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Inversion of simulated and experimental light scattering data for characterization
of two-dimensional randomly rough metal surfaces
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An approach is presented for the inversion of simulated and experimental in-plane, copolarized light scat-
tering data in p and s polarization to obtain the normalized surface-height autocorrelation function and the
root-mean-square roughness of a two-dimensional randomly rough metal surface. The approach is based on an
expression, obtained on the basis of second-order phase perturbation theory, for the contribution to the mean
differential reflection coefficient from the light scattered diffusely by the rough surface. The inversion scheme
is validated by using several sets of computer-generated scattering data for rough silver surfaces defined by
Gaussian surface-height correlation functions. The reconstructions obtained by this approach are found to be
rather accurate for weakly rough surfaces illuminated by p- and s-polarized incident light; this is also true in
cases where the contributions to the input data from multiple scattering of surface plasmon polaritons is not
insignificant. Finally, the inversion scheme is applied to experimental scattering data obtained for characterized
two-dimensional randomly rough gold surfaces, and the results obtained in this way compare favorably to
what is obtained by directly analyzing the surface morphology. Such results testify to the attractiveness of the
computationally efficient inversion scheme that we propose.
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I. INTRODUCTION

Randomly rough surfaces are abundant in natural and man-
made systems alike [1]. There is therefore a strong desire to
characterize such surfaces and, in particular, to determine their
statistical properties. Statistical information on a randomly
rough surface is contained in its distribution of heights and in
its normalized surface-height autocorrelation function [1–3].
These two functions are often parametrized by the root-mean-
square (rms) height and the transverse correlation length of the
surface roughness. In principle, the most direct and straight-
forward approach to the statistical properties of a randomly
rough surface is first to obtain a map of its surface morphology
over a grid of points in the mean plane and then to calculate
the statistical properties of interest on the basis of these data.
For instance, a map of the surface height can be obtained
by atomic force microscopy and/or by contact profilometry
[4,5] two of many possible scanning probe microscopy tech-
niques. What is measured by such techniques is the surface
morphology convoluted by the tip of the probe. Moreover,
such techniques are typically contact methods which make
them time consuming to perform and typically put constraints
on the size of the spatial region in the mean plane of the
surface that can be measured with sufficient spatial resolution.
In addition, the morphology data obtained in this way can, at
times, be nontrivial to collect and analyze [6].

Indirect methods represent alternative approaches to the
determination of the statistical properties of a randomly rough
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surface for which maps of the surface morphologies are not
required. Such methods are typically noncontact methods. A
wave approach of this kind is based on inverse scattering
theory. Here one first measures the angular dependence of the
intensity of the light that has been scattered diffusely into the
far field by the rough surface when it is illuminated by a plane
incident wave and next use these measured data to determine
the statistical properties of the rough surface. There are several
advantages of this approach. The technique is noninvasive,
fast, relatively cheap to implement, and typically can cover
a large region of the mean plane of the surface which is im-
portant when aiming to determine the statistical properties of
the rough surface. For two-dimensional randomly rough sur-
faces, this problem was initially studied by Chandley [7], and
later by Marx and Vorburger [8]. Chandley assumed that the
intensity of the light scattered by the randomly rough surface
could be modeled by scalar diffraction theory in combination
with the use of a thin phase screen model. In this way and
due to the form of the expressions for the scattered intensity,
the angular dependence of the mean scattered intensity could
be readily inverted for the statistical properties of the surface
by the use of a two-dimensional Fourier transform. Further-
more, Chandley also made the additional assumption that the
autocorrelation function of the wave front is the same as the
surface-height autocorrelation of the surface. This is only a
good approximation for sufficiently small polar angles of inci-
dence and scattering and for surfaces which are not too rough.
An additional disadvantage of this approach is that one needs
to measure the full angular distribution of the scattered light,
something that is both time consuming and requires rather
specialized optical equipment (photogoniometers) to perform.
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Almost one and a half decades after the initial work of
Chandley [7], Marx and Vorburger [8] assumed the Kirchhoff
approximation and used it to calculate the mean scattered
intensity resulting from a plane incident scalar wave that is
scattered from a perfectly conducting surface. By assuming
a particular form of the normalized surface-height autocor-
relation function, such a model was used in a least-square
procedure to determine the transverse correlation length and
the rms roughness of the surface from experimental scattering
data. This approach had the advantage over the approach of
Chandley that the full angular intensity distribution of the
scattered light was not required; for instance, it was sufficient
to only consider the intensity distribution in the plane of
incidence (in-plane scattering).

Two decades after the initial publication by Chandley [7], a
generalization of part of his work was conducted by Zhao and
colleagues [9]. Like Chandley, these authors used a Fourier
technique for the inversion of the scattering data, while the
scattering model that they used was based on the Kirchhoff
approximation, unlike Chandley, but similar to what was as-
sumed by Marx and Vorburger [8]. The advantage of the
approach of Zhao et al. is that it is computationally efficient,
due to the use of the Fourier transform, and that it does not
require the full angular intensity distribution of the scattered
light as an input. Moreover, this approach is not limited to
small polar angles of incidence and scattering and it is not
restricted to surfaces for which the rms roughness over the
wavelength of the incident light is much less than unity (as
was the case for the approach of Chandley).

Assuming scalar wave theory and the Kirchhoff approx-
imation, Zamani et al. [10] recently derived, within certain
additional approximations, an analytic relation between the
surface-height autocorrelation function and the intensity of
the scalar wave that has been scattered diffusely by the rough
surface; also see Refs. [11,12]. This expression these authors
were able to invert analytically for the surface-height autocor-
relation function of the rough surface. It should be remarked
that previously a similar analytic inversion approach had been
introduced by Zhao et al. [9]. However, the expressions that
the analytic inversions were based on in Refs. [9,10] are
different, and so are the results for the correlation functions
obtained by inversion. These differences are due to the two
groups of authors using different assumptions and mathemat-
ical approximations in deriving these expressions.

All the inversion schemes reported in Refs. [7–10] assume
that scalar wave theory is adequate to model the scattering
of light from two-dimensional randomly rough dielectric or
metal surfaces. It is well known that light is vector waves, and
that the polarization states of the incident and scattered light
have to be taken into account in order to obtain a quantita-
tively accurate description of the intensity of the light that is
scattered from a randomly rough surface [3]. When the trans-
verse correlation length of the rough surface is significantly
larger than the wavelength of the incident light, one typically
finds little difference between the in-plane angular intensity
distributions of the p-to-p and the s-to-s scattered light [for
instance, see Figs. 2(a) and 4(a)]; in such cases a scalar
wave theory may (or, may not) be sufficient. However, when
the lateral correlation length is smaller than the wavelength
of the incident light, the angular intensity distributions for

in-plane p- and s-polarized light are typically rather different
[for an example, see Figs. 8(a) and 9(a)]; in these cases, scalar
wave theory is inadequate and will produce incorrect results.
We also note that when the lateral correlation length of the
surface is smaller than the wavelength of the incident light,
the Kirchhoff approximation is not expected to be valid; there-
fore, a reconstruction approach based on it is not expected to
produce reliable results.

Recently, a vector theory was used successfully for the
reconstruction of the statistical properties of a randomly rough
dielectric surface performed on the basis of the in-plane
angular dependence of s-to-s scattering data obtained for
the surface [13]. The vector theory used here to model the
light that is scattered from the rough surface is second-order
phase perturbation theory [14,15]. The reconstructions that
Simonsen et al. [13] performed using this vector theory were
otherwise preformed in a manner that resembles how they
were performed by Marx and Vorburger [8]. By assuming a
particular form of the normalized surface-height autocorre-
lation function, a model for the scattering of light derived
within phase perturbation theory, and the input scattering data,
a least-square minimization procedure was used to determine
the transverse correlation length and the rms roughness of the
surface. In this way, successful and accurate reconstructions
were demonstrated for dielectric surfaces in s polarization
for a set of different input and trial correlation functions. It
ought to be remarked that a similar approach based on phase
perturbation theory and applied to the reconstruction of sur-
face parameters based on p-to-p scattering data for dielectric
surfaces could in principle have been performed. In practice,
however, such an approach turned out not to be very accurate
due to the Brewster angle that exists in the scattering from
a planar dielectric surface in p polarization [16]. Since a
Brewster angle does not exist for the scattering of s-polarized
light from a planar dielectric surface, a similar problem does
not exist for this polarization, something that is also shown
explicitly by the results reported in Ref. [13].

