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Abstract

Electromagnetic wave scattering from planar dielectric films deposited on one-dimensional, randomly rough, perfectly
conducting substrates is studied by numerical simulations for both p- and s-polarization. The reduced Rayleigh equation,
which is the integral equation satisfied by the scattering amplitude after eliminating the fields inside the film, is the starting
point for the simulation. This equation is solved numerically by considering a random surface of finite length, and by
introducing wave number cut-offs in the evanescent part of the spectrum. Upon discretization, a system of linear equations is
obtained, and by solving this matrix system for an ensemble of surface realizations, the contribution to the mean differential

Ž .² :reflection coefficient from the incoherently scattered field, E R rEu nsp,s , is obtained nonperturbatively. It isn incoh
² :demonstrated that when the scattering geometry supports at least two guided waves, E R rEu , has, in addition to then incoh

well-known enhanced backscattering peak, well-defined satellite peaks in agreement with theory, for most of the parameters
considered. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 42.25.Fx; 42.25.Gy; 78.66.Bz; 73.20.Mf
Keywords: Rough surface scattering; Satellite peaks; Surface plasmons

1. Introduction

Over the last five years, the scattering of light from bounded systems where one of the interfaces is rough has been
studied in several papers. It was demonstrated that these systems may give rise to special enhancements in the angular
distribution of the intensity of the light scattered incoherently, in addition to the more well-known enhanced backscattering

w xpeak 1,2 which is known to appear in the retroreflection direction. These enhancements, known as satellite peaks, are
Ž .present only for bounded systems supporting two and not many more surface or guided waves at the frequency v of the

w xincident light 3 . They are the result of the coherent interference of multiply-scattered waves that are time-reversed partners
of each other.

1 E-mail: ingve.simonsen@phys.ntnu.no
2 E-mail: aamaradu@uci.edu
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Fig. 1. The scattering geometry considered in the present paper. The medium above the illuminated planar surface at x s d is vacuum. The3
Ž . Ž .randomly rough surface at x sz x is characterized by a stationary, zero-mean, Gaussian random process z x . Below this surface the3 1 1

Ž .medium is a perfect conductor, while a dielectric film is present in the region z x - x - d. This film is characterized by the frequency1 3
Ž .dependent dielectric function ´ v . The angles of incidence and scattering are u and u , as indicated in the figure.0

The scattering systems previously considered in the literature in connection with the study of satellite peaks naturally
divide into two classes. The first one consists of a rough dielectric film deposited on a planar perfectly conducting substrate
w x Ž .3–6 . The second geometry is a thin metal plate whose illuminated top surface is a randomly rough one-dimensional

w x Ž w x.surface, while the lower one is planar 7,8 see also Ref. 9 . In addition, systems containing volume disorder, in contrast to
w xsurface disorder, have also been considered, but such systems will not be treated in the present work 10 . The formalisms

applied to the study of these scattering systems range from perturbation theories, such as small-amplitude perturbation
w x w x w xtheories 4,6,7 , stochastic functional methods 5,9 , and numerical simulations 11 . It should be noted that when low-order

perturbation theory is not valid, a non-perturbative approach has to be taken. Such an approach is provided by numerical
simulation techniques like the one presented in the present work.

Ž w x.The scattering geometries considered in the works mentioned above except for Ref. 9 have one thing in common,
namely that the illuminated surface is always the randomly rough surface, while the back surface is planar. In the present

Ž .paper we consider a geometry where the lower interface is randomly rough and the upper illuminated one is planar. In
Ž .particular, we consider a planar dielectric film deposited on a perfectly conducting rough substrate see Fig. 1 . Proceeding

from the reduced Rayleigh equation for the scattering amplitude we use numerical simulations to obtain the contribution to
Žthe mean differential reflection coefficient from the incoherent component of the scattered light also known as the mean

.incoherent differential scattering cross section .
This paper is organized as follows. We start by describing the scattering geometry, the statistical properties of the rough

Ž .surface, and the satellite peaks supported by this geometry Section 2 . In Section 3, the reduced Rayleigh equation is
derived, and in Section 4 the numerical method used in the present work for its solution is discussed. The numerical results
and their discussion are presented in Section 5. Finally, in Section 6 the conclusions from these results are presented.

