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A B S T R A C T

We measure and calculate the optical response of a structure consisting of a square array of subwavelength
silicon posts on a silicon substrate at telecommunication wavelengths. By the use of the reduced Rayleigh
equations and the Fourier modal method (rigorous coupled wave analysis) we calculate the reflectivity of this
structure illuminated from vacuum by normally incident light. The calculated reflectivities together with
experimentally determined ones, are used to test the accuracy of effective medium theories of the optical
properties of structured silicon surfaces, and to estimate the effective refractive index of such surfaces produced
by a homogeneous layer model.

1. Introduction

It has been established that Maxwell's equations are form-invariant
under geometrical transformations [1], and that the consequences of a
given transformation can be interpreted in terms of modifications of
the material properties involved. Thus, regions with homogeneous
properties are transformed into regions whose permittivity and perme-
ability are determined by the mathematical nature of the transforma-
tion. This property has given rise to the field of transformation optics
[1], which is an emerging area of optics in which coordinate transfor-
mations are used to design structures with novel optical properties.
Using such techniques, designs for cloaking [2–4], and other interest-
ing devices [5–7] have been proposed.

The practical realization of such structures and devices is, however,
quite challenging, as the media in transformed space are in general
anisotropic and their electromagnetic properties are functions of
position. Not surprisingly, transformation optics is usually associated
with the field of optical metamaterials, which are artificial materials
whose permittivity and permeability can attain values that are different
from those of materials found in nature. The concept of a metamaterial
is intimately related to the notion of an effective medium; it relies on
the idea that when the inclusions or heterogeneities are much smaller
than the wavelength, the wave propagates as in a homogeneous
medium with some effective optical properties that depend on the

geometry and the filling fraction of the inclusions.
Silicon and Silicon on Insulator (SOI) wafers constitute interesting

platforms for experimental tests of transformation optics concepts, and
for the implementation of novel designs for silicon photonics. On the
one hand, silicon is a well studied material that is transparent in the
near infrared and can be structured using electron beam lithography
and ion etching techniques. Silicon photonics has become increasingly
popular due to its natural integration with fiber optics communication
links, and SOI wafers are designed to facilitate the implementation of
two-dimensional integrated circuits. Additionally, the 2D nature of the
photonic circuits makes the use of conformal mapping techniques [2]
appropriate in their design. Conformal mappings constitute a class of
two-dimensional transformations that have proved useful in the past
for solving diffraction problems [8,9]. Implementing transformation
optics concepts in silicon photonics is interesting from both, the
conceptual and application points of view [10].

To our knowledge, however, the accuracy of the effective refractive
index theories has not been tested for the kinds of structures and
refractive index contrasts encountered in silicon photonics. In this
paper, we explore this question for the case of silicon nanopillars over a
silicon substrate. We test what are perhaps the simplest effective
medium theories by comparing the measured reflectivity of fabricated
samples with the results of calculations based on the Maxwell Garnett
[11] and Bruggeman's [12] approaches, and through electromagnetic
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scattering calculations. We present calculations based on a numerical
Rayleigh method that, although it has some limitation on the height of
the pillars that can be dealt with, has the advantage of being
computationally fast. The other method employed for the calculations
is the rigorous coupled wave analysis (RCWA), also known as the
Fourier modal method (FMM). The method is heavier computationally,
but does not have the height limitations of the Rayleigh method. It is
also better-suited for calculations with structures that have steep
slopes.

The paper is organized as follows. The fabrication and character-
ization of the samples are described in Section 2. In Section 3, we
present the expressions of the effective medium theories considered
and the consequences of considering the structured layer as a homo-
geneous film for the calculation of the reflectivity. In Section 4 we
briefly describe the two rigorous approaches to the calculation of the
reflectivity that we have mentioned, namely the Rayleigh and the
Fourier modal methods. The results are presented in Section 5,
together with a discussion and, finally, in Section 6 we present our
conclusions.

2. Nanostructured silicon samples

To explore the effective medium properties of nanostructured
silicon layers at telecommunication wavelengths, we decided to focus
on systems consisting of circular silicon nanopillars of a given radius
that were arranged in an ordered or disordered fashion over the surface
of the silicon substrate.