Another electromagnetic inversion approach has also quite
recently been developed and it is based on the vectorial Kirch-
hoff approximation [17]. By invoking the stationary phase
method and a few approximations, the expressions for the
scattered intensity can be inverted analytically, up to the evalu-
ation of an integral, for the surface height correlation function
and rms-roughness without any adjustable parameters. The
main attractiveness of this approach is that no parametrization
of the correlation function is needed; from only the in-plane
angular dependence of the co-polarized scattered intensity, the
correlation function of the surface can be calculated by the
evaluation of an integral. This approach has been applied suc-
cessfully for the reconstruction of the roughness parameters
of both dielectric and metallic surfaces.

Only recently have inversion schemes been applied to
experimental scattering data. For instance, Zamani et al. ap-
plied their approach to experimental scattering data obtained
when light is scattered from rough silicon surfaces [10]. They
compared the results for the surface-height autocorrelation
functions obtained by inversion to what was obtained directly
from the surface morphologies measured by microscopy. For
the surfaces that they considered, good agreement is reported
between the two classes of results. In their study, Zamani
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et al. argue that their approach is more accurate than previous
approaches, and this in particular applies to the approach of
Zhao et al. [9]. Also in Ref. [17] the introduced electromag-
netic inversion approach is applied to experimental data. For
instance, here two experimental data sets that correspond to
the scattering of light from two rough gold surfaces are recon-
structed for their roughness parameters. The results that are
obtained in this way agree well with what were obtained by
analyzing the measured surface morphology of the surfaces.

The electromagnetic inverse scattering problem, as we dis-
cuss it here, is intimately related to the corresponding direct
(or forward) scattering problem. Over the years, numerous
perturbative and approximate approaches towards the solu-
tion of the direct scattering problem have been developed
[1,3,18,19] and some of these are compared to experimental
data in Ref. [15]. However, there are rather few rigorous
approaches to the scattering of electromagnetic waves from
two-dimensional randomly rough surfaces [20–27] and those
that exit are computationally expensive to apply. As the size
of the randomly rough surface grows, the numerical cost of
applying such methods very quickly becomes excessive so
that they cannot readily be used in practice. For the study of
the scattering of light from two-dimensional randomly rough
surfaces, several integral equation methods are the predom-
inant approaches used for numerical simulations. One such
method is based on the Stratton-Chu integral equation where
the unknowns are surface currents and the kernels of the inte-
gral equations are related to the Green’s functions [24,25,28].
Another approach that can be used for the simulation of scat-
tering of light from rough surfaces is the reduced Rayleigh
equation approach [27,29,30] which is a spectral method [31].
Here one solves a set of coupled inhomogeneous integral
equations where the unknowns are either the reflection or
transmission amplitudes of the reflected or transmitted light,
respectively. The advantage of the Rayleigh approach over the
Stratton-Chu approach is that for the same size and discretiza-
tion of the surface, the former is significantly more efficient. It
is the Rayleigh approach that we use in this work to produce
simulation results used for evaluating our inversion approach.

The purpose of this paper is to use second-order phase
perturbation theory, a vector theory for light, to develop the
needed formalism and to use it to perform reconstructions
of the statistical properties of randomly rough metal surfaces
based on the polarization-dependent in-plane angular intensity
distributions. This will be possible for both p- and s-polarized
light since for a metal surface a Brewster angle does not exist
for which the scattered intensity vanishes. First, the formal-
ism that we propose will be applied to the reconstruction
based on computer-generated scattering data for both linear
polarizations and for a set of roughness parameters. Next, the
reconstruction will be performed on the basis of experimen-
tal scattering data. The intensity of the light scattered from
weakly and moderately rough metal surfaces, unlike light
scattered from rough dielectric surfaces, can obtain, depend-
ing on the roughness parameters of the surface, significant
contributions from the multiple scattering of surface plasmon
polaritons [3,32]. An important issue that we address in this
work is how multiple scattering processes, contributing to
the input scattering data, influence the quality of the height
autocorrelation functions and the surface parameters that are

FIG. 1. Schematics of the scattering geometry considered in this
work.

reconstructed by the approach that we propose. It is demon-
strated that even when multiple scattering contributions are
non-neglectable, reconstruction based on the proposed ap-
proach can produce fairly accurate results.

The remaining part of the paper is organized in the fol-
lowing way: Section II presents the scattering system that we
will be concerned with, followed by some useful elements of
scattering theory on which the subsequent discussion relies
(Sec. III). The inversion scheme that we will use for the
reconstruction of the surface roughness parameters as well
as the surface-height autocorrelation function is presented
in Sec. IV. Section V presents and discusses the results
that can be obtained by applying the proposed reconstruc-
tion procedure to a set of different scattering geometries
and computer-generated and experimental scattering data. The
conclusions and outlook that can be drawn from this study are
presented in Sec. VI. The paper ends with an Appendix pre-
senting a detailed derivation of the expressions, central to this
work, for the first few moments of the scattering matrix for
p-to-p scattering obtained on the basis of phase perturbation
theory.

II. THE SYSTEM STUDIED

The scattering system that we consider in this work is de-
picted in Fig. 1. It consists of vacuum in the region x3 > ζ (x‖),
and a metal, characterized by a frequency-dependent dielec-
tric function ε(ω) in the region x3 < ζ (x‖). At the angular
frequency ω of the incident light, this dielectric function has a
negative real part while its imaginary part is positive or zero.
The vector x‖ = (x1, x2, 0) is a position vector in the plane
x3 = 0. The surface profile function ζ (x‖) is assumed to be a
single-valued function of x‖ that is differentiable with respect
to x1 and x2. It is also assumed to constitute a stationary,
zero-mean, isotropic, Gaussian random process defined by

〈ζ (x‖)〉 = 0, (1a)

〈ζ (x‖)ζ (x ′
‖)〉 = δ2W (|x‖ − x ′

‖|), (1b)

where the angle brackets denote an average over the ensemble
of realizations of ζ (x‖), δ = 〈ζ 2(x‖)〉1/2 is the root-mean-
square (rms) height of the surface, and W (|x‖|) denotes the
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normalized surface-height autocorrelation function, with the
property that W (0) = 1.

To aid in the later discussion, it will be convenient to
introduce the following Fourier integral representation of the
surface profile function:

ζ (x‖) =
∫

d2Q‖
(2π )2

ζ̂ (Q‖) exp(iQ‖ · x‖), (2)

where Q‖ = (Q1, Q2, 0) is a two-dimensional wave vector, so
that

ζ̂ (Q‖) =
∫

d2x‖ ζ (x‖) exp(−iQ‖ · x‖). (3a)

In addition we also introduce the notation

ζ̂ (n)(Q‖) =
∫

d2x‖ ζ n(x‖) exp(−iQ‖ · x‖), (3b)

where for simplicity when n = 1 we simply will write
ζ̂ (Q‖) ≡ ζ̂ (1)(Q‖).