2. The scattering geometry

The scattering geometry we consider in this work consists of a dielectric film, characterized by the dielectric function
Ž . Ž . Ž .´ v s´ v q i´ v , deposited on a randomly rough perfectly conducting semi-infinite substrate. The top interface of1 2

the dielectric film is planar, and the medium above the film is assumed for simplicity to be vacuum. The mean thickness of
the film is d. The scattering system is depicted in Fig. 1. The interface separating the perfect conductor and the film is
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Ž .described by the surface profile function z x . This function is assumed to be a single-valued function of x . Furthermore,1 1

it will be assumed to be a zero-mean, stationary, Gaussian random process defined through the following properties,

² :z x s0, 1Ž . Ž .1

X X2² :z x z x ss W x yx . 2Ž . Ž . Ž .Ž .1 1 1 1

Ž < <.Here s is the rms-height of the surface roughness, and W x is the surface-height autocorrelation function normalized1
Ž .such that W 0 s1. The angle brackets denote an average over the ensemble of realizations of the surface profile function

Ž . Ž < <.z x . It will later on prove useful to have the power spectrum, g k , of the surface roughness at our disposal. It is defined1

as

`
yi k x1< < < <g k s d x W x e . 3Ž . Ž .Ž .H 1 1

y`

In the present paper two forms of the power spectrum will be considered. These are the Gaussian power spectrum defined by

2 2'< <g k s p a exp yk a r4 , 4Ž . Ž .Ž .
where a is the transverse correlation length of the surface roughness, and the West-O’Donnell power spectrum

p
< <g k s u kyk u k yk qu yk yk u kqk , 5w xŽ . Ž .Ž . Ž . Ž . Ž .y q y qk ykq y

Ž . w xwhere u k is the Heaviside unit step function. The latter power spectrum was recently used by West and O’Donnell 14 in
an experimental study of enhanced backscattering by the surface plasmon polariton mechanism in the scattering of
p-polarized light from a one-dimensional, randomly rough, metal surface. In their work West and O’Donnell defined k andq

Ž . Ž . Ž .k by k sk v " vrc sinu , where "k v are the wave numbers of the forward- and backward-propagatingy " sp wo sp

surface plasmon polaritons at a planar vacuum–metal interface, whose frequency v is that of the incident field. The physical
Ž .significance of the angle u is that if the angle of incidence u is in the interval yu ,u , the incident light can excitewo 0 wo wo

both the forward and backward propagating surface plasmon polaritons through the surface roughness. Similarly, if the
Ž .scattering angle u is in the interval yu ,u , the excited surface plasmon polaritons will be coupled to scattered volumewo wo

waves in the vacuum region above the metal surface. With this form of the power spectrum the incident light couples
strongly to the surface plasmon polaritons over a limited range of angles of incidence rather than weakly over a large range

Ž < <.of this angle, as is the case when a power spectrum g k peaked at ks0, e.g. a Gaussian, is used. This is because in the
Ž .latter case the wave numbers "k v lie in the wings of the power spectrum, where it is usually small. As a consequencesp

Ž .of the strong excitation of surface plasmon polaritons by the incident light when the power spectrum 5 is used, the
amplitude of the enhanced peak, which is caused by the coherent interference of multiply scattered surface plasmon
polaritons with their time-reversed partners, is significantly increased with respect to its value when the Gaussian power

Ž .spectrum 4 is used.
To get an intuitive picture of surfaces it is often useful to supply the mean slope, s, and the mean distance between

Ž .² :consecutive peaks and valleys, D , as measured along the lateral x -direction. These two quantities can be related to the1
w xpower spectrum, and the parameters which defines it. The appropriate expressions can be found in e.g. Ref. 11,15 .

Satellite peaks appearing in the scattering of light from bounded systems are well-defined enhancements in the angular
Ž .distribution of the scattered or transmitted intensity evenly distributed around the enhanced backscattering peak. They are

multiple-scattering phenomena, and are a consequence of the constructive interference of multiply-scattered waves with their
time-reversed partners. In order for satellite peaks to exist, the scattering system must support N guided waves, where N is

Ž . Ž . Ž .at least two. If we denote the wavenumbers of these N guided waves, by q v , q v , . . . , q v , and which might be1 2 N
w xfound from their dispersion relations 4,6,11 , it can be demonstrated that the satellite peaks should appear at scattering

w xangles defined by the following relation 4,6 ,
c

"sinu sysinu " q v yq v , m/n. 6w xŽ . Ž . Ž .Žm ,n. 0 m n
v

It should be stressed that not all of these angles may correspond to real satellite peaks. Some of them may lie in the
Ž . Ž .evanescent non-radiative part of the spectrum, i.e. the right hand side of Eq. 6 may be greater than unity in magnitude.

Furthermore, not all of the real satellite peaks are guaranteed to be observed, due to their low intensity.
In the present work when the West-O’Donnell power spectrum is used, we will choose the values of k and k toq y

include the wavenumbers of selected guided waves supported by the scattering system depicted in Fig. 1, enhancing the
roughness-induced excitation of these guided waves as a result. We will see that the amplitudes of the corresponding satellite
peaks, as well as the amplitude of the enhanced backscattering peak, will be increased thereby, in comparison with their
values when a Gaussian power spectrum is used.
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3. The reduced Rayleigh equation

ŽIn the present work we will consider a plane wave incident from the vacuum side on the structure described earlier Fig.
.1 , with the x x -plane the plane of incidence. By this choice for the plane of incidence, we are guaranteed that there is no1 3

cross-polarized scattering, and the plane of scattering coincides with the plane of incidence. As a consequence, one field
component is sufficient to describe the electromagnetic field completely. Thus, to simplify the notation we introduce

H x ,t nsp ,Ž .
F x ,t s 7Ž . Ž .n ½ E x ,t nss,Ž .

