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Observation of the boson peak in a 
two-dimensional material

Martin Tømterud    1 , Sabrina D. Eder    1, Christin Büchner    2,9, 
Lothar Wondraczek    3, Ingve Simonsen    4, Walter Schirmacher5,6, 
Joseph R. Manson    7,8 & Bodil Holst    1 

The boson peak is an excess in the phonon vibrational density of states 
relative to the Debye model. It has been observed in a wide range of 
amorphous materials, from inorganic glasses to polymers. Two-dimensional 
random matrix models and molecular dynamics simulations predict that 
the boson peak should also be present in amorphous two-dimensional 
materials, a notion that is of practical importance because it leads to an 
excess of heat capacity and influences transport properties. However, up 
until now, experimental observations in actual materials have not been 
possible due to the limited surface sensitivity of the methods usually applied 
to measure the boson peak. Here we present the experimental evidence of a 
boson peak in two-dimensional silica, through phonon spectra measured by 
means of inelastic helium-atom scattering. We identify the boson peak as a 
wavenumber-independent spectral maximum at a frequency similar to what 
has been observed in and predicted for bulk vitreous silica. Furthermore, 
we present a heterogeneous-elastic theory calculation in two dimensions, 
which shows how the vibrational coupling of the transversal and flexural 
shear vertical phonon modes produces the boson peak in two-dimensional 
materials at a frequency similar to that of the bulk, in agreement with our 
measurements.

The Debye model predicts that below the Debye frequency, the vibra-
tional density of states for a solid material is proportional to ωD−1, where 
D is the dimensionality and ω is the phonon frequency1. However, 
experiments have shown that many materials across the wide group 
of disordered materials exhibit a characteristic deviation from the 
Debye model prediction in the form of a broad, dispersionless excess 
of states relative to the expected frequency dependence. This devia-
tion is commonly referred to as the boson peak (BP)2–5. The BP excess 
in the density of states is also found to be related to a similar excess in 
the heat capacity C(T) measured at low temperatures. There, the BP 

appears as a hump in C(T)/T3 in the bulk material at around 10 K (refs. 
6,7). This hump in the heat capacity is associated with an opposite 
effect on the thermal conductivity. At the BP temperature, the thermal 
conductivity exhibits an upside-down BP8. This thermal anomaly is 
also associated with the BP9. The BP has furthermore been observed to 
influence energy transport in amorphous materials, where coexisting 
diffusive and propagative energy transport has been observed in the 
BP frequency range10.

The BP has been observed using a wide range of measurement 
techniques: Raman spectroscopy2,11–14; optical spectroscopy15 including 
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In this paper, we present the first experimental observations of 
a BP in a 2D material: amorphous 2D silica supported on Ru(0001). 
This 2D film system has generated considerable interest because it is a 
transferable, wide-bandgap material. The 2D silica film is weakly bound 
to the Ru(0001) substrate and can be peeled off62,63. The silica bilayer is 
the thinnest arrangement of SiO2 known63 and—as it can be prepared in 
an amorphous phase—it has also been named the world’s thinnest glass. 
The material is, therefore, of interest to the glass science community 
as it provides the opportunity to study a 2D glassy film and experimen-
tally investigate how dimensionality impacts glassy properties. TEM 
imaging has been applied to confirm the 2D nature of the material64 
and to study atomic rearrangement in glass65. It has been shown66 that 
the mechanical properties of free 2D silica can be extracted from the 
phonon frequency spectrum. As discussed in that work66, the phonon 
spectrum exhibits no prominent features (except for the appearance of 

far-infrared spectroscopy16,17, X-rays18, neutron scattering19–21 and tera-
hertz spectroscopy22; and thermal techniques23 including indirect 
verification through measurements of the temperature dependence 
of heat capacity8,24. A BP-like anomaly in the vibrational density of 
states has also been observed in nanocrystalline 57Fe (ref. 25), which 
is consistent with the results of simulations of nanocrystals26. Due to 
their limited surface sensitivity, all these experimental techniques 
address bulk material behaviour only; even grazing-incidence X-ray27 
and grazing-incidence neutron scattering28 have penetration depths 
of a few nanometres, well above what one would consider the thickness 
of a two-dimensional (2D) material. Hence, the BP observed from such 
experiments reflects volumetric disorder. In three-dimensional (3D) 
vitreous silica, the BP has been reported by inelastic neutron19 and 
inelastic X-ray scattering14 near the frequency of ~6 meV, where the 
X-ray BP has much less intensity than the neutron one14.