The fabrication of the samples started with 500 μm-thick, 1×1 cm2

substrates of bulk silicon. The substrates were cleaned by immersing
them in an ultrasonic bath of acetone for 15 min. They were then
rinsed in isopropanol, blow-dried under a nitrogen flux, baked on a hot
plate at 300 °C for 15 min, and allowed to cool and stabilize overnight.
The cleaned substrates were spin-coated with a primer layer of
hexamethyldisilazane (HMDS), and a 200 nm layer of a negative
electron resist (ma-N 2400). After baking them for two minutes at
80 °C, the samples were coated with a layer of ESpacer 300Z, to prevent
charging effects during the exposure. Then, the samples were rinsed
with deionised water and dried.

The electron beam lithography (EBL) was carried out in a region of
1×1 mm2 using a Raith system with a dose of 26 μC/cm2. To design the
exposure pattern, we first generated a “geometry matrix”, consisting of
ones and zeroes, that represents a top view of the desired geometry.
The ones correspond to the silicon pillars and the zeroes to the region
that will be etched at a later stage. The intended radius of the circular
nanopillars was 75 nm. After exposure, all samples were developed in a
solution made by combining equal quantities of ma-D 525 developer
and deionised water for 60 s, rinsed in deionised water for another
three minutes, and blow-dried under a nitrogen flux. Following the
development, the samples were baked in an oven at 100 °C for ten
minutes. An example of a periodic sample after the lithographic process
is shown in Fig. 1(a). We point out that with negative resits, it is the
exposed areas that remain on the surface of the substrate after
development.

In the reactive ion etching (RIE) process, a plasma is generated by
ionizing gas molecules in a low pressure chamber. The high-energy ions
from the plasma attack the silicon on the wafer surface and remove
material. To create the silicon pillars in our samples, the samples were
subjected to a RIE process in a Plassys MEB400 using O2 and SF6 at
2×10-5 Torr and 90 W for three minutes in the first step, and O2 with
the same parameters for one minute in the second step. The height of
the pillars is controlled by the time of etching. An example of the result
is shown in Fig. 1(b).

Two types of samples were produced by this method. The first was a
periodic structure, referred to as Sample A, in which the pillars formed
a square lattice of period a nm= 450 . In the second sample (Sample B),
the pillars were placed in random positions with a pillar density that is

equal to that in the periodic sample. This was achieved by choosing the
exposure area and the total number of pillars to have the same values
that we have in the periodic sample; that is, the exposure area was
1×1 mm2 and the number of pillars was = (2222)2. The positions of
the pillars were decided through the following procedure: The exposure
area was divided into a square lattice of equally spaced intervals of the
same size as the pillar diameter (which happens to be one-third of the
period). Then, two uncorrelated random integers ξ1 and ξ2 were drawn
from a uniform distribution on the interval [1, ], where = 6666 is
the number of cells in each direction of the lattice. If the cell labeled
ξ ξ( , )1 2 was not occupied and nor were its nearest neighbors, then a
pillar was placed at the center of the cell ξ ξ( , )1 2 . This procedure was
repeated until the number of pillars placed equaled . Note that for
samples produced in this way the minimum center-to-center separa-
tion between neighboring pillars is two pillar diameters (or 300 nm for
the radius assumed here).

Figs. 1 and 2 present SEM images of Samples A and B, respectively.
One observes that the fabricated nanopillars have a lager cross section
area at the base than at the top [Fig. 1(b)]. By analyzing SEM images of
Sample A, both those in Fig. 1 and other SEM images taken of the same
sample, it was found that the pillars have a shape that can be
approximated by a truncated cone with approximate top and base
radii ρ nm= 85 ± 5t and ρ nm= 105 ± 10b , respectively. The structure
was measured to have a nominal period of a nm= 450 ± 5 . The height
of the pillars was found to be ζ nm= 190 ± 50 . It should be mentioned
that due to the discretization of the ideal positions, Sample A showed
some undesired features; the distance between pillars ended up having
periodic variations and the cross section of the pillars was not quite
circular. These issues are illustrated in the SEM image presented in
Fig. 1(a).

Fig. 1. SEM images of the periodic sample (Sample A) showing: (a) a large scale view of
the structure after the lithography process but before etching; and (b) a detailed view of
the nanopillars after etching.
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For Sample B, the SEM images revealed that the top and base radii
were, respectively, ρ nm= 85 ± 5t and ρ nm= 110 ± 10b , while their
height was found to be ζ nm= 165 ± 50 . The measured minimum
distance between neighboring pillars was about nm300 , which is in
good agreement with the design parameters.