< yiv tF x ,t sF x , x v e e , 8Ž . Ž .Ž . ˆn n 1 3 2

Ž .where e is a unit vector in the x -direction, and the subscript n is a polarization index nsp,s . We have here explicitlyˆ2 2

assumed a time-harmonic dependence of the fields.
In the region above the film, x )d, the field consists of an incident and scattered waves. It can be represented by3

dq`
ik x yi a Žk ,v . x iq x qi a Žq ,v . x1 0 3 1 0 3< <F x , x v se q R q k e , 9Ž .Ž .Ž . Hn 1 3 n2py`

Ž < .where R q k is the scattering amplitude, andn

2° v v
2 < <yq , q - ,( 2 cc~a q ,v s 10Ž . Ž .0
2v v

2 < <i q y , q ) .(¢ 2 cc

Furthermore, the field inside the film consists of both upward and downward propagating modes. By applying the boundary
conditions satisfied by the field at the vacuum–dielectric and the dielectric–metal interfaces, two coupled integral equations

Ž . w xare obtained the Rayleigh equations . In obtaining these equations the Rayleigh hypothesis has been imposed 16,17 . The
w x < XŽ . <condition for the validity of this hypothesis can crudely be stated as 18 z x <1. Now, by eliminating the modes inside1

Ž < .the film, a single integral equation for R q k , known as the reduced Rayleigh equation, is obtained. For the scatteringn

w xsystem considered in the present work it assumes the following form 19 ,

dq`
q y< < <M p q R q k sM p k , 11Ž .Ž . Ž . Ž .H n n n2py`

where

2 2´ v v rc ypq a q ,v "´ v a q ,vŽ . Ž . Ž . Ž .0Ž ." " i a Žq ,v .d yi a q ,v d0< <M p q s"e e I a q ,v pyqŽ .Ž . Ž .p
a q ,v a q ,vŽ . Ž ..

a q ,v .´ v a q ,vŽ . Ž . Ž .0i a Žq ,v .d <qe I ya q ,v pyq 12Ž . Ž .Ž .
ya q ,vŽ ..

for p-polarization, and

a q ,v "a q ,vŽ . Ž .0Ž ." " i a Žq ,v .d yi a q ,v d0< <M p q s"e e I a q ,v pyqŽ .Ž . Ž .s
a q ,vŽ ..

a q ,v .a q ,vŽ . Ž .0i a Žq ,v .d <ye I ya q ,v pyq 13Ž . Ž .Ž .
ya q ,vŽ ..

Ž < .for s-polarization. The function I g q appearing in these formulae is defined by

`
igz Ž x . yi q x1 1<I g q s d x e e , 14Ž .Ž . H 1

y`



( )I. Simonsen, A.A. MaradudinrOptics Communications 162 1999 99–111 103

Ž .and a q,v is defined as

2v
2a q ,v s e v yq , Re a q ,v )0, Im a q ,v )0. 15Ž . Ž . Ž . Ž . Ž .( 2c

Ž < .The main purpose of this paper is to calculate the scattering amplitude R q k numerically. This amplitude is related to an

² :physically measurable quantity, the mean differential reflection coefficient E R rEu , which is defined as the fraction of then

total incident flux that is scattered into a small angular interval du around the scattering direction u . Since this quantity for
Ž .weakly rough surfaces will have a dominating peak due to coherent specular reflection, it is useful to subtract off this

contribution. If we do so, we are left with what is called the contribution to the mean differential reflection coefficient from
² :the incoherent component of the scattered light, which we will denote by E R rEu . This quantity is related to then incoh

Ž < . w xscattering amplitude R q k according to 2n

2E R 1 v cos u 2n 2² : ² :s R y R . 16Ž .n n¦ ;Eu L 2p c cosuincoh 0

Here L is the length of the sample along the x -direction, and u and u are the angles of incidence and scattering,1 0

respectively. These angles are defined in the counter and clockwise directions as indicated in Fig. 1, and they are related to
the wave numbers k and q by

v v
ks sinu , qs sinu . 17Ž .0c c

4. The numerical method

w xIn the paper by Madrazo and Maradudin 11 , their reduced Rayleigh equation was solved numerically by replicating the
rough surface of length L an infinite number of times, a method earlier used successfully for scattering from rough

w xvacuum–metal surfaces 12,13 . By doing so, they covered the entire x -axis and obtained a diffraction grating of period L.1
Ž .Hence the wave number integration in their equivalent of Eq. 11 was converted into an infinite, but for practical

implementation a large but finite, sum over Bragg beams. By this method they were able to obtain convergent results for
² :E R rEu .incohn