In 2007, the first observations of the BP as a surface phenomenon 
were obtained through the measurements of phonon dispersion curves 
on vitreous silica obtained using inelastic helium-atom scattering 
(HAS)29–32. HAS has a unique surface sensitivity. Unlike electrons, X-rays 
and neutrons (all of which interact with the core electronic cloud and 
atomic nuclei in the sample), the neutral helium atoms scatter off the 
outermost charge density distribution at the sample surface with no 
penetration into the bulk. The classical turning point for HAS at ther-
mal energies is a few angstroms above the surface33. HAS is, therefore, 
particularly suited for this type of measurement34.

The BP has been observed in 2D macroscopic model systems 
consisting of colloid particles35 and photoelastic discs36,37, and it was 
recently claimed to have been observed in ultrathin alumina layers on 
oxidized aluminium nanoparticles38; however, to date, it has not been 
experimentally observed in an atomically thin 2D material.

Theoretically, one has long assumed some form of disorder in a 
material to be a prerequisite for the existence of BP as a bulk phenom-
enon. Early approaches used soft potentials and double-well poten-
tials introduced into the Hamiltonian39–42. The vibrational density of 
states for vitreous silica has been calculated using molecular dynamics 
simulations, leading to a prediction of the BP at around 6 meV (ref. 43) 
and around 7 meV (ref. 44), in good agreement with the experimental 
Raman scattering data2. Molecular dynamics simulations have also 
been used to calculate the BP at the surface of vitreous silica45. They 
obtained a BP at around 4 meV, in good agreement with the experi-
mental HAS data mentioned above29.

In 2004 (ref. 46) and later9,47, it was shown that the ori-
gin of the BP in bulk glass can be explained in the framework of 
heterogeneous-elasticity theory (HET). In particular, the anomalies 
of specific heat and thermal conductivity in the ~10 K region were 
shown to have the same origin as the BP, namely, spatially fluctuating 
elastic constants.

At the same time, extensive simulations clarified that the 
BP-related vibrational anomalies of glasses are associated with 
non-affine displacement fields48–52. The non-affine aspects of the 
disorder-induced vibrational anomalies were shown to be accounted 
for by HET47,53. Further, the BP frequency was shown to coincide with 
the Ioffe–Regel limit for the existence of plane-wave-like states47,54–56. 
The states near and above the BP frequency were identified to be of the 
random matrix type55,57,58.

The BP has been theoretically predicted to exist in 2D materials by 
molecular dynamics simulations54 and random matrix models59–61. In a 
recent review of modern silicate glasses, the BP frequency of silica was 
reported using HET to vary between 4 and 6 meV (ref. 53).

In Methods, we present 2D HET calculations unpublished to date, 
to the best of our knowledge, which shows that the BP from elastic 
in-plane vibrations of a 2D material is coupled via disorder to the 
out-of-plane flexural shear vertical mode, also referred to as the ZA 
mode. This coupling arises via the disorder-induced frequency depend-
ence of the effective flexural stiffness.
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Fig. 1 | Several examples of HAS TOF spectra, converted to energy transfer 
ΔE, for 2D silica supported on Ru(0001). The incident polar angle relative to 
the sample normal is θi, and ϕ is the azimuthal angle of the sample relative to the 
principal axis of Ru(0001). The upward-pointing blue arrows indicate the ZA 
mode, and the downward-pointing red arrows indicate the BP.
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a gap in the dispersion of the ZA mode) that can be directly related to the 
underlying substrate. Therefore, this 2D film system provides an excel-
lent framework for investigating the BP using HAS and comparing it with 
the aforementioned surface and bulk measurements. Because the BP is 
a disorder-induced phenomenon, the knowledge about this anomaly—
and the corresponding modifications of the phonon spectrum—may be 
used for tuning the thermal properties of SiO2 layers for applications63. 
Using inelastic HAS, we have obtained the time-of-flight (TOF) spectra 
that provide the basis of our experimental analysis. The experimental 
setup and methods are described in Methods. Examples of TOF spectra 
are shown converted to energy transfer ΔE (Fig. 1). These examples were 
chosen to cover the complete range of incident polar angles explored. 
The peak at ΔE = 0 corresponds to diffuse elastic scattering, with no 
energy transfer with the surface. Negative values of ΔE correspond 
to phonon creation and positive values, to phonon annihilation. The 
upward-pointing arrows indicate the ZA mode, which were analysed in 
detail elsewhere66 and used to obtain the bending rigidity of 2D silica. 
The downward-pointing arrows indicate the BP.