3. The reflectivity of the samples and effective medium
theory

To measure the reflectivity, the samples were illuminated at near
normal incidence [θ mrad≈ 2 ≈ 1.15°0 ] by a linearly polarized beam of
light from a laser of wavelength λ μ= 1.55 m (Thorlabs LDM1550). A
small angle of incidence was used to avoid the use of a beamsplitter in
the measurements. The beam was focussed on the sample with a low
power lens, and the reflected light was measured in the specular
direction using a collecting lens and an InGaAs detector (Thorlabs
DET20C). The contribution from the back surface of the sample was
reduced by roughening it slightly and putting it in optical contact with
an absorbing paste. Several readings of the optical power reflected from
a given spot of the sample were averaged to obtain a measurement, that
was later normalized by the signal produced by the flat areas of the
sample (the reflectivity of these flat regions was in good agreement with
that expected for a flat silicon surface). The estimated reflectivity values
are shown in Table 1; the quoted values represent the mean and
standard deviation calculated from ten measurements that correspond
to different areas of the structured region of the samples. These
measured reflectivities are significantly smaller than those obtained
for a planar silicon substrate. Taking the value of the dielectric constant
of silicon at the wavelength of the incident light to be ε = 12.25, the
Fresnel reflectivity for the planar silicon substrate is R ≈ 0.30860 . Since
the structures that we consider have lateral dimensions that are much
smaller than the wavelength of the incident light, it is natural to assume
that in this long wavelength limit, the layer containing the surface
irregularities can be modeled as a homogeneous film of thickness h ζ= 0
with an effective dielectric constant εeff [13]. The reflectivity of the
system can then be calculated using the reflection coefficient of a
layered system. For the case of a thin film over a substrate (three-media
or three-layer system), one has [14].
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r r iβ
=

+ exp (2 )
1 + exp (2 )

,12 23

12 23 (1)

where the subscripts 1, 2 and 3 refer to vacuum, the thin film, and the
substrate, respectively; rij (with i j, = 1, 2, 3) represents the reflection
amplitude of the interface between medium i and j; and β denotes the
optical path length for the light in the film. For the case of normal
incidence, we can write
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where n = ϵi i represents the refractive index of medium i. The
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The effective refractive index of the film, εeff , may then be
estimated assuming a three-media model to invert reflectivity data
obtained experimentally or through rigorous computer simulations.
The result obtained in this way can be compared with estimations
based on the effective medium theories, like the Maxwell Garnett
theory, which has been used previously in the context of silicon
photonics systems [10]. This permits the evaluation of the validity of
effective medium theories for the estimation of the effective refractive
index of a layer of supported silicon nanopillars.

The Maxwell Garnett theory [11] relates the effective medium
permittivity ϵeff , to the permittivities of the host (ϵ1), the inclusions
(ϵ2) and the volume filling fraction f of the inclusions, which are
assumed to be of a spherical shape and arranged in a cubic lattice. The
mean distance between inclusions is assumed to be large enough to
ensure that the Lorentz local field calculation is valid. The Maxwell
Garnett formula takes the form [15].

ε ε
ε d ε

f
ε ε

ε d ε
−

+ ( − 1)
=

−
+ ( − 1)

,eff 1

eff 1

2 1

2 1 (5)

where d represents the dimensionality of the problem (d=3 in the
present case). The solution of Eq. (5) gives

ε ε d fα
fα

= 1 + ( − 1)
1 −

,eff 1
(6)

where α ε ε ε d ε= ( − )/[ + ( − 1) ]2 1 2 1 .
For the samples that we study the host medium is air, which has a

permittivity ϵ = 11 , and the inclusions are silicon, for which ϵ = 12.252 .
The filling fraction, defined as the ratio of the volume of inclusion to the
volume of host material, was found to be f=0.14 using the parameters
given in Section 2. To calculate the filling fraction for Sample A, we
considered a unit cell of sides a, the period of our structures, with an
embedded truncated cone of base radius ρb and top radius ρt. The
volume filling fraction is then given by the ratio of the volume of the
truncated cone to the volume of the cell. Since the average density of
the pillars is the same in the two samples, the filling fraction of Sample
B is the same as the filling fraction of Sample A. With these values Eq.
(6) predicts that the effective medium should have a dielectric constant
ϵ = 1.40eff . Using this value of ϵeff , and assuming that the wavelength of
the incident light is λ μ= 1.55 m, we have estimated the reflectivities of
Samples A and B on the basis of Eq. (4). These values are given in
Table 1, and are considerably larger than those obtained experimen-
tally.