In the present paper, we have chosen probably the most straightforward method possible for the numerical solution of the
reduced Rayleigh equation. We do not replicate the surface periodically, but instead truncate the wave number integration in

Ž . Ž .Eq. 11 somewhere in the evanescent non-radiative part of the spectrum, say at qs"Qr2, where Q4vrc. With a
finite length of the surface L4l, the reduced Rayleigh equation can now be discretized by a standard quadrature scheme,
and a system of linear equations is obtained. The result is

N r2qh N Nq q qq y< < <w M p q R q k sM p k , msy , . . . , , 18Ž .Ž . Ž . Ž .Ý n n m n n n n m2p 2 2nsyN r2q

where N q1 is the number of discretization points in wave number space, h sQrN is the corresponding discretizationq q q
� 4 � 4length, and w are the weights of the quadrature scheme used. Furthermore, the abscissas q are defined byn n

N Nq q
q snh , nsy , . . . , . 19Ž .n q 2 2

Ž 4 . w xThe quadrature scheme used in the numerical results presented in the next section is an OO h method with 20q

w sw s3r8, w sw s7r6, w sw s23r24, and with all other weights equal to one. The matrix elements1 N 2 Ny1 3 Ny2
"Ž < . Ž . Ž . Ž .M p q in Eq. 18 , are given by Eqs. 12 and 13 , but now with a finite length of the surface, viz.n m n

Lr2 igz Ž x . yi q x1 1<I g q s d x e e . 20Ž .Ž . H 1
yLr2

Integrals of this form are often referred to as Fourier integrals. With finite wave number cut-offs at qs"Qr2, it follows
Ž . Ž . w xfrom Eqs. 11 – 13 that wave numbers in the range yQ,Q are needed in the calculation of these integrals. Since these

Ž .integrals will be evaluated by discretizing the spatial x -variable and taking advantage of the discrete Fourier transform,1

the value of Q is controlled by the spatial discretization length h of the problem. To resolve wave numbers up to Q, one has
Ž .from the relation for critical sampling Nyquist frequency that the number of spatial discretization points has to satisfy
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Ž . Ž .prhGQsh N , where we have used Eq. 19 . In principle the wave number discretization length used in Eq. 18 , h ,q q q

and the one obtained from the Fourier transform, hX , are independent. However, from a numerical point of view this is notq

very practical, and we will choose them to be the same, hX sh . From the theory of the Fourier transform we know that theq q
Ž .discretization lengths in real and wave number space are related by h s2pr Nh , where N is the number of spatialq

discretization points. If this latter expression is used in prhGQsh N , one arrives atq q

NG2 N . 21Ž .q

In the numerical calculation we have chosen Ns2 N in order to avoid unnecessary calculations.q
Ž . w xIn order to calculate the integrals, Eq. 20 , we have used the same approximative method as was used in Ref. 11 . This

Ž Ž ..method consists of expanding the exponential function, exp igz x , appearing in the integrand, in a Taylor series, and1
Ž .integrating the resulting expression term-by-term the Taylor method . Thus, the integrals can be calculated from the

following expression,
n n

` `ig igŽ . Ž .Lr2 yi q x n n1< w xI g q s d x e z x s FF z q , 22Ž . Ž . Ž .Ž . H Ý Ý1 1n! n!yLr2 ns0 ns0

where FF denotes the Fourier transform operator. For surface profiles of modest roughness, this expansion will converge
Ž .rather quickly, meaning that only a limited number of terms are needed in the summation in Eq. 22 . However, the real

Ž < .advantage of this method is that the Fourier transforms needed to calculate I g q do not have to be recalculated for every
new value of the wavenumber variable g , in contrast to what is the case for a ‘‘standard’’ Fourier method like the one given

w xin e.g. Section 13.9 of Ref. 20 . Even though we will mainly use the Taylor method in this paper, we have checked, and
Ž .found, that the two methods give the same results within 1% relative error for a typical roughness amplitude considered in

the present paper. The computational time was found to be reduced by roughly a factor 50 by applying the Taylor method, as
compared to the Fourier method, where ten terms were retained in the Taylor expansion. When large-amplitude roughness is
considered, the Taylor method might begin to converge slowly, and in such cases one might benefit from using the Fourier
method. When we are forced to use the Fourier method, high demands are placed on computer time.

5. Results and discussions

In this section we present the results of the simulations obtained by the method just described. For all simulations
incident light of wavelength ls633 nm was used. The rough surface had length Ls160.1ls101343.3 nm, and an
rsm-height ss30 nm, unless indicated otherwise. The rough surfaces were generated by the method described in Refs.
w x2,21 . The number of surface realizations used in the ensemble average was N s3000, if nothing is said to the contrary.z

Such a large number of samples was used in order to reduce the noise level which such numerical calculations are plagued
Ž < .with. If nothing else is said, ten terms were retained in the Taylor expansion used in the calculation of I g q . This was

enough to obtain convergent results. The calculations about to be presented were performed on an SGIrCray Orion 2000
supercomputer, and the typical cpu time for this number of samples was roughly 30 hours. Furthermore, the number of

Ž .spatial discretization points was set to Ns1604 and hence N s802 . Since only a limited number of Fourier transformsq

was needed per sample when using the Taylor method, the advantage of the FFT algorithm is rather marginal as compared to
the system size.