The Fourier coefficient ζ̂ (Q‖) is also a zero-mean Gaussian
random process defined by

〈ζ̂ (Q‖)ζ̂ (Q ′‖)〉 = (2π )2δ(Q‖ + Q ′‖) δ2g(|Q‖|), (4)

where g(|Q‖|), the power spectrum of the surface roughness,
is defined by

g(|Q‖|) =
∫

d2x‖ W (|x‖|) exp(−iQ‖ · x‖). (5)

From Eqs. (1) and (5), it follows that g(|Q‖|) is normalized to
unity, ∫

d2Q‖
(2π )2

g(|Q‖|) = 1. (6)

III. SCATTERING THEORY

The metallic surface x3 = ζ (x‖) is illuminated from the
vacuum by a plane-wave electromagnetic field of angular
frequency ω. The electric field component of this (incident)
field is given by

E(i)(x; t )

=
{
− c

ω
[k̂‖α0(k‖) + x̂3k‖]Bp(k‖) + (x̂3 × k̂‖)Bs(k‖)

}
× exp {i[k‖ − x̂3α0(k‖)] · x − iωt}, (7a)

where Bp(k‖) and Bs(k‖) are known amplitudes. The total
electric field in the vacuum region above the surface consists
of the sum of this incident field and a scattered field, E(x; t ) =
E(i)(x; t ) + E(s)(x; t ), where the scattered electric field has the
form

E(s)(x; t )

=
∫

d2q‖
(2π )2

{
c

ω
[q̂‖α0(q‖)−x̂3q‖]Ap(q‖) + (x̂3 × q̂‖)As(q‖)

}

× exp{i[q‖ + x̂3α0(q‖)] · x − iωt}, (7b)

where the amplitudes Ap(q‖) and As(q‖) have to be deter-
mined. In Eq. (7) the subscripts p and s denote the p-polarized
(TM) and s-polarized (TE) components of each of these fields,
respectively, and a caret over a vector indicates that it is a unit

vector. The function α0(q‖) that appears in Eq. (7) is defined
as

α0(q‖) =
[
ω2

c2
− q2

‖

]1/2

, Re α0(q‖) > 0, Im α0(q‖) > 0.

(8)

Due to the linearity of the Maxwell’s equations, a linear rela-
tionship exists between the amplitudes Aα (q‖) and Bβ (k‖) of
Eq. (7). We write this relation in the form (α = p, s, β = p, s)

Aα (q‖) =
∑

β

Rαβ (q‖|k‖)Bβ (k‖), (9)

where the quantities {Rαβ (q‖|k‖)} denote the reflection ampli-
tudes which play a significant role in the present theory since
the mean differential reflection coefficient (DRC) is defined
in terms of them. It can be shown that the contribution to the
mean DRC from the light scattered incoherently by the rough
surface is given by [3,13,24]〈

∂Rαβ (q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0
[〈|Rαβ (q‖|k‖)|2〉

− |〈Rαβ (q‖|k‖)〉|2]. (10)

Here S denotes the area of the plane x3 = 0 covered by the
rough surface, (θ0, φ0) and (θs, φs) are the polar and azimuthal
angles of incidence and scattering, respectively, as defined in
Fig. 1, and finally

k‖ = ω

c
sin θ0(cos φ0, sin φ0, 0) (11a)

and

q‖ = ω

c
sin θs(cos φs, sin φs, 0). (11b)

Next we defined the scattering matrix S(q‖|k‖), whose
elements {Sαβ (q‖|k‖)} are expressed in terms of the elements
of the matrix of reflection amplitudes R(q‖|k‖) by the relation
[33]

Sαβ (q‖|k‖) = α
1/2
0 (q‖)

α
1/2
0 (k‖)

Rαβ (q‖|k‖), (12)

and satisfy the reciprocity relations [34,35]

Spp(q‖|k‖) = Spp(−k‖| − q‖), (13a)

Sss(q‖|k‖) = Sss(−k‖| − q‖), (13b)

Sps(q‖|k‖) = −Ssp(−k‖| − q‖). (13c)

The expression for the mean DRC in Eq. (10) can alterna-
tively be given in terms of the elements of the scattering
matrix as〈

∂Rαβ (q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2

cos θs[〈|Sαβ (q‖|k‖)|2〉

−|〈Sαβ (q‖|k‖)〉|2]. (14)

It is this form we will work with here for the expression for
the contribution to the mean DRC from the light scattered
incoherently by the rough surface. The advantage of using the
form in Eq. (14), instead of the form in Eq. (10), is that the
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reciprocity relations (14) can be used to check the correctness
of the expressions for the mean DRC that we obtain.

Here we will be concerned with copolarized scattering,
that is, with the αα element of Eq. (14). To obtain them,

we need Sαα (q‖|k‖) which we will obtain on the basis of
second-order phase perturbation theory. In the Appendix we
detail that, within second-order phase perturbation theory, the
αα element of Eq. (14) can be expressed as

〈
∂Rαα (q‖|k‖)

∂
s

〉
incoh

= |ε − 1|2
2π

(
ω

c

)2

cos θs
| fα (q‖) fα (k‖)|
|dα (q‖)dα (k‖)|2 exp[−2Mα (q‖|k‖)]

∫ ∞

0
d u‖ u‖J0(|q‖ − k‖|u‖)

×
{

exp

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fα (q‖) fα (k‖)

∣∣∣∣|Hα (q‖|k‖)|2W (u‖)

]
− 1

}
, (15a)

where J0(·) denotes the Bessel function of the first kind and order zero, and

Mα (q‖|k‖) = −2δ2Re

[
α0(q‖)α0(k‖)

fα (q‖) fα (k‖)

] 1
2
∫

d2 p‖
(2π )2

Fα (q‖|p‖|k‖) g(|p‖ − k‖|). (15b)

In writing this expression it has been assumed that the surface is isotropic and we have introduced the functions

dp(q‖) = εα0(q‖) + α(q‖), (16a)

ds(q‖) = α0(q‖) + α(q‖), (16b)

where α0(q‖) is defined in Eq. (8) and

α(q‖) =
[
ε

(
ω

c

)2

− q2
‖

]1/2

, Re α(q‖) > 0, Im α(q‖) > 0. (17)

Furthermore, we have also defined the functions

fp(q‖) = ε

(
ω

c

)2

− (ε + 1)q2
‖, (18a)

fs(q‖) =
(

ω

c

)2

, (18b)

and

Hp(q‖|k‖) = sgn(q̂‖ · k̂‖)[εq‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)], (19a)

Hs(q‖|k‖) = − sgn(q̂‖ · k̂‖)

(
ω

c

)2

q̂‖ · k̂‖. (19b)

Finally, the functions Fα (q‖|p‖|k‖) are defined as (see the Appendix)

Fp(q‖|p‖|k‖) = sgn(q̂‖ · k̂‖)

[
1

2
[α(q‖)+α(k‖)][q‖k‖−α(q‖)q̂‖ · k̂‖α(k‖)] +

(
ε−1

ε

){
α(q‖)q̂‖ · p̂‖α(p‖)p̂‖ · k̂‖α(k‖)

− [εq‖ p‖ − α(q‖)q̂‖ · p̂‖α(p‖)][εp‖k‖ − α(p‖)p̂‖ · k̂‖α(k‖)]

dp(p‖)
− ε

(
ω

c

)2
α(q‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3α(k‖)

ds(p‖)

}]
,

(20a)

and [see Eq. (A14)]

Fs(q‖|p‖|k‖) = − sgn(q̂‖ · k̂‖)

(
ω

c

)2{1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)[q̂‖ × p̂‖]3

α0(p‖)α(p‖)

dp(p‖)
[p̂‖ × k̂‖]3

− (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

ds(p‖)

}
. (20b)

Here the notation [·]3 denotes the third component of the
vector argument. It ought to be remarked that the expressions
for the mean DRC in Eqs. (15)–(20) are obtained using one of
several possible formulations of second-order phase perturba-
tion theory. One alternative formulation of phase perturbation

theory is presented in Ref. [15] where it is used to derive the
corresponding expressions for the mean DRC. It is still not
known which of the two formulations are the most accurate,
or if one formulation is more accurate for metallic scattering
systems, say, and the other for dielectric scattering systems.
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It might also be that the formulation to prefer depends on the
wavelength regime of interest. These are questions that further
research will have to answer.