The TOF spectra, once they are converted to energy transfer, are 
known as the differential reflection coefficient dR/dΩdE: the number 
of helium atoms dR scattered within a small solid angle dΩ and small 
energy interval dE. In the HAS community, the differential reflection 
coefficient is usually expressed in terms of the surface phonon spectral 
density ρzz as29,30

dR
dΩdE

∝
kf
|ki,z|

|τfi|2|n(ω)|e−2W(kf ,ki ,T)(Δkz)
2ρzz, (1)

where we have introduced the momentum-transfer vector Δk = kf − ki, 
and the indices i and f represent the states of the helium atom before 
and after the scattering event, respectively. The exponential is the 
Debye–Waller factor, and τfi is the form factor of the interaction poten-
tial between the helium atom and 2D silica. In the glass community, it 
is, however, more common to express the above equation in terms of 
the dynamical structure factor S(Δk, ω). We, therefore, rewrite our 
equation as67

dR
dΩdE

∝
kf
|ki,z|

|τfi|2S(Δk,ω). (2)

The structure factor is proportional to the surface spectral func-
tion of 2D silica, ℑD(Δk, ω) (appendix N in ref. 68), which, in turn, is 
equivalent to the spectral density ρzz = ℑD(Δk, ω).

Figure 2 shows the examples of the spectral function spectra that 
have been normalized against the linear frequency dependence (see the 
‘Data analysis’ section) and Fig. 3 shows the averages of these spectra.

The spectra are taken from points on the dispersion curves  
(Fig. 4a) for a sample azimuth of 12.0° relative to the high-symmetry 
direction of the Ru(0001) substrate and incident polar angles ranging 
from θi = 37.5° to 52.0°. In each spectrum shown in Fig. 2, the region 
close to the large elastic peak at ΔE = 0 has been subtracted. The dashed 
blue curve marks the ZA mode. It disperses to higher-energy values 
as the incident angle moves further away from the specular position, 
corresponding to larger values of ∣ΔK∣. The BP appears at the same 
energy of about 6 meV (corresponding to mode annihilation; Fig. 2, 
right) and about –6 meV on the left (creation). The BP is denoted by 
a vertical red dash–dot line for all the conditions and has a full-width 
at half-maximum of about 3.5 meV. The averages in Fig. 3 (left) corre-
spond to the negative-energy exchange region in Fig. 2 (left); similarly, 
the average on the positive-energy side in Fig. 3 corresponds to the 
positive-energy values in Fig. 2 (right). The error bars are taken to be one 
standard deviation. The error bars for BP are clearly situated above the 
reference line at unity. A HAS experiment measures only those inelastic 
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features that cross its scan curve, and this explains why the BP appears 
only at positive-energy transfer (Fig. 2, right).

Figure 4 shows the dispersion curves, that is, plots of ΔE as a 
function of parallel momentum transfer ΔK obtained as the maxima 
of S(Δk, ω), with ω = ΔE/ℏ. Figure 4a shows the measurements for all 
the polar angles taken at a single azimuthal angle of 12°, whereas 
Fig. 4b shows all the features observed at all the polar and azimuthal 
angles of the total 156 spectra datasets. Also, Fig. 4 shows three rep-
resentative scan curves as dashed green curves denoted by the cor-
responding incident polar angle. The scan curves are obtained from 
the conservation of energy and parallel momentum for the largest 
and smallest incident angles measured, as well as the one closest to 
the specular position at θi = 45°. The importance of the scan curves 
is that for a given θi, only those quantum features (inelastic or elas-
tic) that the scan curves cross can be observed. The red circle data 
points give the positions of the BP mode in this figure, and it is clear 
that this is at very nearly constant energy for all the ΔK values, that 
is, it is dispersionless as expected29. In the vicinity of the ZA mode, 
the BP feature could not be distinguished because it is obscured by 
the much larger ZA peak.