Alternatively, taking a 2D approach, one can view the system as a
host of dielectric constant ϵ1 that contains cylindrical inclusions with
dielectric constant ϵ2. This can represent, for instance cylindrical
silicon posts in air. For the case of normal incidence, the polarization

Fig. 2. SEM image of the random sample (Sample B) after etching.

Table 1
Reflectivity of the nanostructured silicon samples. The table summarizes the results of
the measurements and the results expected on the basis of the EMTs. For a flat silicon
surface, the reflectivity is expected to be R ≈ 0.30860 .

Sample Experimental MG 2D MG 3D BR 2D BR 3D

Periodic 0.2227 ± 0.0032 0.2596 0.2626 0.2514 0.2758
Non-periodic 0.2350 ± 0.0049 0.2717 0.2721 0.2631 0.2825
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is perpendicular to the axes of the cylinders (transverse electric
excitation, or p polarization), and the 2D Maxwell Garnett approach
yields expressions (5) and (6) with d=2 [15–17]. In this case, the
calculated effective permittivity is ϵ = 1.27eff for the same filling
fraction of f=0.14. The estimated values of the reflectivity of Samples
A and B are also presented in Table 1. Although these values are closer
than those obtained with the 3D formula, they still differ from the
experimental ones.

The Maxwell Garnett result is only valid in the dilute limit. As the
filling factor increases, the difference between the host material and the
inclusions becomes less clear and the theory is expected to fail.
Motivated by the need for an effective medium approximation that
treats the components in a symmetric fashion, Bruggeman developed
the approach that today bears his name [12,13]. It also has the
advantage that it can straightforwardly be generalized to more than
two components. For a two-component system, Bruggeman's approach
yields the following expression [15,18].

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f

d
f

d
(1 − )

ϵ − ϵ
ϵ + ( − 1)ϵ

+
ϵ − ϵ

ϵ + ( − 1)ϵ
= 0.1 eff

1 eff

2 eff

2 eff (7)

This equation is quadratic in εeff and its (physically acceptable) solution
is
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where γ d ε ε ε= − −1 2 and ε f ε fε= (1− ) +1 2. In writing Eqs. (7) and (8),
we have assumed that, within the unit cell of sides a, the probability of
having a material with dielectric constant ϵ2 is f, and the probability of
having material with ϵ1 is f1 − . In contrast with the model of Maxwell
Garnett, the model of Bruggeman allows for an arbitrary concentration
of the inclusions.

Under the 3D Bruggeman approach, the calculated effective per-
mittivity is ε = 1. 17eff for the same filling fraction f=0.14 that we used
with the Maxwell Garnett theory and, with the 2D approach, the
effective permittivity is ε = 1. 30eff . The reflectivities expected for
Samples A and B on the basis of these values are shown in Table 1.

4. Rigorous theoretical approaches

In the preceding section we found that the reflectivity estimated for
our structures by means of the effective medium theories (EMTs) did
not agree with the one obtained experimentally. Thus, we turned to
more accurate ways for calculating the reflectivity of our samples as a
function of the heights of their pillars, namely the reduced Rayleigh
equation (RRE) and the Fourier modal method (FMM). We now
describe these approaches. The structures considered consist of pillars
of silicon in a doubly periodic array on a silicon substrate in contact
with air. The geometry is illustrated in Fig. 3.

4.1. The reduced Rayleigh equation

The system we consider consists of vacuum in the region x ζ x> ( )3
and a dielectric medium whose dielectric constant is ε in the region
x ζ x< ( )3 . Here x xx = ( , , 0)1 2 is a position vector in the x1x2 plane. The
surface profile function ζ x( ) is assumed to be a doubly periodic
function of x , ζ l ζx x x( + ( )) = ( ), where lx ( ) is a translation vector
of a two-dimensional Bravais lattice

l l lx a a( ) = + .1 1 2 2 (9)

Here aa = ( , 0)1 and aa = (0, )2 are the two non collinear primitive
translational vectors of the lattice, while l1 and l2 are any positive or
negative integers, or zero, which we denote collectively by l. We also
introduce the lattice reciprocal to the one defined by Eq. (9). Its lattice
sites are given by

m m mG b b( ) = + ,1 1 2 2 (10)

where the primitive translation vectors of this lattice b = (1, 0)π
a1

2 and

b = (0, 1)π
a2

2 , are defined by the equation

πδ i ja b· = 2 , = 1, 2; = 1, 2,i j ij (11)

where δij is the Kronecker symbol. In Eq. (10) m1 and m2 are any
positive or negative integers, or zero, which we denote collectively by
m.