We now turn to the calculation of the function Mα (q‖|k‖)
that is defined by Eqs. (15b) and (20). This calculation is facil-
itated by expanding the power spectrum g(|p‖ − k‖|), defined
by Eq. (5), in the following way:

g(|p‖ − k‖|) = 2π

∞∑
n=−∞

exp[in(φp − φk )]

×
∫ ∞

0
d u‖ u‖W (u‖) Jn(p‖u‖) Jn(k‖u‖), (21)

where Jn(·) denotes the Bessel function of the first kind
and order n. The expansion (21) is established by first in-

troducing polar representations of the vectors p‖, k‖, and
u‖, that is p‖ = p‖(cos φp, sin φp, 0) with φp the azimuthal
angle of this vector with the positive x1 axis (see Fig. 1),
etc., then using the Jacobi-Anger identity [[36], Chap. 9],
exp(imz cos φ) = ∑∞

m=−∞ Jm(z) exp(iφ), and the property of
the Bessel function J−m(z) = (−1)mJm(z). When the expan-
sion (21) is introduced into Eq. (15b) a lengthy, but in
principle, straightforward calculation shows that the angular
integration (over φp) can be performed analytically. For p-
polarized light (α = p), the result of such a calculation is

Mp(q‖|k‖) = −δ2sgn(q̂‖ · k̂‖)Re

√
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)
mp(q‖|k‖),

(22a)

where

mp(q‖|k‖) = q‖[α(q‖) + α(k‖)]k‖ − (q̂‖ · k̂‖)α(q‖)[α(q‖) + α(k‖)]α(k‖)

+ ε − 1

ε

∫ ∞

0
d p‖ p‖

{
−2ε2q‖ p2

‖k‖
dp(p‖)

+ (q̂‖ · k̂‖)α(q‖)

[
α(p‖) − α2(p‖)

dp(p‖)
+ ε(ω/c)2

ds(p‖)

]
α(k‖)

}

×
∫ ∞

0
d x‖ x‖W (x‖)J0(p‖x‖)J0(k‖x‖)

+ 2(ε − 1)
∫ ∞

0
d p‖ p‖

p‖α(p‖)

dp(p‖)
[q‖α(k‖) + (q̂‖ · k̂‖)α(q‖)k‖]

∫ ∞

0
d x‖ x‖W (x‖)J1(p‖x‖)J1(k‖x‖)

+ (q̂‖ · k̂‖)
ε − 1

ε

∫ ∞

0
d p‖ p‖α(q‖)

{
α(p‖) − α2(p‖)

dp(p‖)
− ε(ω/c)2

ds(p‖)

}
α(k‖)

∫ ∞

0
d x‖ x‖W (x‖)J2(p‖x‖)J2(k‖x‖). (22b)

A similar calculation for s-polarized light was recently performed in Ref. [13] with the result that [see Eqs. (22) and (A9) in
Ref. [13]]

Ms(q‖|k‖) = −δ2
∣∣q̂‖ · k̂‖

∣∣α1/2
0 (q‖)α1/2

0 (k‖)Re

{
−α(q‖) − α(k‖)

+ (ε − 1)
∫ ∞

0
d p‖ p‖

(
α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

) ∫ ∞

0
d x‖ x‖W (x‖)J0(p‖x‖)J0(k‖x‖)

+ (ε − 1)
∫ ∞

0
d p‖ p‖

(
−α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

)∫ ∞

0
d x‖ x‖W (x‖)J2(p‖x‖)J2(k‖x‖)

}
. (22c)

Note that for normal incidence, according to Eq. (11a), one
has k̂‖ = (cos φ0 sin φ0, 0) even if k‖/k‖ is not well defined in
this case. Below we will be concerned with in-plane scattering
in which case |q̂‖ · k̂‖| = 1.

IV. INVERSE PROBLEM

The aim of this work is to determine the rms roughness δ

and the height autocorrelation function W (x‖) of the rough
metal surface from the knowledge of the in-plane angular
dependence of the copolarized light scattered incoherently
from it. This will be done by minimizing the cost function

χ2(P ) =
∫ π

2

− π
2

dθs

∑
α

[〈
∂Rαα (θs)

∂
s

〉
incoh,input

−
〈
∂Rαα (θs)

∂
s

〉
incoh,calc

]2

, (23)

where we to simplify the notation have introduced

〈
∂Rαα (θs)

∂
s

〉
incoh

≡
〈
∂Rαα (q‖|k‖)

∂
s

〉
incoh

∣∣∣∣∣
|q̂‖·k̂‖|=1

, (24)

and where P denotes the set of variational parameters used
to characterize 〈∂Rαα (θs)/∂
s〉incoh,calc. The α summation is
present in Eq. (23) to facilitate the reconstruction of surface
parameters based on the simultaneous use of scattering data
in both p and s polarization. If data for only one polarization
are used in the reconstruction, the summation is redundant.
The minimization of χ2(P ) with respect to the elements of P
was carried out by the use of the routine “lmdif1” contained
in the Fortran package MINPACK which is part of the general
purpose mathematical library SLATEC [37]. The routine lmdif1
implements a modified version of the Levenberg-Marquardt
algorithm [38,39], and it calculates an approximation to the
Jacobian by a forward-difference approach.
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The functions 〈∂Rαα (θs)/∂
s〉incoh,input with α = p, s were
either obtained from rigorous, nonperturbative, purely numer-
ical solutions [26,40] of the reduced Rayleigh equation for the
scattering of polarized light from a two-dimensional randomly
rough metal surface [29] or from measurements [15]. The cal-
culations were carried out for an ensemble of random surfaces
generated [26] on the basis of expressions for W (|x‖|) of the
Gaussian form

W (|x‖|) = exp

{
−

(
x‖
a

)2
}

. (25)

In Eq. (25), a denotes the transverse correlation length of the
surface roughness.

On the other hand, the functions 〈∂Rαα (θs)/∂
s〉incoh,calc

for α = p, s were obtained by evaluating the expression for
it obtained using phase perturbation theory [Eq. (15)] for the
trial function assumed to represent W (|x‖|). Several forms for
this trial function were used in our calculations; either we
assumed the Gaussian trial function

W (|x‖|) = exp

{
−

(
x‖
a�

)2
}

, (26)

or a stretched exponential trial function of the form

W (|x‖|) = exp

{
−

(
x‖
a�

)γ�
}
. (27)

When the form (26) is used for the trial function the varia-
tional parameters of the reconstruction are δ� and a�. On the
other hand, when the trial function (27) is used, the variational
parameters of the reconstruction are δ�, a�, and γ�. Note that
stretched exponential trial function reduces to the Gaussian
forms (26) when γ� = 2.

V. RESULTS

When visible light is scattered from a weakly rough metal
surface, like silver, one of the prominent features that can
be observed for some roughness parameters in the angular
distribution of the scattered light is the enhanced backscat-
tering phenomenon [3,41,42] which expresses itself as a
well-defined peak in the retroreflection direction. This phe-
nomenon is also known under the alternative name of coherent
backscattering phenomenon [43]. For weakly rough surfaces,
it is known to result from the excitation and multiple scattering
of surface waves known as surface plasmon polaritons (SPPs)
[32]. Hence, when the enhanced backscattering peaks are
present in the angular distribution of the scattered light, it is
a clear signature of the contribution from multiple scattering
processes to the scattered intensity. In the case when the con-
tribution from single scattering processes can be neglected,
the intensity at the position of the enhanced backscatter-
ing peak is expected to be twice of the intensity of its
background [41].

