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Random surfaces that suppress single scattering
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We present a method for numerically generating a one-dimensional random surface, def ined by the equation
x3 � z �x1�, that suppresses single-scattering processes in the scattering of light from the surface within a
specif ied range of scattering angles. Rigorous numerical calculations of the scattering of light from surfaces
generated by this approach show that the single-scattering contribution to the mean scattered intensity is
indeed suppressed within that range of angles.  1999 Optical Society of America
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In theoretical and experimental studies of multiple-
scattering effects in the scattering of light from ran-
domly rough surfaces it is often desirable to be able
to suppress the contribution to the mean scattered in-
tensity from single-scattering processes: Effects such
as enhanced backscattering or the presence of satel-
lite peaks become more readily observable in the ab-
sence of the background provided by single-scattering
processes.

In theoretical studies it is possible to separate
the contribution of single-scattering processes to the
mean intensity of the light that is scattered inco-
herently from the contribution of multiple-scattering
processes.1,2 However, it is not so easy to achieve
experimentally. In the case of scattering of light from
two-dimensional random surfaces the in-plane, cross-
polarized scattering of p-polarized light suppresses the
single-scattering contribution to the mean intensity of
the light that is scattered incoherently. In the case
of scattering of light that is incident normally upon a
weakly rough one-dimensional random metal surface
the use of a surface whose roughness is characterized
by a power spectrum g�jkj� that vanishes identically
for jkj , kmin # v�c eliminates the contribution of
single-scattering processes to the mean intensity of the
incoherent component of the scattered light for scat-
tering angles that are smaller in magnitude than
sin21�ckmin�kv�.3 However, such surfaces are diffi-
cult to fabricate.

In this Letter we explore a different approach to the
design of random surfaces that suppress the single-
scattering contribution to the incoherent component
of the light that is scattered from them. This ap-
proach is not restricted to weakly rough surfaces, and
0146-9592/99/181257-03$15.00/0
such surfaces appear to be easier to fabricate than
surfaces characterized by a West–O’Donnell3 power
spectrum.

To explain the motivation for this approach, let us
consider the scattering of an s-polarized plane wave
of frequency v from a one-dimensional, perfectly con-
ducting random surface, where the plane of incidence
is perpendicular to the generators of the surface. We
recall that, if the inhomogeneous Fredholm equation
for the normal derivative of the single nonzero com-
ponent of the electric field in vacuum (evaluated on the
surface) is solved by iteration, the inhomogeneous term
yields the Kirchhoff approximation to the mean scat-
tered intensity (a single-scattering approximation), the
first iterate yields the pure double-scattering contri-
bution, and so on.2 Consequently, if a surface can be
designed with the property that the Kirchhoff approx-
imation to the mean intensity of the light that is scat-
tered from it vanishes for the scattering angle us in the
interval �2um, um�, all the scattered intensity within
this range of scattering angles will be the result of
multiple-scattering processes. Consequently, our aim
is to design a one-dimensional, perfectly conducting
random surface for which the Kirchhoff approxima-
tion to the mean differential ref lection coefficient
vanishes identically for us in the interval �2um, um�.
We simplify the required analysis significantly by
working in the geometrical-optics limit of the Kirchhoff
approximation. However, the results still display the
behavior that was sought.

Thus, we consider a one-dimensional, randomly
rough, perfectly conducting surface defined by x3 �
z �x1� that is illuminated by an s-polarized plane wave
of frequency v. The surface-prof ile function z �x1� is4
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z �x1� �
X̀

l�2`

cls�x1 2 l2b� , (1)

where �cl� are independent, positive, random deviates,
b is a characteristic length, and the function s�x1� is de-
fined by4

s�x1� �

8>>>>><
>>>>>:

0 x1 , 2�m 1 1�b
2�m 1 1�bh 2 hx1 2�m 1 1�b , x1 , 2mb
2bh 2mb , x1 , mb
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0 �m 1 1�b , x1

,

(2)
where m is a positive integer. Owing to the positiv-
ity of the coefficient cl, its probability-density function
(pdf) f �g� � �d�g 2 cl�� is nonzero only for g . 0.

It has been shown that for the random surfaces
defined by Eqs. (1) and (2) the mean differential
ref lection coefficient in the geometrical-optics limit of
the Kirchhoff approximation is given by4
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where u0 and us are the angles of incidence and scatter-
ing, measured counterclockwise and clockwise from the
normal to the mean scattering surface, respectively.
Equation (3) is simplif ied greatly in the case of normal
incidence �u0 � 0±�:*
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and we restrict ourselves to this case in what follows.
From Eq. (4) we find that if we wish �≠R�≠us� to have,
say, the form
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we must choose, for f �g�,

f �g� �
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where gm � �tan�um�2�	�h. From this form for f �g�
a long sequence of �cl� can be generated, e.g., by
the rejection method,5 and the surface-profile function
generated by use of Eqs. (1) and (2).