ŽIn the absence of absorption, i.e. when the dielectric function is real, the following unitarity condition conservation of
.energy , coming from the unitarity of the scattering matrix, should be satisfied

dq a q ,vŽ .vrc 0
) < <R q k R q p s2p d kyp . 23Ž . Ž .Ž . Ž .H

2pyvrc a k ,v a p ,v( Ž . Ž .0 0

However, in order to check this condition numerically, we performed a momentum space integration from pskyh r2 toq
Žpskqh r2, where h s2prL is the sampling in momentum space. Hence we got the following unitarity condition weakq q

.formulation , which is well suited for numerical calculations

1 dq a q ,vŽ .vrc 0 2
<R q k s1. 24Ž .Ž .H

L 2p a k ,vŽ .yvrc 0

Ž .Numerical simulations with negligible absorption showed that this latter condition was satisfied within 0.5%. With a small
Ž Ž . .non-vanishing imaginary part of the dielectric function ´ v s0.01 , this relation was satisfied within 4%–16%,2

depending on the roughness used.
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5.1. S-polarization

We start the presentation of the numerical results by considering s-polarized incident light. The dielectric constant of the
Ž .film is, at the given wavelength, ´ v s2.6896q i0.01, and the mean film thickness is set to ds500 nm. This is the same

w xset of parameters used for s-polarization in Ref. 11 . In the absence of roughness and absorption, this mean film thickness
Ž . Ž . Ž . Ž . Ž w x.predicts two guided wave modes with wave numbers q v s1.5466 vrc and q v s1.12423 vrc cf. Ref. 4 . The1 2
Ž .corresponding satellite peaks are then, according to Eq. 6 , expected to appear at us"17.78.

In Fig. 2 we present the results of the numerical simulation of the scattering of s-polarized light normally incident on a
surface for which both the surface height distribution and the surface-height autocorrelation function have the Gaussian
form. The correlation length of the surface roughness is as100 nm. With these parameters the rms-slope and mean distance

Ž w x.² : ² :between consecutive peaks and valleys D are cf. Ref. 11 ss0.424 and D s128.3 nm, respectively. In the raw data
Ž .for the mean incoherent reflection coefficient Fig. 2a the satellite peaks are hard to see due to the noisy background, but

the enhanced backscattering peak at us08 is easily located. This conclusion is not affected by doubling the number of
Ž .Taylor terms retained in the calculation result not shown . However, we believe that the noise stems from the fact that we

are using a plane incident wave instead of a beam of finite width. In order to reduce the effect of the noise, we have applied
a standard five-point filter to the raw data. This filter affects only eleven consecutive points, and it should be noted that this

w xsmoothing procedure is not as aggressive as the one used by Madrazo and Maradudin 11 . After applying the
Ž .smoothing-filter to the raw data, the satellite peaks appear more clearly Fig. 2b . Even though their amplitudes are quite

small, they seem to appear at the correct angles as indicated by the dashed line in the figure. Satellite peaks, like enhanced
backscattering peaks, are multiple scattering effects, and can consequently be masked by single-scattering phenomena. This
is probably the reason for the small amplitudes of the satellite peaks in Fig. 2b.

w xWe now focus on the West-O’Donnell power spectrum. From perturbation theory 2 , it is known that the lowest order
contribution, i.e. the single-scattering contribution, to the mean incoherent differential reflection coefficient is proportional to

Ž < <. Žthe power spectrum g qyk , where q and k are the wave numbers of the scattered and incident waves, respectively cf.
Ž .. Ž < <.² :Eq. 17 . This implies that the single-scattering contribution to E R rEu is largest for angles where g qyk is large.n incoh

Ž < <.As mentioned earlier, West and O’Donnell constructed a power spectrum g k which is non-vanishing only in a limited
< <range of k defined by the upper and lower limits k and k , respectively. Thus, for angles of incidence and scatteringq y
< < ² :satisfying qyk -k , single scattering processes will not contribute to E R rEu , and may enhance the roughness-in-incohy n

duced coupling of electromagnetic waves to surface plasmon polaritons if the values of k are properly chosen. In the"

² :Fig. 2. The contribution to the mean differential reflection coefficient from the incoherent component of the scattered light E R rEu ass incoh
Ž .a function of the scattering angle u when an s-polarized plane wave of wavelength ls633 nm is incident normally u s08 on the0