A. Inversion of computer-generated scattering data

The second-order phase perturbation theoretical approach
that we base the reconstruction on is not a complete multiple
scattering approach. Even if second-order phase perturbation

theory includes some (but not all) multiple scattering pro-
cesses, it is unable to predict the existence of the enhanced
backscattering phenomenon. Therefore, it is of interest to
study how well the reconstruction approach based on it is
able to handle different levels of contribution from multi-
ple scattering to the scattered intensity. To this end, we will
illustrate the inversion (or reconstruction) procedure devel-
oped here by applying it to the reconstruction of the rms
roughness δ and W (x‖|) based on computer-generated scat-
tering data that receive various levels of contribution from
multiple scattering processes (via the excitation and multi-
ple scattering of SPPs). In the preceding subsection, we will
apply our reconstruction approach to experimental scattering
data.

1. Scattering system No. 1

The first scattering system that we consider is a silver
substrate bounded by a randomly rough surface to vacuum
which is the incident medium. An α-polarized plane incident
wave of wavelength λ = 457.90 nm (in vacuum) illuminates
the surface from the vacuum. At the wavelength of the in-
cident light (λ = 2π/ω) the dielectric function of silver is
ε(ω) = −7.50 + 0.24i [44]. The rms roughness of the surface
is taken to be δ = λ/20 = 22.90 nm and the surface-height
autocorrelation function W (|x‖|) is assumed to have the Gaus-
sian form (25), and characterized by a transverse correlation
length a = λ = 457.90 nm. For these roughness and geo-
metrical parameters, the scattering problem was solved by
a rigorous, nonperturbative, and direct numerical solution of
the reduced Rayleigh equation by the method of Ref. [26]. In
this way, we calculated by computer simulations the in-plane
angular dependence of the contribution to the mean DRCs
from α-polarized light scattered incoherently by the rough
surface. When 2500 surface realizations were used in calcu-
lating the average, we obtained the results for 〈∂Rαα/∂
s〉incoh

presented as open symbols in Figs. 2(a) and 4(a) for p and
s polarization, respectively; in both cases the polar angle
of incidence was θ0 = 0◦ or θ0 = 40◦. These data consti-
tute the input functions 〈∂Rαα (θs)/∂
s〉incoh,input for our first
sets of reconstruction examples. It should be remarked that
computer simulation results for the in-plane, cross-polarized
scattering were essentially indistinguishable from zero on the
scales of Figs. 2(a) and 4(a) and hence such results were
not presented. Since in-plane, cross-polarized scattering is
a multiple scattering effect [45], we find it reasonable to
assume that the results presented in Figs. 2(a) and 4(a) do
not receive a significant contribution from multiple scattering
processes.

The first of these data sets that we reconstructed was for p-
polarized light and normal incidence [Fig. 2(a) open circles].
To this end, it was assumed that the trial function W (|x‖|) had
the Gaussian form (26), and therefore the set of variational
parameters we assumed is P = {δ�, a�}. The minimization
procedure was started from the initial values δ� = 8.00 nm
and a� = 150.00 nm and the minimization of the cost function
χ2(P ) for p-polarized data, defined in Eq. (23), resulted in
the reconstructed parameters δ� = 22.72 ± 0.20 nm and a� =
458.6 ± 3.6 nm [46]. When these values are compared to the
values δ = 22.90 nm and a = 457.90 nm used to generate
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FIG. 2. (Scattering system No. 1) Reconstruction of the rms
roughness δ� and the transverse correlation length a� from p-
polarized in-plane scattering data obtained for a Gaussian correlated
rough silver surface. The wavelength (in vacuum) of the incident
light is λ = 457.90 nm for which the dielectric function of silver is
ε(ω) = −7.50 + 0.24i. The surface roughness parameters assumed
in the computer simulations have the values δ = λ/20 = 22.90 nm
and a = λ = 457.90 nm. (a) The incoherent components of the in-
plane, copolarized (p-to-p) mean differential reflection coefficient
〈∂Rpp/∂
s〉incoh as a function of the polar angle of scattering θs

obtained from computer simulations for the polar angles of inci-
dence θ0 = 0◦ (open circles) and θ0 = 40◦ (open squares), and from
second-order phase perturbation theory for these polar angles of inci-
dence with the use of the reconstructed surface roughness parameters
(solid lines), for a two-dimensional randomly rough silver surface
whose correlation function is defined by Eq. (25). The mean DRC

the input data, one finds good agreement. The corresponding
reconstructed mean DRC curve, obtained by using Eq. (15)
and the number values of the reconstructed roughness param-
eters δ� and a�, is indicated as a solid line in Fig. 2(a); the
main difference between the input and reconstructed mean
DRC curves is found for the normal scattering direction. This
discrepancy we speculate is due to an inaccuracy in the input
data that is due to the use of a finite number of surface
realizations for their calculation. The input and reconstructed
surface-height autocorrelation function W (|x‖|) are shown in
Fig. 2(b) as open symbols and a solid line, respectively. The
absolute difference between these two functions is presented
as the gray shaded regions in Fig. 2(b) where “×30” indicates
that this difference is multiplied by a factor 30 for reasons of
clarity.

Next we performed reconstruction of p-polarized scat-
tering data corresponding to the polar angle of incidence
θ0 = 40◦; this input data set is presented as open squares
in Fig. 2(a). When the reconstruction was performed in a
completely equivalent way to how it was done for the scat-
tering data corresponding to normal incidence, for instance
by assuming the same initial values for the variational param-
eters, we obtained the following values for the reconstructed
parameters δ� = 22.96 ± 0.23 nm and a� = 463.5 ± 4.7 nm.
Also these reconstructed parameters are in agreement with
the values assumed for the input roughness parameters. Still
it is found that the number value of reconstructed transverse
correlation length a� deviates slightly more from the corre-
sponding input value a when θ0 = 40◦ than what is found
when data for normal incidence is used in the reconstruction;
this is reflected in a larger absolute difference between the
input and reconstructed W (|x‖|) as presented in Fig. 2(c).

For the same input data set, that is, for p polarization
and θ0 = 40◦ [Figs. 2(a) and 3(a)], we also performed re-
construction based on the assumption that the surface-height
autocorrelation function W (|x‖|) had the stretched exponen-
tial form (27) so that the set of variational parameters is P =
{δ�, a�, γ�}. The motivation for using another trial function
in the reconstruction of the same data set is that one often

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
results (input data) produced by computer simulations were obtained
on the basis of 2500 surface realizations. For normal incidence
(θ0 = 0◦) the reconstructed values of the surface roughness param-
eters are δ� = 22.72 ± 0.20 nm and a� = 458.6 ± 3.6 nm, while for
θ0 = 40◦ one finds δ� = 22.96 ± 0.23 nm and a� = 463.5 ± 4.7 nm.
In performing these reconstructions the form (26) for the autocor-
relation function was assumed, and the minimization of the cost
function (23) was started from the initial values δ� = 8.00 nm and
a� = 150.00 nm. For both angles of incidence, the computer simula-
tion results for the in-plane angular dependence of 〈∂Rsp/∂
s〉incoh

