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A computationally efficient algorithm based on the reduced
Rayleigh equation, combined with an optimization scheme,
is used to accurately retrieve the morphological parameters of
a two-dimensional plasmonic photonic crystal from angle-
resolved spectroscopicMueller matrix ellipsometric measure-
ments. The numerical method is successfully tested against
experimental data and gives morphological parameters con-
sistent with SEM and AFM measurements. © 2017 Optical
Society of America
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Ellipsometry is a well-established technique for ex situ online
and offline characterization of homogeneous, inhomogeneous,
and nanostructured thin films [1,2]. Indeed, a fast retrieval
method allows for extracting in real time the morphological
parameters during growth and, hence, reveals the kinetics of
the growth processes [3]. Recently, spectroscopic standard, gen-
eralized, and Mueller matrix ellipsometry have been suggested
for the characterization of surfaces and composite systems
of complex geometries, such as photonic crystals and
metamaterials [2,4–10].

Spectroscopic ellipsometry has for several decades been used
for the characterization of one-dimensional gratings, although
limited to non-conical incidence [11,12]. The use of conical
incidence was, for example, reported in [13], where the
modeling of the Mueller matrix elements was based on the
rigorous coupled wave analysis (RCWA), and used to fit
the spectroscopic data. Critical dimension retrieval obtained
by combining RCWA andMueller matrix ellipsometry (or scat-
terometry) has also been investigated for two-dimensional gra-
tings [14,15], and may be regarded as an established, but
computationally expensive, technique.

Spectroscopic Mueller matrix ellipsometry of arrays of gold
particles supported by a glass substrate was recently shown to
exhibit a rich optical response, including Rayleigh–Wood

anomalies and significant polarization coupling around the
localized surface plasmon resonance (LSPR) [6].

In this Letter, the reduced Rayleigh equation (RRE) [16] is
combined with angle-resolved spectroscopic Mueller matrix
ellipsometry to produce a computationally efficient and reliable
method for the reconstruction of the geometrical parameters of a
two-dimensional photonic crystal. The method correctly repro-
duces the Rayleigh–Wood anomalies and polarization coupling,
and is sufficiently fast to practically be used for online metrology.
Hence, the proposedmethod is a promising candidate for fast and
accurate inversion of scattering data. Moreover, the RRE method
can also be adapted to account for randomness.

We study a two-dimensional photonic crystal made from a
rectangular array of oblate hemi-spheroidal gold (Au) particles
supported by a fused silica (SiO2) substrate; see Figs. 1(a)–1(c).
The sample was produced by focused ion beam milling of a
40 nm thick Au film. The intention was to produce a square
array of particles of a lattice parameter of 210 nm [6,17].
However, SEM and AFM characterization of the sample
[Fig. 1(a)] revealed a rectangular array of lattice parameters
a1 � 208� 2 nm and a2 � 211� 2 nm, where the particles
had an in-plane radius of rk � 58� 4 nm and a height of
r⊥ � 36� 5 nm [6,17]. This characterization also established
that an over-milling into the substrate had taken place during
sample preparation which expressed itself as a “trench network”
milled into the substrate in regions not covered by Au particles.
An accurate estimate of the depth of the trenches was hard to
obtain, but a correlation between the SEM and the AFM im-
ages supplied the estimate 15� 10 nm.

The optical response of the sample was investigated by
angle-resolved spectroscopic Mueller matrix ellipsometry in the
specular direction. The lower halves of the contour plots in
Fig. 1(d) show the experimental results obtained as functions
of the azimuthal angle of incidence ϕ0 ∈ �0°; 180°� and photon
energy ℏω for the selected polar angle of incidence θ0 � 55°.
The Mueller matrix elements indicate a rich optical response
of the sample, and they show signatures of (1) Rayleigh–
Wood anomalies and (2) a LSPR around 2.1 eV [6,17]. The
Rayleigh–Wood anomalies appear as a consequence of the
periodicity of the sample, and they are due to the opening
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or closing of diffracted channels in reflection or transmission as
one scans over the angle of incidence and photon energy (wave-
length). A remarkable property of the system under study is the
significant polarization coupling observed around the LSPR
and the Rayleigh–Wood anomalies, particularly apparent in
the off-diagonal blocks of the Mueller matrix.