Ž .scattering system depicted in Fig. 1. The dielectric function of the film is ´ v s2.6896q i0.01, and its mean thickness is ds500 nm.
Ž .The surface profile function z x is characterized by a Gaussian surface height distribution with an rms-height, ss30 nm, and a Gaussian1

surface-height autocorrelation function with a 1re-correlation length of as100 nm. The scattering system supports satellite peaks at
Ž ."17.78 as indicated by the vertical dashed lines in the figure. The raw data are presented in Fig. 2a, while their five-point filter smoothed

analogs are given in Fig. 2b.
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Ž . Ž .scattering process we are about to consider, we have chosen k s0.82 vrc and k s1.97 vrc , and thus ss0.427 andy q
² :D s201.1 nm, so that the incident wave, for small angles of incidence, can excite both guided waves supported by the

Ž .geometry through the surface roughness. With these parameters, and for normal incidence, one finds from Eq. 17 that
single-scattering effects do not contribute to the mean incoherent differential reflection coefficient for scattering angles
< <u -55.18. Since the satellite peaks, located at us"17.78 in this case, cannot be masked by single-scattering processes,
one now expects more pronounced satellite peaks then those obtained with the use of the Gaussian correlation function

Ž .presented in Fig. 2. As can be seen from Fig. 3a unsmoothed data , this is indeed what we get. The satellite peaks are well
separated from the background in the raw data, and no smoothing is needed. The amplitude of the prominent enhanced
backscattering peak seen in this figure is twice that of its background. This is another indication that single scattering

w x < <² :processes have not contributed 22 . The abrupt increase in E R rEu for angles u somewhat above 508 is due tos incoh
< <single-scattering effects setting in. We predicted above that this should happen for angles u G55.18, a result that fits quite

Ž .well with what can be read off from the figure. In Fig. 3b we have shown the smoothed result of the simulation obtained
w xby Madrazo and Maradudin 11 for the same set of parameters, but with the top interface being the rough one instead of the

lower one. It is observed that the overall amplitude is three times smaller than the one presented in Fig. 3a. The reason for
this, we believe, is that in the present case it is the randomly rough surface which is the strongly reflecting one, while in Ref.
w x11 the randomly rough surface was weakly reflecting. Furthermore, the intensity obtained for our geometry in the single

Ž < < . w xscattering regime u )55.18 has a broader distribution than the one obtained by Madrazo and Maradudin 11 . The reason
for this is also related to the increased reflection at the rough surface present in our case.

Ž .As the angle of incidence departs from the direction of normal incidence u s08 , the amplitudes of the satellite peaks0

are known to decrease. In Fig. 4 we show the results of a simulation for a geometry with the same parameters as above, but
Ž .now with angle of incidence of u s58. According to Eq. 6 the satellite peaks should now appear at us12.68 and0

Ž .usy26.18. It is seen from the figure that the amplitudes of these peaks, and the enhanced backscattering peak at us58 ,
are reduced in amplitude compared to the case of normal incidence, but they are still easily distinguished from the
background and are located at the predicted positions.

5.2. P-polarization

We will now focus our attention on p-polarization of the incident light. Satellite peaks are typically harder to observe in
p- than in s-polarization. This is related to the reduced reflectivity at the rough surface of p-polarized light as compared to

² :Fig. 3. The contribution to the mean differential reflection coefficient from the incoherent component of the scattered light E R rEu ass incoh
Ž .a function of the scattering angle u when an s-polarized plane wave of wavelength ls633 nm is incident normally u s08 on the0

Ž .scattering system depicted in Fig. 1. The dielectric function of the film is ´ v s2.6896q i0.01, and its mean thickness is ds500 nm.
Ž .The surface roughness profile function z x is characterized by a Gaussian surface height distribution with an rms-height ss30 nm and a1

Ž . Ž .West-O’Donnell power spectrum defined by the parameters k s0.82 vrc and k s1.97 vrc . The scattering system supports satellitey q
peaks at "17.78 as indicated by the vertical dashed lines in the figure. The raw data for the geometry considered are presented in Fig. 3a.

w xThe numerical results obtained by Madrazo and Maradudin 11 for a corresponding geometry with the vacuum–dielectric interface being
Ž .the rough one see text are given in Fig. 3b.
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Ž .Fig. 4. The same in as Fig. 3a raw data , but now for an angle of incidence u s58. The satellite peaks should now be present at scattering0

angles u s12.18 and u sy26.18, as indicated by the vertical dashed lines.

w xthat of s-polarization for the same angle of incidence. In fact, this was the reason why Madrazo and Maradudin 11 used
different roughness parameters for the two polarizations considered. However, in this paper, the rough surface is perfectly
reflecting, and we thus use the same set of parameters for the two polarizations. For completeness and comparison, at the

w xend of this section we have included results for the parameters used by Madrazo and Maradudin 11 .
We start by presenting the numerical results obtained for the parameters used in the preceding subsection. The scattering

w x w xsystem, now in the case of p-polarization, supports three guided waves 11 , which according to their dispersion relation 6
Ž . Ž . Ž . Ž . Ž . Ž .have the wave numbers q v s1.6125 vrc , q v s1.3821 vrc and q v s1.0029 vrc . Hence there are six1 2 3

Ž Ž .. "possible satellite peaks, and for normal incidence they are located at scattering angles cf. Eq. 6 u s"13.38,Ž1,2.
u " s"22.38, and u " s"37.68.Ž2,3. Ž1,3.