The surface-profile functions z �x1� generated in this
way are not zero-mean Gaussian random processes and
are not stationary. Indeed, the mean-square height
of the surface, d2 � �z 2�x1�� 2 �z �x1��2, is a periodic
function of x1 with a period 2b and for m � 1 is
given by d2 � ��c2� 2 �c�2	h2b2�1 1 �x1�b�2	 for 2b #
x1 # b. The average of this function over a period,
dav

2 � ��c2� 2 �c�2	4h2b2�3, can be used to estimate
the rms height of the surface. Similarly, the mean-
square slope of the surface is given by s2 � ��z 0�x1�	2� 2

�z 0�x1��2 � ��c2� 2 �c�2	h2, from which the rms slope can
be determined. The averages �c� and �c2� that appear
in these expressions, the first two moments of f �g�, are
given by
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An example of a surface generated in this way
is presented in Fig. 1. The pdf f �g� used in the
generation of this surface is defined by Eq. (6), with
um � 40.1±. The parameters entering the definition of
the function s�x1� are b � 3l, m � 3, and h � 0.2. For
these values of the parameters we find that dav � 0.9l
and s � 0.57, so the surface is moderately rough. The
surface was sampled at points xp � ��p 1 1/2�b	�N ,
where p � 0, 61, 62, . . . and N � 100 and can be
seen to consist of a succession of triangular peaks and
valleys.

To show that this random surface suppresses
single-scattering processes for jusj , 40.1±, in Fig. 2
we plot the contribution to the mean differential re-
f lection coefficient of the incoherent component of the
scattered light, �≠R�≠us�incoh, for scattering from this
surface, calculated by a computer-simulation approach
in the Kirchhoff approximation,2 with and without
invoking the geometrical-optics limit of the latter. We
obtained these numerical results by averaging over
2000 surface realizations. It can be seen that in the

Fig. 1. One-dimensional random surface-profile function
z �x1� obtained from Eq. (1) by the use of the pdf given by
Eq. (6), together with a function s�x1� defined by Eq. (2),
with b � 3l, m � 3, h � 0.2, and um � 40.1±.
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Fig. 2. �≠R�≠us�incoh calculated by a computer-simulation
approach for the random surface displayed in Fig. 1, when
s-polarized light of wavelength l is incident normally upon
it. Short-dashed curve, geometrical-optics limit of the
Kirchhoff approximation; long-dashed curve, Kirchhoff ap-
proximation; solid curve, result with all multiple-scattering
contributions included.

Fig. 3. �≠R�≠us�incoh calculated by a computer-simulation
approach for the case in which s-polarized light of wave-
length l � 612.7 nm is incident normally upon a one-
dimensional random silver surface. The arrows indicate
the positions of the angles 6um.

geometrical-optics limit of the Kirchhoff approximation
�≠R�≠us�incoh vanishes for jusj , 40.1±. In the Kirch-
hoff approximation �≠R�≠us�incoh is not identically zero
in this region of scattering angles but is quite small.
The difference between these two results shows how
well the geometrical-optics limit of the Kirchhoff
approximation reproduces the result of the Kirch-
hoff approximation itself. In Fig. 2 we also plot the
total contribution to the mean differential ref lec-
tion coefficient from the incoherent component of the
scattered light, including all multiple-scattering contri-
butions. This result for �≠R�≠us�incoh was calculated
exactly by a computer-simulation approach.2 One can
see from Fig. 2 that there is now a low background for
jusj , 40.1±, owing to multiple scattering, upon which
is superimposed an enhanced backscattering peak in
the retroref lection direction �us � 0±�, whose height
is nearly twice that of the background at its position.
The latter result is expected when the contribution
from single-scattering processes has been subtracted.6

Although the theory underlying the approach to gen-
erating random surfaces that suppress single scatter-
ing that has been presented here was based on the
assumption that the scattering surface is perfectly con-
ducting, the resulting approach also works well for
finitely conducting surfaces. In Fig. 3 we plot a rig-
orous computer-simulation result for �≠R�≠us�incoh in
the case in which s-polarized light of wavelength l �
612.7 nm is incident normally upon a one-dimensional
random silver surface �e�v� � 217.2 1 i0.498	 defined
by the parameters described above. The strong sup-
pression of �≠R�≠us�incoh in the interval jusj , 40.1± can
be clearly seen, and an enhanced backscattering peak
at us � 0± rises to approximately twice the height of the
background at its position.

In this Letter we have presented a method for gener-
ating numerically a one-dimensional random surface-
profile function z �x1� that suppresses single scattering
of s-polarized light from it, a property that in the case
of a perfectly conducting surface is independent of the
wavelength of the incident light. The extension of the
present approach to the generation of one-dimensional
random surfaces that suppress the single scattering of
p-polarized light is straightforward. This method is
not restricted to generation of weakly rough surfaces.
Surfaces defined by Eqs. (1) and (2), with a different
form of the pdf f �g�, have been fabricated successfully
in the laboratory,4 and their fabrication appears to be
simpler than that of surfaces characterized by a West–
O’Donnell3 power spectrum.
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