The surface is illuminated from the vacuum by a monochromatic
plane wave of angular frequency ω. The total electric field in the region
x ζ x> ( )3 then consists of an incoming incident wave and a super-
position of outgoing scattered waves,

t ω ω iωtE x E x E x( ; ) = [ ( | ) + ( | )] exp(− ),i s( ) ( ) (12a)

where x x xx = ( , , )1 2 3 and the incident and scattered electric fields,
respectively, can be written in the forms
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In writing these expressions we have introduced the scattering
amplitudes A K( )p and A K( )s and defined the functions

K k G= + ,∥ ∥ ∥ (13)

and

⎜ ⎟
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⎛
⎝

⎞
⎠

⎤
⎦⎥⎥α K ω ω

c
K α K ω α K ω( , ) = − , Re ( , ) > 0, Im ( , ) > 0.0

2
2

0 0

1
2
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An expression similar to the one given by Eq. (12) can be written for
the transmitted electric field ωE x( | )t( ) in the region x ζ x< ( )3 ∥ . However,
it has been shown [19] that this field can be eliminated from the
scattering problem, which greatly simplifies the derivation of the
relations between the scattering amplitudes A K( )α ∥ and the amplitudes
E k( )β0 ∥ that define the incident field. We write this relation in the form
(α p s= , , β p s= , )

∑A K R K k E k( ) = ( | ) ( ).α
β

αβ β∥ ∥ ∥ 0 ∥
(15)

The matrix R K k( | )∥ ∥ is found to be the solution of the matrix equation
[19]Fig. 3. Schematic diagram of the scattering geometry considered.
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Here a a a= ×c 1 2 is the area of the primitive unit cell of the lattice
defined by Eq. (9). In the numerical calculations to be carried out using
the reduced Rayleigh equation, the surface profile function will be
rotationally symmetric inside each unit cell, ζ ζ xx( ) = ( )∥ . Therefore the
angular integration in Eq. (17) will produce a J0-Bessel function and we
are left with a one dimensional integration over the radial coordinate
x∥. If we assume that ζ x( ) = 0∥ for x R>∥ , the integral (17) can be
rewritten as
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The integrals inside the summation in this expression were calculated
numerically.

In the present work we are primarily interested in the reflectivity of
the surface. The reflectivity for light of polarization α is given by

R θ ϕ R k k( , ) = ( | ) ,α αα0 0 ∥ ∥
2

(22)

where k∥ is expressed in terms of the polar and azimuthal angles of
incidence θ ϕ( , )0 0 by ω c θ ϕ ϕk = ( / ) sin (cos , sin , 0)∥ 0 0 0 .

For the calculations presented in this work, we consider only cases
in which the period a λ⪡ . In such circumstances only the specular order
is substantial (i.e. there is no diffraction). Moreover, in this initial
evaluation, we consider only the case of normal incidence. Thus, the
electric field is then always perpendicular to the axis of rotation of the
posts.

4.2. The Fourier modal method

To model the reflectivity of the studied samples, we adapted the
Fourier modal method (FMM) also known as the rigorous coupled
wave analysis (RCWA) [20–22]. This (Fourier-space) simulation
method assumes that the geometry is periodic and it is particularly
well suited for the study of dielectric systems. It is also assumed that

the geometry is piecewise invariant in the vertical direction (the x3
direction); if this is not the case, a staircase approximation is adopted
so that a curved geometry is divided into a set of layers each of which is
uniform in the vertical direction. The electromagnetic fields within each
layer are expanded in Bloch waves (Floquet functions) so that the
desired periodicity of the fields is guaranteed. The full electromagnetic
field is obtained by satisfying the boundary conditions at each of the
interfaces between the layers. In this way the Maxwell's equations are
converted into an infinitely large set of algebraic equations. To be able
to solve it on the computer, this set is truncated at a large but finite
Fourier order. For additional details on the FMM method we refer the
interested reader to Refs. [20–22].