In view of the mentioned simulational studies, which show irregu-
lar displacements and spatially fluctuating elastic constants associated 
with the BP anomaly48,49,54–56,58–61, we can expect that in structurally 
disordered 2D systems, generically, a BP should be observed. This is in 
accordance with our 2D HET model (Methods and Fig. 5). Our model 
gives the important insight that the BP in a 2D material should occur at a 
similar frequency as in the bulk because the relevant elastic parameters 
of the 2D system should be similar to those in a 3D system.

Some scans (for example, Fig. 1 (top left)) contain a feature at about 
twice the energy of the BP with a full-width at half-maximum about 
twice as large. This feature could potentially be interpreted as a double 
excitation of the BP, if the BP itself is understood as a narrow collection 
of dispersionless modes. This will be a topic for further investigation.

To conclude, we present the first measurements of BP in a 2D mate-
rial, namely, 2D silica. We obtain a value of around 6 meV (1.5 THz), in 
agreement with the BP position in bulk silica. We attribute our observa-
tion to in-plane elastic disorder, which couples to the low-frequency 
ZA mode probed through inelastic HAS. Future work should include 
(1) the measurements of 2D silica grown on other substrates64 to assess 
the influence of the substrate binding energy on the BP behaviour; 
(2) temperature-dependent measurements to test if the blueshift 
behaviour observed for the surface BP of bulk silica also occurs in two 
dimensions; (3) measurements of the BP intensity in samples with dif-
ferent degrees of amorphicity, to investigate the possibility of ‘tuning’ 
the BP feature; and (4) further investigations of the potential double 
excitation of BP at higher energies and the consequences this observa-
tion would impose on the theory.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
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Methods
Experimental
The vitreous 2D silica sample was prepared in an ultrahigh vacuum on 
a Ru(0001) substrate at the Fritz Haber Institute, Berlin. We used the 
same sample that is described elsewhere66. After preparation, the 
sample was removed from the ultrahigh-vacuum chamber in Berlin 
and transported to Bergen. During transport, the sample was exposed 
to ambient conditions for more than 20 h. On arrival from Berlin, the 
sample was installed in the argon-vented sample chamber, which was 
then pumped down. The background pressure was around 1 × 10−9 mbar. 
A signal could be obtained from the sample without any initial cleaning; 
however, to ensure the maximum intensity before measurements were 
done, the sample was heated to 675 K for 1 h in an oxygen atmosphere 
(pO2 = 2.2 × 10–6 mbar). This improved the measured signal. A slight 
decline in the reflected signal could be observed over a period of days. 
For this reason, the cleaning process was repeated every day before 
the measurements. This restored the original reflectivity. The HAS 
experiments were carried out in MAGIE, the molecular-beam apparatus 
at the University of Bergen69,70. The neutral helium beam was created 
by a free-jet expansion from a source reservoir through a 
10.0 ± 0.5-μm-diameter nozzle. The central part of the beam was 
selected by a skimmer, 410 ± 2 μm in diameter, placed 17.0 ± 0.5 mm in 
front of the nozzle. All the experiments presented here were carried 
out on a room-temperature sample (T = 296 ± 1 K). The source–detector 
scattering angle was held constant at 90°. The diffraction scans were 
measured with a room-temperature beam corresponding to a beam 
energy of E0 = 64 meV, whereas for the TOF measurements, the beam 
was cooled to an energy of around E0 = 29 meV. The stagnation pressure 
in the source reservoir was p0 = 81 bar for all the TOF measurements. 
The incident-beam size was around 4 mm in diameter at the sample 
position. The TOF measurements were performed with a pseudoran-
dom chopper71. The measurements presented were conducted as six 
independent series, varying the incident-beam angle (polar angle) θi 
at five different azimuthal angles, namely, ϕ ∈ {0°, 12.0°, 17.0°, 60.0°, 
90.0°}. In total, 156 TOF spectra were obtained. A low-energy electron 
diffraction analysis of the sample at the Fritz Haber Institute indicated 
that the sample was primarily vitreous. This is supported by the fact 
that no crystalline diffraction pattern was observed with HAS66. The 
azimuthal angle was varied to ensure that the effects measured were 
truly isotropic.