(p-to-s cross polarization) were essentially indistinguishable from
zero and therefore such results were not included. (b) For normal
incidence (θ0 = 0◦), the input (open circles) and reconstructed (solid
line) surface-height autocorrelation function W (|x‖|) for the random
surface. The shaded gray region represents the absolute difference
between the input and reconstructed surface-height autocorrelation
functions. The notation “×30” means that this difference has been
multiplied by a factor 30 for better visibility. (c) The same as (b) but
now for the polar angle of incidence θ0 = 40◦.
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FIG. 3. (Scattering system No. 1) Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the exponent γ� from
in-plane p-to-p scattering data obtained for a Gaussian correlated silver surface. The parameters defining the scattering system, including the
surface roughness, are identical to those given in the caption of Fig. 2. (a) The incoherent components of the in-plane, copolarized (p-to-p) mean
differential reflection coefficient 〈∂Rpp/∂
s〉incoh as a function of the polar angle of scattering θs obtained from computer simulations for the
polar angles of incidence θ0 = 40◦ (open circles) [same data as in Fig. 2(a)], and from second-order phase perturbation theory with the use of
the reconstructed surface roughness parameters (solid lines) for a two-dimensional randomly rough silver surface whose correlation function is
assumed to have the form (27). The values of the reconstructed surface roughness parameters are δ� = 23.11 ± 0.30 nm, a� = 459.7 ± 6.8 nm,
and γ� = 1.95 ± 0.06. In obtaining these results, the minimization was started from the values δ� = 8.00 nm, a� = 150.00 nm, and γ� = 1.00.
(b) The input (open circles) and reconstructed (solid line) surface-height autocorrelation function W (|x‖|) for the random surface. The shaded
gray region represents the absolute difference between the input and reconstructed surface-height autocorrelation functions. The notation “×5”
means that this difference has been multiplied by a factor 5 for better visibility.

does not know in advance the form of the correlation function
of a surface. Therefore, the use of the stretched exponential
form (27) and the additional variable parameter that defines it
provides additional degree of freedom in the variation calcu-
lation over the assumption of using the Gaussian trial function
(26). When the minimization was started from the values
δ� = 8.00 nm, a� = 150.00 nm and γ� = 1.00, where the ini-
tial values of the two former parameters are identical to the
initial values assumed in producing the results in Fig. 2 and the
value of γ� implies an initial exponential correlation function,
the reconstruction approach produced δ� = 23.11 ± 0.30 nm,
a� = 459.7 ± 6.8 nm, and γ� = 1.95 ± 0.06 (Fig. 3). These
results are fully consistent with both the input values assumed
when generating the scattering data and the results obtained
when assuming the Gaussian trial function. Recall that the
value of γ in Eq. (27) that corresponds to the Gaussian cor-
relation function (25) is γ = 2.00. It is interesting to observe
that when basing the reconstruction on the stretched exponen-
tial (27), the result for δ� is only marginally different from
the result for the same parameter obtained when assuming the
Gaussian form for W (|x‖|). Furthermore, a similar compar-
ison for a� reveals that the use of the stretched exponential
trial function produces a number value for this parameter that
is closer to the input value, while at the same time, the width
of the confidence interval increases only slightly. That we
obtain consistent results when reconstructing the same scat-
tering data using different forms of the trial function testifies
to the robustness of the used approach. A summary of the
reconstructed roughness parameters for p-polarized light can
be found in the upper half of Table I.

We now turn to the reconstruction based on scattering data
obtained when s-polarized light, instead of p-polarized light,
is scattered from this rough silver surface. The input data sets

for s polarization corresponding to θ0 = 0◦ and θ0 = 40◦ are
presented in Fig. 4(a) as open circles and squares, respectively.
One observes that these scattering data are not very different
from the corresponding scattering data produced when the

TABLE I. (Scattering system No. 1) Summary of the scatter-
ing system parameters obtained during the different reconstruction
scenarios based on in-plane and copolarized scattering data corre-
sponding to an Gaussianly correlated silver surface: δ�, a�, and γ�.
The incident light, of wavelength λ = 457.90 nm, was α polarized
and the polar angle of incidence was θ0 = 0◦ or θ0 = 40◦. The dielec-
tric function of silver was ε(ω) = −7.50 + 0.24i [44]. The surface
roughness parameters assumed in generating the input data were
δ = λ/20 = 22.90 nm and a = λ = 457.90 nm. The last column in-
dicates the relevant figure where the results of the reconstruction in
question are presented. The symbol “—” indicates that the corre-
sponding variable was not reconstructed and instead had the value
assumed in the input data (numerical simulations). When γ� was
among the reconstructed parameters, the trial correlation function
of the form (27) was assumed; in all other cases the Gaussian form
(26) was assumed for this function. Note that a Gaussian correlation
function (25) corresponds to the exponent γ� = 2 for the stretched
exponential in Eq. (27). The initial values for {δ�, a�, γ�} used in
performing the reconstructions were {8 nm, 150 nm, 1}.

α θ0 (deg) δ� (nm) a� (nm) γ� Comments

p 0 22.72 ± 0.20 458.6 ± 3.6 – Fig. 2
p 40 22.96 ± 0.23 463.5 ± 4.7 – Fig. 2
p 40 23.11 ± 0.30 459.7 ± 6.8 1.95 ± 0.06 Fig. 3
s 0 22.99 ± 0.25 454.3 ± 4.3 – Fig. 4
s 40 22.81 ± 0.23 457.1 ± 4.8 – Fig. 4
s 40 23.53 ± 0.44 439.6 ± 9.9 1.84 ± 0.08 Fig. 5
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FIG. 4. (Scattering system No. 1) Reconstruction of the rms
roughness δ� and transverse correlation length a� from in-plane s-to-s
scattering data obtained for a Gaussian correlated silver surface.
The same as Fig. 2 but for s-polarized light. The values of the re-
constructed surface roughness parameters are δ� = 22.99 ± 0.25 nm
and a� = 454.3 ± 4.3 nm for θ0 = 0◦; and δ� = 22.81 ± 0.23 nm
and a� = 457.1 ± 4.8 nm for θ0 = 40◦. (Input values: δ = λ/20 =
22.90 nm and a = λ = 457.90 nm.)

incident light is p polarized [see Fig. 2(a)]; this is due to
the relatively long correlation length that was assumed in
generating them. Performing reconstruction on the basis of
these s-polarized scattering data, done in a completely equiv-
alent manner to how it was performed for the corresponding

p-polarized data sets, produced the results presented in Figs. 4
and 5. In this way we obtained the reconstructed roughness
parameters listed for s polarization (α = s) in the lower half
of Table I. By comparing the values presented in this table, or
by comparing the results presented in Figs. 2–5, will uncover
that the results obtained by basing the reconstruction of the
surface roughness parameters on p- or s-polarized scattering
data produce rather similar results; at least this is the case for
the angles of incidence and roughness parameters that were
assumed here. All reconstructions that we have presented for
this scattering system are internally consistent and do agree
with the assumed input parameters except for the reconstruc-
tion using s polarization and the stretched exponential form
for W (|x‖|). In this latter case, the values are still reasonable,
but the result for δ� is slightly too large and a� is too small
(and with the largest error bars of the cases we have studied
so far).

It is remarked that we have also performed reconstruction
based on unpolarized incident light, joint inversion using input
data for several polar angles of incidence, and joint inversion
based on simultaneously use of input data corresponding to
p- and s-polarized incident light (see Ref. [13]). The values
obtained in this way for the reconstructed parameters did only
improve marginally relative to the results reported in Table I;
hence, we do not give additional details here. Furthermore,
we have also performed reconstruction of simulated scattering
data obtained for some non-Gaussian correlation functions
with satisfactory results (results not shown).