The FMM is a highly accurate method for calculating the reflectivity
of a periodic structure. However, there are several reasons why it may
lead to poor performance. First, FMM computations involve solving
eigenvalue systems, which are computationally expensive to solve.
Second, when many layers are used to discretize a given geometry,
boundary conditions must be enforced at the interfaces between layers,
resulting in a large linear system [23].

Also, being a Fourier-space method it suffers several drawbacks.
The main one is its slow convergence compared to other methods like
the RRE method presented here. In the presence of materials with a
high dielectric contrast, the Gibbs phenomenon [24] to which it gives
rise is particularly severe. The same Gibbs phenomenon introduces
ringing in the real space reconstruction of a function. The amplitude of
the Gibbs ringing is a problem independent of the number of Fourier
components.

In this work, we use the publicly available FMM code called S4

(Stanford Stratified Structure Solver) [22], a frequency-domain com-
putational electromagnetics tool that can compute reflection, transmis-
sion, or absorption spectra of periodic structures composed of layers
invariant in the direction normal to the periodicity. The electromag-
netic fields throughout the structure can also be obtained. The S4-
package also provides a set of FMM formulations. This is beneficial
since different formulations can have different convergence rates and
therefore can produce better results in shorter amounts of computation
time.

5. Results and discussion

In the calculations we considered two circularly symmetric profile
forms for the supported silicon posts. The first one consists of
truncated cones characterized by their top and base radii ρt and ρb
(see Fig. 4), and defined mathematically by

⎧
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Fig. 4. The truncated cone and cosine forms assumed for the pillars in the modeling.
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where ρ ρ0 ≤ ≤t b and ζ ≥ 00 . The model is simple but fairly realistic, as
attested by the electron microscope images presented in Fig. 1(a). The
values used in the calculations for the base and top radii were the
experimentally determined ones, namely, ρ nm= 85t and ρ nm= 105b .
For the pillar heights ζ0 achieved experimentally the surface slopes can
be quite large, and this poses a problem for the method based on the
Rayleigh hypothesis.

To circumvent this problem in the calculations based on the RRE,
we considered profiles in the form of a cosine, defined mathematically
as (see Fig. 4)

⎧
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ζ x ρ

x ρ
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cos 0 < <
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ρ0 2 ∥ 0

∥ 0

∥

0

(24)

where ζ > 00 is the height and ρ > 00 is the half-width at the base of the
particle. The base radius of the cosine profile was chosen in such a way
that, for the same height, its volume is the same as that of the truncated
cone. With our experimental parameters, this resulted in a value of
ρ nm= 1400 . It is important to point out that, although a cosine does
not represent a good fit to the experimental shape of the pillars, the
adoption of this shape does not change the volume fraction of the
inclusions in the structured region and permits calculations based on
the RRE with larger height values.

Fig. 5 presents FMM calculated results for the reflectivity R ζ( )0
(solid lines) of the truncated cones as a function of their height ζ0
obtained using the S4-software package [22]. The truncated cones of
circular cross-section were characterized by a top radius ρ nm= 85t , a
base radius ρ nm= 105b and height ζ0. The period of the square lattice
was a nm= 450 , and we assumed normally incident illumination with
linearly polarized light of wavelength λ nm= 1550 . At this wavelength
the dielectric constant of silicon is ε = 12.25. In obtaining these results
N = 600 in-plane Fourier components were retained in the calculations
(the number of reciprocal lattice vectors inside a circular domain), and
the height of the truncated cones, ζ0, was divided into L = 10 layers of
equal thickness. It was found that increasing N and L above these
values did not result in any noticeable change in the simulation results;
at least, this was the case for the geometrical parameters that we
considered. The radius of the disc approximating the cone inside each
layer was taken as the cone's radius at the center-height of the layer.

We observe, in Fig. 5, that the FMM calculated reflectivity values
agree rather well with the reflectivity values measured for Samples A
and B (red filled circles in Fig. 5). Moreover, the values of the
geometrical parameters assumed in performing the FMM calculations
are in good agreement with the values of the corresponding geometrical
parameters obtained by analyzing the SEM images of the samples
[Figs. 1 and 2].

It is particularly interesting to note that the FMM simulated and
measured reflectivity values agree equally well for Samples A and B. It
is recalled that Sample A is periodic, which is what is assumed in FMM
calculations, while Sample B is random but with the same (surface)
density of nanopillars as for Sample A. The fact that the results of the
FMM calculations also agree well for Sample B we take as an indication
that it is the density of pillars that is the key parameter in determining
the reflectivity of the sample, at least, this is the case for the wavelength
that was assumed in performing the measurements and calculations. It
is speculated that this agreement will no longer hold true when the
wavelength is reduced so that more than one diffraction channel is
open.