Fast optical critical dimension metrology based on the re-
corded Mueller matrix is now demonstrated, uncovering the
average morphology of the sample and, hence, producing an
optical model further capable of accurately predicting its optical
properties at any angle of incidence and scattering. To this end,
a theoretical framework for modeling the optical response of
the sample is required, and here we will use an approach based
on the RRE [16,18–21] derived on the basis of the Rayleigh
hypothesis [22]. In general, this equation is an inhomogeneous,
matrix integral equation for the Jones reflection (or transmis-
sion) amplitudes. However, under the assumption of a periodic
scattering system, the corresponding RRE can be written in the
form [20,23] for l ∈ Z2:

X

n∈Z2

M�pljpn�R�n��p0� � −N �pljp0�: (1)

Here, M�pljpn� and N �pljp0� are known matrix elements
that encode the properties of the scattering system (e.g., the par-
ticle shape); explicit expression for these elements can be obtained
from Refs. [18,20]. In writing Eq. (1), the projection of the
incident wave vector onto the x1x2-plane has been denoted:

p0 �
ω

c
sin θ0�cosϕ0 ê1 � sinϕ0 ê2�; (2)

and we have defined pn ≡ p0 �Gn, where Gn �
n1�2π∕a1�ê1 � n2�2π∕a2�ê2 (ni ∈ Z) denote the reciprocal lat-
tice vectors of the periodic structure. Here, �θ0;ϕ0� represents the
angles of incidence, ω represents the angular frequency of the
incident light, and c represents the speed of light in vacuum.
The Jones matrix for reflection into a diffractive order character-
ized by n � �n1; n2� or, equivalently, a lateral wave vector pn, is
denoted by the 2 × 2 matrix

R�n��p0� � �R�n�
αβ �p0��α;β∈fp;sg; (3)

where α and β denote the linear polarization states of the reflected
and incident light, respectively.

The linear system of equations in Eq. (1) contains an infinite
number of unknown reflection amplitudes. A system of finite
size is obtained by limiting the n-summation to a set of
mode indices such that their corresponding reciprocal lattice
vectors lie within a circular domain of radius Gmax �
N max�2π∕a1; 2π∕a2� with N ∈ N, i.e., jGnj ≤ Gmax

[20,23,24]. In obtaining the numerical results presented in this
Letter, the value N � 15 was assumed which corresponds to
729 diffractive modes per polarization state of the incident light.
The linear system of equations obtained in this way can readily
be solved numerically (see Refs. [20,24]) to produce a set of re-
flection amplitudes fR�n��p0�g, from which the elements of the
Mueller matrix Mij (i; j � 1;…; 4) can be calculated from the
formula presented in Ref. [6]. The elements of the normalized
Mueller matrix are defined as mij � Mij∕M 11.

The central processing unit time required to solve Eq. (1)
(withN � 15) for given angles of incidence and photon energy
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Fig. 1. (a) SEM image of the sample, schematic diagrams of the (b) top and (c) side views of the modeled system. (d) Normalized Mueller matrix
elements mij � Mij∕M 11 (i; j � 1;…4) as functions of the photon energy ℏω (radial variable) in the range 0.7–5.9 eV and the azimuthal angle of
incidence (angular variable) ϕ0 ∈ �0°; 180°�. The lower half of each contour plot represents, for a polar angle of incidence θ0 � 55°, the experimental
mij-elements measured in the specular direction; the corresponding upper halves present simulation results obtained on the basis of the RRE (1)
when assuming the model ELM-opt whose parameters are given in Table 1. Notice from the schematic in the upper-left corner the positive direction
assumed for ϕ0; therefore, a comparison between measured and simulated results should be made symmetrically with respect to the horizontal white
dashed lines of each element.