The thickness of an atomically thin layer is difficult to define, a 
problem well known in the study of single-layer graphene where it 
is called the Yakobson paradox72. Scanning tunnelling microscopy 
imaging has suggested a height of 3–5 Å for bilayer silica films on a Ru 
substrate62,73. Based on density functional theory calculations and the 
mechanical measurements of this sample presented in another work66, 
this sample has been estimated to have a thickness of about 6.1 Å.

Data analysis
The dynamic structure factor S(Δk, ω) for a solid with harmonic dynam-
ics is given by

S(Δk,ω) = e−2W(kf ,ki ,T)
n
∑
i=1
S(ν)(Δk,ω), (3)

where the index ν in S(ν)(Δk, ω) runs over the νth-phonon structure 
factors; one phonon, two phonon and so on. To get a good approxi-
mation, the structure factor of the inelastic HAS data is dominated 
by the one-phonon contribution. The one-phonon structure factor 
is by the fluctuation–dissipation theorem related to the strain–strain 
response function74

χ(Δk,ω) = χ′(Δk,ω) + iχ′′(Δk,ω)

= (Δk)2D(Δk,ω),
(4)

where D(Δk,ω) = D′ + iD″ is the response function (Green’s function) 
of the out-of-plane displacements. The dynamic structure factor is, 
therefore, given by

S(1)(Δk,ω) = |n(ω)|χ′′(Δk,ω)

= |n(ω)|(Δk)2D′′(Δk,ω)
. (5)

Therefore, through the experimentally measured differential reflection 
coefficient, we have access to the imaginary part of Green’s function, via

dR
dΩdE

∝
kf
|ki,z|

|τfi|2|n(ω)|e−2W(T)(Δk)
2D′′(Δk,ω). (6)

Rearranged, this gives

D′′(Δk,ω) ∝
dR

dΩdE
|ki,z|

kf (Δk)
2|n(ω)||τf,i|2 exp[−2W(T)]

. (7)

The Debye–Waller factor has been introduced as exp[–2W(kf, ki, T)] 
and the Bose–Einstein function as n(ω) = (eβℏω – 1)–1, where β ≡ (kBT)–

1, kB is Boltzmann’s constant and T is the sample temperature. The 
absolute value sign around n(ω) signifies evaluating it as n(ω) + 1 in 
creation events and n(ω) for annihilation events. The intensity of raw 
data is observed to linearly increase with ω, as expected for the back-
ground produced by the low-frequency acoustic phonon modes of a 
semi-infinite substrate, mediated by the electron density. We, there-
fore, present the normalized spectral function D″ as D″/ω.

The ZA mode of a thin film on a substrate has a well-understood 
dispersion relation given by75

ω2ZA =
κ
ρ2D

(Δk)4 + ω20, (8)

where κ is the bending rigidity and ρ2D is the 2D mass density. The gap, 
ω20 = g/ρ2D, is proportional to the elastic-coupling strength between 2D 
silica and substrate, g (ref. 75). The form factor τfi is approximated using 
the well-known Morse potential matrix elements, that is, the 
distorted-wave matrix elements of the Morse potential taken with 
respect to its own eigenstates (chapter 8 in ref. 76). The argument of the 
Debye–Waller factor 2W(T) within the harmonic lattice approximation 
and for sufficiently large temperatures is linear in T. It is usually deter-
mined by measuring the temperature dependence of the specular dif-
fraction peak. In the present set of experiments, the temperature 
dependence of the specular peak intensity was not measured; therefore, 
the argument was taken to be represented by 2W = (Δk2C + D)T, where 
the coefficients C and D were taken as fitting parameters. The coefficient 
D is proportional to the so-called Beeby correction, in which the attrac-
tive well depth of the interaction potential is added to the energy of 
normal motion of the helium atom77. As a check on this procedure, 
previous data from which the BP was determined at a silica surface29 
were re-examined using this method, and nearly identical results were 
found for both Debye–Waller factors and surface BP intensities.