The FMM formulation termed Polarization Basis (or “Pol”) in Ref.
[22], was used in performing the FMM calculations reported in Fig. 5.
This formulation is original to the code S4, and it gave the fastest
convergence, at least, for the geometrical parameters that we assumed.
Some of the other FMM formulations available in S4 (and other FMM
software packages) converged more slowly; this we attribute to the high
value of the dielectric constant of silicon (ε = 12.25) [22].

An inspection of the SEM images of the structures [Fig. 1] seems to
reveal that the cross section of the structures are elliptical instead of
having the circular shape assumed in performing the above calcula-
tions. An elliptical cross section will lead to a difference in the
reflectivity for an electric field oriented along the long or short axis
of the ellipse even at normal incidence. To investigate what effect this
elongated shape will have on the reflectivity, we took the two semi-axes
of the base to be ρ(1.00 ± 0.05) b, and similarly for the top semi-axis

ρ(1.00 ± 0.05) t . With these values the reflectivity of unpolarized light at
normal incidence departed only a few percent from what was obtained
for the reflectivity of the corresponding truncated cones of a circular
cross section defined by the radii ρb and ρt (and the same height ζ0).

The FMM calculations presented in Fig. 5 are computationally
intensive. It is therefore of interest to explore alternative computational
approaches and we will here use the RRE approach introduced in
Section 4.1. In the first set of RRE calculations the truncated cones
assumed in the FMM calculations were considered. The results of such
calculations are presented in Fig. 5 as filled blue triangles. Here the
error bars indicate R T±|1 − − |α α where Tα denotes the transmissivity
for incident light of polarization α (see Refs. [25,26]). From Fig. 5 it is
observed that the results of the FMM and RRE calculations agree
rather well. However, from the inset to Fig. 5 it is apparent that the
RRE results for the truncated cones of height ζ nm> 600 can not be
trusted due to the lack of energy conservation. It is speculated that the
poorer convergence property seen for the RRE approach when applied
to the truncated cone is due to the steep slopes and the sharp corners
around the top radius ρt [27]. Therefore, the next set of calculations
were performed with the RRE approach for pillars of a cosine form
characterized by a base radius ρ nm= 1400 . As we have mentioned, this
radius was chosen so that the volumes of the cosine particles and the
truncate cones are the same for structures of the same height. The
reflectivity values calculated by the RRE method for the cosine profile
are presented in Fig. 5 as filled orange diamonds. For comparison we
also performed calculations of the reflectivity by the FMM for the same
profile, and the results were found to agree well with what was obtained
by the RRE approach [dashed orange line in Fig. 5]. Such good
agreement hints towards the correctness of the obtained results. The
deviation between the RRE and FMM calculated reflectivities for a

Fig. 5. The reflectivity R ζ( )0 as function of the height ζ0 of the truncated cones or cosine

shaped silicon particles supported by a planar silicon substrate. The particles formed a
square lattice of period a nm= 450 and the structures were illuminated at normal
incidence by p- or s-polarized light of wavelength λ n= 1550 m . At this wavelength the
dielectric constant of silicon is 12.25. The horizontal dotted lines indicate the Fresnel
reflectivity of the corresponding planar silicon surface. The calculations of the reflectivity
values were performed by the FMM and the solution of the RRE. The truncated cones
were characterized by the height ζ0 and top and base radii of ρ nm= 85t and ρ nm= 105b ,

respectively. The radius of the cosine shaped particle was assumed to be ρ nm= 1400 so

that its volume is the same as for the truncated cone of the same height. The thin solid
black line represents the reflectivity of a three-layer model, Eq. (4), that fits the RRE (and
FMM) simulation results in the low-height limit. The layer assumed in this model was
characterized by the thickness ζ0 and refractive index n = 1.302 .
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cosine form is less than two percent at height ζ nm= 1000 .
The reflectivity values obtained by the FMM and RRE approaches

are observed to be slightly larger for the cosine form than those
obtained for the truncated cones of the same volume. The fact that the
reflectivity values are so similar for the two particle forms we take as an
indication that the particle volume is one of the critical parameters for
determining the reflectivity of the surface.