2632 Vol. 42, No. 13 / July 1 2017 / Optics Letters Letter



was 2.5 s on a desktop computer (Intel i7-5930K 3.5 GHz)
when applied to the geometry considered in this Letter.
This is significantly shorter, by two orders of magnitude, than
the time required to obtain the same result using the com-
mercial FEM package COMSOL. Such a speedup is critical if
one wants to do real-time growth monitoring or inversion.
Moreover, the memory footprint of the RRE approach is also
much smaller than that of COMSOL; we found a memory ra-
tio of 1:60 between the two methods. We must note that the
convergence of the numerical solution of the RRE with an
increasing number of modes seems not to be guaranteed for
energies smaller than 2 eV, which we identified to correspond
to a range of energies, where the ratio of the imaginary to the
real part of the dielectric constant of gold becomes negatively
large and manifests itself with spurious oscillations, as can be
seen in Fig. 2. The number of points affected by this issue is
small compared with the total number of points used for the
optimization problem and, hence, the retrieved parameters are
not assumed to be significantly altered.

We now turn to the inversion of the experimental Mueller
matrix data from Fig. 1(d) with respect to the morphological
parameters characterizing the geometry of the sample. These
parameters are the lattice parameters a1 and a2; the in-plane
radius rk and the height r⊥ of the gold particles; and, poten-
tially, the thickness h and filling fraction f of a Bruggemann
effective medium layer [see Fig. 1(c)] [25]. The determination
of these parameters is done in two main steps.

In the first step, the lattice parameters, a1 and a2, are de-
termined from the positions of the Rayleigh–Wood anomalies
associated with the appearance of diffractive modes of order
one in the vacuum region. Theoretically, these Rayleigh–Wood

anomalies (in reflection) are expected at values of �ϕ0;ℏω� for
which jplj � ω∕c [6]; this condition contains the two lattice
parameters, but is independent of the other morphological
parameters. From the experimental Mueller matrix elements,
the positions of the Rayleigh–Wood anomalies are extracted
as functions of the azimuthal angle of incidence ϕ0 and photon
energy ℏω (see Ref. [6] for details), and the theoretical prediction
for the corresponding modes are fitted to the resulting data. In
this way, using the Rayleigh–Wood anomalies associated with
the modes l � �−1; 0� and l � �0; −1�, it was determined that
a1 � 205.6� 2.0 nm and a2 � 210.9� 2.0 nm. Here, the
error bars are estimated from how accurately the positions of
the anomalies can be extracted from the experimental data.
The obtained values for the lattice parameters are in good agree-
ment with those measured by SEM and AFM.

In the second step of the inversion, the lattice parameters are
held fixed at the values obtained during the first step, while the
remaining parameters, or a subset of them, v ⊆ frk; r⊥; h; f g,
are determined by fitting the output of the theoretical model
(1) to the corresponding measured data. To this end, we de-
fined the cost or objective function as

χ2�v� � 1

2

X

p0 ;ω

X

i;j

�mij�p0;ωjv� − m̃ij�p0;ω��2: (4)

Here, mij�p0;ωjv� denotes an element of the normalized
Mueller matrix obtained from the model for a given set of
morphological parameters v, which depends on the lateral wave
vector of incidence p0 [or angles �θ0;ϕ0�, Eq. (2)] and the pho-
ton energy ℏω; the corresponding measured normalized
Mueller matrix element is denoted m̃ij�p0;ω�. The outer sum
that appears in Eq. (4) was performed over a set of 1501 values
in the �ϕ0;ℏω�-plane, since jp0j (or θ0) was assumed constant
in the experiment. This set was constructed by selecting 19 val-
ues for the azimuthal angle of incidence ϕ0 ∈ �0°; 90°� with
a step of 5°; and 79 photon energies were chosen uniformly
between 1.5 and 5.9 eV. In the definition of χ2�v�, only the
elements �i; j� ∈ f�1; 2�; �3; 3�; �3; 4�g were taken into account
in the inner sum of Eq. (4) in the sets of block-diagonal Mueller
matrix elements related by symmetries [26]. Note that off-block
diagonal elements were not included.