2. Scattering system No. 2

The second scattering system that we consider is identical
to the first except that the correlation length of the rough
surface now is half of what it was for the first scattering sys-
tem; hence, the rms roughness and correlation length for this
scattering system are assumed to be δ = λ/20 = 22.90 nm
and a = λ/2 = 228.95 nm, respectively. For these roughness
parameters, a computer simulation approach [26] was again
used to generate scattering data. By averaging the results ob-
tained on the basis of 2500 surface realizations, we calculated
the contributions to the mean DRC from the light scattered
incoherently by the rough surface. When the polar angle of
incidence is θ0 = 4.56◦, such results for copolarized scattering
are presented for p- and s-polarized light in Figs. 6(a) and
7(a), respectively. These scattering data constitute the input
functions 〈∂Rαα (θs)/∂
s〉incoh,input for the reconstruction we
will perform based on these data. In Figs. 6(a) and 7(a) the
vertical dashed lines indicate the backscattering direction and
the simulation results show a weak enhanced backscatter-
ing peak. To confirm for this scattering system that multiple
scattering processes contribute to the in-plane scattering, we
have also in Figs. 6(a) and 7(a) included the cross-polarized
components of the mean DRCs (blue dashed lines and shaded
regions); for both p- and s-polarized incident light we observe
that the in-plane, cross-polarized components of the mean
DRCs do not vanish. This, in addition to the presence of
a weak enhanced backscattering peak, is a clear indication
that multiple scattering contributes to the in-plane scattered
intensity. It is stressed that in the plane of incidence, but not
outside of it, the cross-polarized component of the mean DRC
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FIG. 5. (Scattering system No. 1) Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the exponent γ� from
in-plane s-to-s scattering data. The same as Fig. 3 but for s-polarized light. The values of the reconstructed surface roughness parameters are
δ� = 23.53 ± 0.44 nm, a� = 439.6 ± 9.9 nm, and γ� = 1.84 ± 0.08. (Input values: δ = 22.90 nm, a = 457.90 nm, and γ = 2.)

is zero within single scattering [15]; finding such a component
to be nonzero signals multiple-scattering processes.

As our first example of reconstruction based on scatter-
ing data for this scattering geometry, we assume p-polarized
incident light and a trial function W (|x‖|) of a Gaussian
form given by Eq. (26). The set of variational parameters is
therefore P = {δ�, a�}. The minimization procedure of the
cost function χ2(P ), Eq. (23), was started from the values
δ� = 8.00 nm and a� = 75.00 nm. In this way, it was found
that the minimum of χ2(P ) occurred for the values δ� =

25.69 ± 0.55 nm and a� = 223.4 ± 3.0 nm, that should be
compared with the values δ = 22.90 nm and a = 228.95 nm
used to generate the input data. The quality of the recon-
structed surface roughness parameters is fair and practically
useful; the absolute relative errors in the number values of the
reconstructed surface roughness parameters δ and a are 12.2%
and 2.4%, respectively. However, the obtained results are not
consistent with the input roughness parameters and clearly
less accurate than what was obtained for the first scattering
system where multiple scattering processes contributed less.

FIG. 6. (Scattering system No. 2) Reconstruction of the rms roughness δ� and the transverse correlation length a� from in-plane p-to-p
scattering data obtained for a Gaussian correlated silver surface. The wavelength (in vacuum) of the incident light is λ = 457.90 nm for
which the dielectric function of silver is ε(ω) = −7.50 + 0.24i. The surface roughness parameters assumed in the computer simulations
have the values δ = λ/20 = 22.90 nm and a = λ/2 = 228.95 nm. (a) The incoherent components of the in-plane, copolarized (p-to-p) mean
differential reflection coefficient 〈∂Rpp/∂
s〉incoh obtained from computer simulations (open circles) and from second-order phase perturbation
theory with the use of the reconstructed surface roughness parameters (solid line), for the polar angles of incidence θ0 = 4.56◦ and as functions
of the polar angle of scattering θs for a two-dimensional randomly rough silver surface whose correlation function is defined by Eq. (26). The
values of the reconstructed surface roughness parameters are δ� = 25.69 ± 0.55 nm and a� = 223.4 ± 3.0 nm. Computer simulation results for
the in-plane angular dependence of 〈∂Rsp/∂
s〉incoh (p-to-s cross polarization) are shown as a dashed blue line (and gray shaded region); this
contribution is a result of multiple scattering. The vertical dashed line represents the backscattering direction θs = −θ0. The mean DRC results
produced by computer simulations were obtained on the basis of 2500 surface realizations. (b) The input (open circles) and reconstructed
(solid line) surface-height autocorrelation function W (|x‖|) for the random surface. The shaded gray region represents the absolute difference
between the input and reconstructed surface-height autocorrelation functions. The notation “×2” means that this difference has been multiplied
by a factor 2 for better visibility.
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FIG. 7. (Scattering system No. 2) The same as Fig. 6 but for s-polarized incident light. The values of the reconstructed surface roughness
parameters are δ� = 29.15 ± 1.05 nm and a� = 211.3 ± 3.6 nm. (Input values: δ = λ/20 = 22.90 nm and a = λ/2 = 228.95 nm.)

We find that δ� is slightly too large while, at the same time,
a� is too small. The corresponding reconstructed correlation
function is compared to the input correlation function in
Fig. 6(b).

By performing a similar reconstruction based on the cor-
responding input data for s-polarized light [Fig. 7(a)] we
obtained the following values for the reconstructed parameters
δ� = 29.15 ± 1.05 nm and a� = 211.3 ± 3.6 nm. Neither of
these results are consistent with the assumed input rough-
ness parameters and the values are less accurate than what
was found when basing the inversion on p-polarized scat-
tering data; this is the same conclusion that we drew when
reconstructing scattering data from our first scattering geom-
etry. The corresponding reconstructed correlation function is
compared to the input correlation function in Fig. 7(b). The
absolute relative errors in the number values of the recon-
struction of δ and a when basing it on s-polarized scattering
data are 27.3% and 7.7%, respectively. Also when the incident
light is s polarized the rms roughness is found to be recon-
structed less accurately than the correlation length. Moreover,
for the roughness and geometrical parameters we assume, we
find that the reconstruction based on p-polarized scattering
data overall produces a more accurate reconstruction than
when basing it on s-polarized scattering data.

3. Scattering system No. 3

The final scattering system that we will use for the pur-
pose of generating scattering data by computer simulation is
again a rough silver surface. However, in this case the wave-
length of the incident light is λ = 632.80 nm (in vacuum) and
the dielectric function of silver at this wavelength we take
to be ε(ω) = −18.28 + 0.48i [47]. The surface roughness
parameters that we assume are δ = λ/40 = 15.82 nm and
a = λ/4 = 158.20 nm; they are identical to those assumed
in a recent study of the reconstruction based on scattering
data from rough dielectric surfaces [13]. For these parameters,
computer simulations, averaged over 2500 surface realiza-
tions, were performed [26] to generate scattering data for p-
and s-polarized incident light for a polar angle of incidence
θ0 = 0◦. Figures 8(a) and 9(a) present the results of such

simulations for the in-plane angular distributions of copolar-
ized (blue open symbols) and cross-polarized (blue dashed
lines and gray shaded regions) scattering; moreover, for bet-
ter clarity thin sold lines connect the data points of each
of the data sets. For both polarizations and for both copo-
larized and cross-polarized scattering, 〈∂Rαβ/∂
s〉incoh show
enhanced backscattering peaks at the polar angle of scattering
θs = 0◦ (dashed vertical lines in the figures). These enhanced
backscattering peaks, which are the most pronounced for
in-plane, copolarized scattering, appear due to the multi-
ple scattering of SPPs propagating along the weakly rough
silver surface [3]. From the results presented in Figs. 8(a)
and 9(a) it is readily observed that cross-polarized scatter-
ing is significant for the whole angular interval −90◦ <

θs < 90◦. Furthermore, in this case, there is a readily de-
tectable difference between the in-plane angular dependence
of the copolarized scattering data corresponding to p- and
s-polarized incident light; this difference is mainly due to the
smaller value of the lateral correlation length that character-
izes the surface roughness [a = λ/4]. One also observes that
the amplitude of the enhanced backscattering peak over its
background is higher in p-to-p scattering than what it is in
s-to-s scattering.