Theoretical
2D HET. We consider a 2D system with spatially fluctuating shear 
modulus G(r) = G0 + ΔG(r), where G0 is the mean and ΔG(r) are the 
fluctuations.

In two dimensions, longitudinal and transverse Green’s functions 
(response functions of the in-plane displacements) are given by

DL,T(q,ω) =
1

−ω2 − iϵ + q2vL,T(ω)
2 (9)
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As usual, one has to add an infinitely small positive real number 
to the spectral variable ω2. The vL,T(ω) values are effective, com-
plex, frequency-dependent sound velocities, related to a complex, 
frequency-dependent shear modulus:

ρ2DvT(ω)
2 = G0 −Σ(ω) ≡ G(ω),

ρ2DvL(ω)
2 = K + G(ω),

(10)

where K is the bulk modulus. In the self-consistent Born approximation, 
the equation for self-energy Σ(ω) is9

Σ(ω) = 1
2 γ (

1
2π )

2
∫

|q|<qξ

d2qq2(DL(q,ω) + DT(q,ω)), (11)

where γ ∝ 〈ΔG2〉 is the so-called disorder parameter. The upper cutoff qξ 
is inversely proportional to the correlation length ξ of the fluctuations. 
This equation predicts

Σ
′′(ω) ∝ Γ (ω)/ω ∝ ω2, for ω < ωBP

where Γ is the the Brillouin linewidth and ωBP is the BP frequency.
In Fig. 5, we have plotted Σ″(ω)/ω versus ω; in this representation, the 

BP (which is actually a shoulder in the spectrum; inset) becomes visible.

Coupling to the out-of-plane vibrational degrees of freedom. The 
unperturbed Green function of the ZA modes is given by75

D(0)ZA (k,ω) =
1

−ω2−iϵ+ω2ZA(k)

= 1
−ω2−iϵ+ω20+

1
ρ2D

κk4

, (12)

where k ≡ ∣Δk∣. The bending (flexural) rigidity κ is given by the 
layer thickness h, Poisson’s ratio ν and Young’s modulus of the 
three-dimensional material Y3D = 2G3D(1 + ν) as

κ = h3
12(1 − ν2)Y3D =

h3
6(1 − ν)G3D. (13)

Here G3D is the 3D shear modulus, which obeys

G3D = G2D
ρ3D
ρ2D

= G2D/h, (14)

from which follows

κ = h2
6(1 − ν)G2D. (15)

This establishes the coupling of the ZA mode to the 2D shear elasticity. 
In the model of 2D heterogeneous elasticity introduced earlier, the BP 
is produced by the frequency dependence of the 2D shear modulus 
G(ω). This will give rise to a corresponding frequency dependence of 
the bending rigidity of the ZA modes, that is, we have to replace the 2D 
shear modulus in equation (15) by the frequency-dependent one given 
by equation (10). The effective complex and frequency-dependent 
flexural stiffness, which provides the coupling of the ZA modes to the 
in-plane BP, is given by

κ(ω) = h2
6(1 − ν)G2D(ω) =

h2
6(1 − ν) (G0 −Σ(ω)) , (16)

so that we may write

DZA(k,ω) =
1

−ω2 + iϵ + ω2ZA(k) −Π(k,ω)
(17)

with

Π(k,ω) = V(k)Σ(ω) (18)

and the vertex function

V(k) = 1
G0

(ω2ZA(k) − ω
2
0) . (19)

In other words, the in-plane disorder-induced anomalous elastic-
ity—with its 2D BP—is coupled to the flexural out-of-plane degrees of 
freedom in the same way as the shear modulus to bending rigidity75.

For the spectral function, we finally get

χ′′(k,ω) ∝ k2V(k)Σ′′(ω)

[ω2ZA(k) −Π ′(k,ω)]
2
+Π ′′(k,ω)2

. (20)

The spectral function is proportional to Σ″(ω), that is, the spectral 
function, divided by ω, exhibits a BP (Fig. 5).

Data availability
The experimental dataset is available via DataverseNO at https://doi.
org/10.18710/CMKTQX (ref. 78).
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