The first set of inversion results was obtained under the
assumption that the Au hemi-spheroids were supported by a
planar SiO2 substrate. The parameters that one intends to re-
trieve, therefore, are v � �rk; r⊥�. The minimization of the cost
function χ2�v�, for this and later models, was performed using
the Levenberg–Marquardt algorithm where the Jacobian was
calculated by a finite-difference approach [27]. The dielectric
functions were obtained from oscillator fits to multiple data sets
of SiO2 [28] and the inversion of ellipsometric measurements
on the 40 nm thick uniform Au film performed prior to
milling. In this way, the reconstruction gave the values
rk � 59.7 nm and r⊥ � 39.9 nm [Table 1, row labeled
Au∕SiO2]. The photon energy dependence of the resulting
Mueller matrix elements that contributes to χ2�v� is presented
as the dotted lines in Fig. 2(a) for ϕ0 � 0°, and they show good
agreement with the corresponding measured data [solid lines].
It is observed that the energy of the LSPR at 2.1 eV is well
reproduced by the Au∕SiO2 model. The same is true for
the location of the Rayleigh–Wood anomalies, consistent with
the proposed approach for the determination of the lattice
parameters ai. Figure 2(b) depicts the energy dependence of the

Fig. 2. Mueller matrix elements (a) m12, m33, and m34 for ϕ0 � 0°
and (b) m13 for ϕ0 � 20° as functions of photon energy. The different
lines correspond to the experimental data (solid lines); the
Au∕SiO2-model (dotted lines) and ELM-opt (dashed lines). The
parameters assumed in the modeling are given in Table 1, and
the polar angle of incidence was θ0 � 55°.
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off-block diagonal element m13 for ϕ0 � 20°. Although this
element was not used in the optimization, a qualitatively good
agreement is found between the experiment and the Au∕SiO2

model. Similar results were observed for the other Mueller
matrix elements and/or other values of ϕ0 and θ0 (results
not shown).

From the results presented in Fig. 2, it is observed that the
agreement between the measured and the Au∕SiO2 model re-
sults are best in the low energy region. We speculate that the
poorer agreement observed for high energies is mainly due to
the non-planar features of the surface of the substrate that is
caused by overmilling. A simple effective layer characterized
by its thickness h and filling fraction f between air and glass
was used to model the overmilling into the glass. We consid-
ered three such effective layer models (ELMs) corresponding
to the fixed thickness h � 10 nm, 20 nm, and v � �rk; r⊥; f �,
or variable thickness and v � �rk; r⊥; h; f �. Optimization
performed on the basis of these models resulted in the morpho-
logical parameters presented in Table 1. Of the three consid-
ered models, ELM-opt represents best measured data in terms
of the lowest value for χ2. As the thickness of the effective layer
is increased to 33.5 nm, the value of rk remains stable, and the
value of r⊥ decreases, while the filling fraction f is rather stable.
Figure 2 presents as dashed lines the energy dependence of
some of the mij-elements that were obtained from ELM-opt
when assuming parameters in Table 1. It is apparent from
the results of this figure that the ELM-opt better represents
the measured data than the Au∕SiO2 model; in particular, this
is the case in the high energy region.

Figure 1(d) presents the full �ϕ0;ℏω� dependence of all nor-
malized Mueller matrix elements obtained from (1) the reduced
Rayleigh Eq. (1) (upper halves of the contour plots) and (2) the
measurements. The morphological parameters assumed in
obtaining the simulation results were those of ELM-opt (see
Table 1). The results of Fig. 1(d) show good agreement between
all the measured and modeled Mueller matrix elements, and not
only those used in the minimization. It is noted that similar re-
sults to those presented in Fig. 1(d) were obtained within the
Au∕SiO2 model, except for larger discrepancies between mea-
sured and modeled data at high energies.

In conclusion, we have presented a method that combines
the RRE with angle-resolved spectroscopic Mueller matrix
ellipsometry, giving a computationally efficient and reliable
approach for the reconstruction of the morphological parame-
ters of a two-dimensional plasmonic photonic crystal. The
approach is successfully applied to experimental Mueller matrix
ellipsometry data, and the reconstructed morphological param-
eters are found to be consistent with microscopy measure-
ments. The RRE approach can readily be generalized to

multilayer systems, and/or quasi-random systems. The pro-
posed method can be adapted to engineering of systems with
well-defined optical properties. Moreover, it has the potential of
being used for automatic large scale optical characterization,
quality assessment, and monitoring applications. Furthermore,
the morphological parameters extracted from Mueller matrix
measurements performed in the specular direction for a limited
number of angles of incidence, in combination with the RRE,
can be used to predict the optical response at any angles of
incidence and scattering. Such possibilities will be the topic
of future studies.
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