It should be mentioned that the computational time required to
produce the FMM and RRE simulation results presented in Fig. 5 are
rather different. For instance to check for convergence, we performed
FMM calculations with N=1000 which took several days on a modern
powerful desktop computer when it was run in sequential mode.
Reflectivity calculations for the same particle form using the RRE
approach required only a few seconds on the same computer. Even if
this latter approach is not able to handle the largest pillar heights, it is
still useful due to its much better computational performance.

On the basis of the low-height RRE simulation results for the cosine
form presented in Fig. 5, the three-layer model (4) of thickness ζ0 was
fitted for the refractive index n2 of the layer. In this way we obtained
the effective refractive index n = 1.302 for the layer. The corresponding
dependence of the reflectivity with the height ζ0 of the layer that is
predicted by Eq. (4) is presented in Fig. 5 as a thin black line. These
results demonstrate that a three-layer model of a fixed value of n2 is
inadequate to accurately describe the reflectivity variations predicted
by the solution of the RRE and the FMM. The three-layer model
reflectivity drops off too fast and for larger heights of the pillars the
discrepancy is significant.

Fig. 6 presents the results for R ζ( )0 calculated from the Maxwell
Garnett (blue lines) and Bruggeman effective medium theories (orange
lines). The filled/open symbols in this figure represent the 2D/3D
versions of these EMTs. It is observed from Fig. 6 that all the
reflectivities obtained from the EMTs are significantly higher then
those obtained from FMM (or RRE) simulations or the values
measured for Samples A and B. The 2D versions of the considered
EMTs produce results that are the closest to the simulation results, and
the 2D Bruggeman result is better than the results obtained on the
basis of the 2D Maxwell Garnett EMT (for the 3D EMTs it is the
opposite). Even if the numerical values predicted by the EMTs depart
substantially from the measured (and simulated) values, it is still noted
that the slopes of the reflectivity curves R ζ( )0 are more realistic for the
EMTs than for the three-layer model.

On the basis of the results presented in Fig. 6 it is concluded that
both the (2D and 3D) Maxwell Garnett and Bruggeman EMTs fail to
accurately predict the reflectivity of the silicon system under study. The

reason that the EMTs fail to predict the reflectivity we speculate is due
to the high value of the dielectric constant of silicon. For instance, we
have found that if the silicon substrate and pillars were instead made
from glass (ε = 2.25), then the 2D Maxwell Garnett and 2D Bruggeman
EMTs produce virtually identical reflectivity values that deviate from
the FMM calculated reflectivity by 0.5%, or less, over the entire interval

ζ nm0 ≤ ≤ 2000 of pillar heights.

6. Summary and conclusions

We have presented experimental results for the reflectivity of two
specially prepared silicon samples at telecommunication wavelengths.
The samples were fabricated by selectively etching silicon wafers to
create structured surfaces that consists of subwavelength silicon pillars
with a truncated-cone shape, over an otherwise flat silicon substrate.
Using effective medium concepts, we have tried to model the structured
region as a flat homogeneous layer over a flat silicon substrate.
However, our attempts to reproduce the experimental measurements
of the reflectivity using simple EMTs and this three-layer model have
failed. The EMTs we have considered are the 2D (cylindrical inclusions)
and 3D (spherical inclusions) versions of the Maxwell Garnett theory,
as well as the Bruggeman approach.

Given the failure of the EMTs to model the physical situation, we
have carried out more rigorous numerical calculations based on the
FMM and the RRE. The former is often employed to model periodic
structures in nanophotonics, while the latter is typically applied to
rough surface scattering problems. The two numerical approaches
produce results that are in good agreement with each other and with
the experimental results. The FMM is computationally intensive, while
the Rayleigh method is faster but cannot deal with surfaces that have
large slopes. Although with this approach we were unable to reach the
pillar heights of our samples, the method can be useful when the
concept of a homogeneous layer is valid, as in that case the effective
refractive index of the layer does not depend on the height of the
pillars.

The rigorous results based on the FMM for the reflectivity as a
function of pillar height indicate that it is not possible to model the
problem as a three-media system and that the structured layer needs to
be modeled as an inhomogeneous layer. We believe that the failure of
the EMTs and the three-layer media model to describe adequately the
physical situation is due to the large dielectric contrast between silicon
and air. This idea is supported by the good numerical agreement we
have found for similar structures made in glass, rather than silicon.
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