² :In Fig. 5 the contribution E R rEu is presented for a rough surface described by a Gaussian power spectrum withincohp

correlation length as100 nm. As for the case of s-polarization with the same set of parameters, the enhanced
backscattering peak is easily seen in the data. When it comes to the satellite peaks, those at u " are clearly visible, whileŽ2,3.
there is only a weak indication of those at u " . However, there is no indication of the satellite peaks at u " in the data.Ž1,2. Ž1,3.

We saw earlier that, in going to a surface roughness described by the West-O’Donnell power spectrum, the satellite peaks
became much more pronounced because they were not masked by single-scattering processes. Fig. 6 presents the result for

Ž .the scattering of normally u s08 incident p-polarized light when the power spectrum is of the West-O’Donnell type with0
Ž . Ž . Ž . "parameters k s0.82 vrc and k s1.97 vrc as above . Here, as in the case of s-polarization, the satellite peaks at uy q Ž2,3.

are well defined in the data. Furthermore, the peaks at u " can easily be seen from the simulation result. As in the GaussianŽ1,2.
case, there is no sign of the satellite peaks at u " . This may indicate that the coupling of the incident wave to the guidedŽ1,3.

Ž . "mode with wavenumber q v is quite weak. However, this can not be the full picture, because the peaks at u , also3 Ž2,3.
Ž . Ž .involving the guided wave q v , is still observed. This fact can be explained by noting that the mode, q v , is the one3 1

corresponding to the largest momenta of the three possible guided waves, and therefore is the one that is the most difficult to
excite for the incident wave. Hence we expect the peaks at u " to have a reduced amplitude as compared to those at u " .Ž1,3. Ž2,3.

Ž " .Furthermore, observe that the dominant satellite peaks u have roughly the same amplitude as those observed forŽ2,3.
s-polarization. This has to do with the fact, as we claimed above, that the randomly rough surface is perfectly reflecting.

w xHowever, for the geometry considered by Madrazo and Maradudin 11 , where the rough surface was the vacuum–dielectric
interface, the amplitude of the satellite peaks for p-polarization were much lower then those obtained in s-polarization, due
to the decreased reflectivity for the p-polarized light as compared to that for s-polarized light.

If the incident light has an angle of incidence of, say, u s58, the satellite peaks should appear at u " s8.28,y18.58,0 Ž1,2.
" " Ž .u s17.08,y27.88, and u s31.58,y44.28, according to Eq. 6 . The result for this situation, still with the West-Ž2,3. Ž1,3.

O’Donnell power spectrum, are given in Fig. 7. Also in this case the peaks at u " and u " are detectable. However, it isŽ1,2. Ž2,3.
interesting to note that the peaks at u " , of which there was no sign for an angle of incidence u s08, are weakly visible.Ž1,3. 0
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Fig. 5. The contribution to the mean differential reflection coefficient from the incoherent component of the scattered light, E R rEu² :p incoh
Ž .as a function of the scattering angle u when a p-polarized plane wave of wavelength ls633 nm is incident normally u s08 on the0

Ž .scattering system depicted in Fig. 1. The dielectric function of the film is ´ v s2.6896q i0.01, and its mean thickness is ds500 nm.
Ž .The surface profile function z x , is characterized by a Gaussian surface height distribution with an rms-height, s s30 nm and a1

Gaussian surface-height autocorrelation function with a 1re-correlation length of as100 nm. The scattering system may give raise to six
satellite peaks at u " s"13.38, u " s"22.38 and u " s"37.68 as indicated by the vertical dashed lines in the figure. The presentedŽ1,2. Ž2,3. Ž1,3.
data are smoothed with a five-point filter.

This we find rather surprising, since typically the satellite peak amplitudes decrease quite rapidly with increasing angle of
incidence.

w x Ž .In the Madrazo and Maradudin paper 11 , they used another dielectric function, ´ v , and mean film thickness, d, for
Ž . Ž .p-polarization than they and we used in the simulations for s-polarization. In particular, they used ´ v s5.6644q0.01i

and ds380 nm. All other parameters were the ones used earlier in this paper. For the purpose of comparison, we have
included simulation results for these parameters. In Fig. 8 the result for E R rEu is presented for a surface possessing a² :p incoh

Ž .Gaussian power spectrum with a correlation length as100 nm and with ss30 nm as before . This corresponds to an
² :rms-slope of ss0.424, and the mean distance between consecutive peaks and valleys is D s128.3 nm. For such a

