuse (incoherent) part of the MDRC and are caused by
constructive interference between SPPs propagating along
a vacuum–metal interface. In particular, the observation of
enhanced forward scattering has not previously been reported
for systems containing two-dimensionally rough surfaces.
The two-dimensional nature of the rough surface studied
here gives significantly more freedom in the allowed scatter-
ing channels when compared to one-dimensionally rough
surfaces, giving less sharp “cutoffs” caused by the power
spectrum.

A simple visual model for determining which scattering
processes are allowed by two-dimensionally rough surfaces
has also been given (Fig. 2). This model can be used to deter-
mine for which combinations of angles of incidence and scat-
tering enhanced backscattering and enhanced forward
scattering can be observed.

The enhanced forward and backward scattering phenom-
ena are dependent on the presence of surface-guided modes.
Enhanced backscattering has already been observed in a thin-
film system in both polarizations [27]. We expect that en-
hanced forward scattering can also be observed in thin-film
systems for all polarization combinations, as such structures
support surface-guided modes in both p and s polarizations.
We leave this investigation to future work, as the required
computational effort is significant.
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Fig. 7. In-plane p → p scattering for power spectra with (a) γ1 � 1, γ2 � 0 and (b) γ1 � 0, γ2 � 1. With γ1 � 0, γ2 � 1, coupling into SPPs is
suppressed. With γ1 � 1, γ2 � 0, coupling into SPPs is allowed but not scattering from an SPP to a counterpropagating SPP. This allows enhanced
backscattering but not enhanced forward scattering.
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