Ž . Ž .Fig. 6. The same as in Fig. 5, but now for for a West-O’Donnell power spectrum defined by k s0.82 v rc and k s1.97 v rc .y q
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Fig. 7. The same as in Fig. 6, but now for an angle of incidence of u s58.0

Ž Ž . .surface, in the limit of no roughness and no absorption in the film ´ v s0 , the structure supports three guided modes2
Ž . Ž . Ž . Ž . Ž . Ž .whose wave numbers are q v s2.34 vrc q v s2.04 vrc and q v s1.32 vrc . Hence, there are six satellite1 2 3

Ž .peaks, which according to Eq. 6 , are located at u s"17.5, u s"46.1, while u lie in the evanescentŽ1,2. Ž2,3. Ž1,3.
Ž .non-radiative part of the spectrum and thus are not visible. From Fig. 8 it is seen that even the satellite peaks in the
radiative part of the spectrum are not possible to locate in the numerical results. This is in fact the same conclusion drawn by

w xMadrazo and Maradudin 11 for their geometry. Thus the increased reflectivity we have at the rough surface does not seem
to affect the detection of the possible satellite peaks. In Fig. 9 results for the West-O’Donnell power spectrum defined by the

Ž . Ž . Ž .² :parameters k s1.61 vrc and k s2.76 vrc which gives ss0.658 and D s137.3 nm are presented. In this casey q

Fig. 8. The contribution to the mean differential reflection coefficient from the incoherent component of the scattered light E R rEu² :p incoh
Ž .as a function of the scattering angle u when a p-polarized plane wave of wavelength ls633 nm is normally incident u s08 on the0

Ž .scattering system depicted in Fig. 1. The dielectric function of the film is ´ v s5.6644q i0.01, and its mean thickness is ds380 nm.
Ž .The surface profile function z x , is characterized by a Gaussian surface height distribution with an rms-height, s s30 nm and a1

Gaussian surface-height autocorrelation function with a 1re-correlation length of as100 nm. The scattering system supports six satellite
Ž w x. "peaks see Ref. 11 , but two of them are in the non-radiative part of the spectrum. The real peaks should appear at u s"17.58 andŽ1,2.

u " s"46.18. The presented data are smoothed with a five-point filter.Ž2,3.
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Ž . Ž .Fig. 9. The same as in Fig. 8, but now for a West-O’Donnell power spectrum defined by k s1.61 vrc and k s2.76 vrc for an angley q
Ž . Ž . " Ž . "of incidence u s08 a and u s58 b . The real satellite peaks are predicted to appear at u s"17.58 u s08 and u s12.38,y22.880 0 0

Ž .u s58 .The presented data are smoothed with a five-point filter.0

" Ž . "the satellite peaks are predicted to appear at angles u s"17.58 for normal incidence u s08 and at u s12.38,y22.880

for u s58. It should be noted that we only expect one pair of satellite peaks because the incident wave can directly excite0
Ž Ž ..only two of the three possible guided waves k )q v . Furthermore, with, k )vrc, single-scattering processes will noty 3 "

Ž .contribute at all see the discussion above . From Fig. 9 we see that the satellite peaks are found at the expected positions
w xboth for u s08 and u s58, even though their amplitudes are small. This was the same conclusion arrived at in Ref. 11 .0 0

6. Conclusions

We have presented a numerical study of the scattering of electromagnetic waves of both p- and s-polarization from a
system consisting of a planar dielectric film deposited on a randomly rough perfectly conducting substrate. The numerical
calculation was performed by considering a finite length of the randomly rough surface L4l, then by solving the
corresponding reduced Rayleigh equation for the scattering geometry by standard techniques. By averaging the results for
the scattering amplitude and its squared modulus over the ensemble of realizations of the rough surface, the mean incoherent
reflection coefficient was obtained. The numerical results for the mean differential reflection coefficient shows that the
scattering geometry under investigation gives rise to satellite peaks at well defined positions for most of the scattering and
roughness parameters considered, in accordance with theory.

From a methodological standpoint the present work demonstrates that a purely numerical approach to the solution of a
reduced Rayleigh equation by standard numerical techniques, without the necessity of replicating a segment of the random

w xsurface of length L periodically, as was done in Ref. 11 , is a viable, nonperturbative approach to the investigation of the
scattering of light from one-dimensional random surfaces whose roughness is such that the Rayleigh hypothesis is valid.

From a physical standpoint the results presented in Fig. 3 strongly suggest that the scattering system studied in the
present work is a more favorable one for the experimental observation of satellite peaks than the one studied in Refs.
w x4,6,11 , due to the increased incoherent scattering intensity to which it gives rise. In addition, structures of the kind studied
in the present work, where a planar dielectric film is deposited on a randomly rough metal surface, should be easier to

w x Žfabricate than the one considered in Refs. 4,6,11 , where a randomly rough dielectric film of finite thickness the fabrication
.problem is deposited onto a planar metallic substrate.
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