In order to reconstruct the parameters of the surface rough-
ness for this scattering system, we started by considering the
data corresponding to p-polarized incident light. Since the
reconstruction is based on copolarized scattering, the input
data for this reconstruction is the data set marked by blue
open symbols in Fig. 8(a) and, thus, it constitutes the in-
put function 〈∂Rpp(θs)/∂
s〉incoh,input that we will use. The
trial function was again assumed to have the Gaussian form
(26) and hence the variational parameter set is P = {δ�, a�}.
With initial values δ� = 2.00 nm and a� = 75.00 nm, the min-
imization procedure of the cost function χ2(P ) produced
the surface roughness parameters δ� = 16.54 ± 0.42 nm and
a� = 168.5 ± 4.8 nm. These values are rather close to the
surface roughness parameters used to generate the input scat-
tering data even if the reconstructed parameters technically are
not consistent with the input values. For the absolute relative
difference between the number value of the reconstructed
parameters and the input parameters we find 4.5% for the
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FIG. 8. (Scattering system No. 3) Reconstruction of the rms roughness δ� and the transverse correlation length a� from in-plane p-to-p
scattering data obtained for a Gaussian correlated silver surface. The wavelength (in vacuum) of the incident light is λ = 632.80 nm for
which the dielectric function of silver is ε(ω) = −18.28 + 0.48i. The surface roughness parameters assumed in the computer simulations
have the values δ = λ/40 = 15.82 nm and a = λ/4 = 158.20 nm. (a) The incoherent components of the in-plane, copolarized (p-to-p) mean
differential reflection coefficient 〈∂Rpp/∂
s〉incoh obtained from computer simulations (open circles) and from second-order phase perturbation
theory with the use of the reconstructed surface roughness parameters (solid line), for the polar angles of incidence θ0 = 0◦ and as functions
of the polar angle of scattering θs for a two-dimensional randomly rough silver surface whose correlation function is defined by Eq. (26). The
values of the reconstructed surface roughness parameters are δ� = 16.54 ± 0.42 nm and a� = 168.5 ± 4.8 nm. Computer simulation results for
the in-plane angular dependence of 〈∂Rsp/∂
s〉incoh (p-to-s cross polarization) are shown as a dashed blue line (and gray shaded region); this
contribution is a result of multiple scattering. The vertical dashed line represents the backscattering direction θs = −θ0. The mean DRC results
produced by computer simulations were obtained on the basis of 2500 surface realizations. (b) The input (open circles) and reconstructed
(solid line) surface-height autocorrelation function W (|x‖|) for the random surface. The shaded gray region represents the absolute difference
between the input and reconstructed surface-height autocorrelation functions.

rms roughness and 6.5% for the lateral correlation length.
Given the amount of contribution from multiple scattering
that is present in the input scattering data, we find this result
quite encouraging. The resulting copolarized mean DRC and
W (|x‖|) obtained on the basis of the reconstructed surface
roughness parameters are presented as solid lines in the two
panels of Fig. 8.

When a completely equivalent reconstruction to what was
just done for p polarization is performed based on the cor-
responding s-to-s scattering data shown in Fig. 9(a), one
obtains the reconstructed values δ� = 16.78 ± 0.67 nm and

a� = 168.8 ± 7.2 nm for the surface roughness parameters.
These results are rather similar to those obtained when recon-
structing p-to-p scattering data, the main difference being that
the error bars on the reconstructed parameters are larger in the
case of s polarization. Also for s polarization the reconstructed
roughness parameters deviate slightly from the input parame-
ters. The solid lines in the two panels of Fig. 9 represent the
ss component of the mean DRC, calculated on the basis of
Eq. (15), and the correlation function W (|x‖|), calculated on
the basis of Eq. (26), when the values of the surface roughness
parameters reconstructed on the basis of s-to-s scattering data

FIG. 9. (Scattering system No. 3) The same as Fig. 8 but for s-polarized incident light. The values of the reconstructed surface roughness
parameters are δ� = 16.78 ± 0.67 nm and a� = 168.8 ± 7.2 nm. (Input values: δ = λ/40 = 15.82 nm and a = λ/4 = 158.20 nm.)
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are used. A fairly good agreement is found between these
functions and those corresponding to the input functions.

It should be apparent from the results in Figs. 8(a) and
9(a) that the second-order phase perturbation theory that we
base the inversion on is not capable to predict the enhanced
backscattering peaks that the input data in these figures show.
Except for this multiple scattering feature of the input data, the
phase perturbation theoretical results seem to agree well with
the input data over the whole range of scattering angles θs; in
particular, the difference in width of the angular dependencies
of the copolarized scattered intensities for p- and s-polarized
light is well captured by it.

We end this subsection with the remark that there is one
important message we hope the reader will take away from
the different reconstruction examples presented here, and in
particular, in Figs. 8 and 9. Even if the input scattering data
receive significant contributions from multiple scattering, the
proposed reconstruction procedure for the surface roughness
parameters based on second-order phase perturbation theory
is in principle capable of obtaining useful, and often rather
accurate, results for the value of these parameters; at least,
this was the case for the scattering systems and the roughness
and geometrical parameters that we have assumed.

B. Inversion of experimental scattering data

So far in this and our recent related works on the recon-
struction of surface roughness parameters based on scattering
data for dielectric surfaces [13,16], we have exclusively based
the inversion on scattering data obtained by rigorous computer
simulations. In generating such data, the statistical properties
of the used randomly rough surfaces were well controlled both
when it comes to the form of the correlation function and the
height distribution, as well as, the parameters that define these
functions. Now we address the more practically relevant case
where the inversion is performed on the basis of experimental
scattering data obtained when polarized light is scattered from
a rough metal surface.

In a series of experiments, Navarrete Alcalá et al. [15]
performed measurements of the in-plane and copolarized
angular dependence of the mean DRC for incident light
of wavelength λ = 10.6 µm (in vacuum) that was scattered
from two-dimensional randomly rough gold surfaces (also
see Ref. [48]). At this wavelength, the value of the dielectric
function of gold is ε(ω) = −2489.77 + 2817.36i [44]. The
rough surfaces used in these experiments were fabricated by
the method described in Refs. [49,50] and characterized by
a Gaussian distribution of heights and an isotropic surface-
height autocorrelation function of an approximately Gaussian
form. The difference between the samples produced were
therefore, in principle, found in the parameters defining these
functions, that is, the values of the roughness parameters δ

and a of each sample. After production, each of the rough
surfaces was given a morphological characterization and the
experimental values for the roughness parameters δ and a
were obtained (see Refs. [15,48]).

The first sample we consider was named sample 7047
by the authors of Ref. [15]. Their morphological character-
ization confirmed that surface roughness of the sample was
approximately characterized by a Gaussian height distribu-

tion and a Gaussian correlation function. The experimental
values for the rms roughness and the lateral correlation length
were determined from the measured surface morphology to be
δ = 1.60 ± 0.05 µm and a = 9.50 ± 1.30 µm, respectively.
In terms of the wavelength of the incident light, this means
that δ ≈ λ/7 and a ≈ λ. The measurements of the in-plane
dependence of the s-to-s component of the mean DRC for
sample 7047 when the light is incident at a polar angle θ0 =
30◦ are presented as symbols in Fig. 10(a); the dashed-dotted
and dashed lines represent the specular and backscattering
(antispecular) directions, respectively. For the purpose of the
inversion, we are primarily interested in the contribution to
the mean DRC from the light that has been scattered inco-
herently by the surface. Hence, only the experimental data
points presented as blue open symbols in Fig. 10(a) have been
used for the inversion; the data points shown as gray filled
symbols around the specular and antispecular directions in
this figure have been excluded. The reason that we do not
include the data points around the backscattering direction
in the inversion is that here reliable measurements cannot be
performed [15].

The set of data points shown as blue open
symbols in Fig. 10(a) constitute the input function
〈∂Rss(θs)/∂
s〉incoh,input for our first reconstruction example
based on experimental data. To perform the reconstruction
of this data set, we assumed the trial function W (|x‖|) of the
Gaussian form (26), and the set of variational parameters
is therefore P = {δ�, a�}. The reconstruction procedure was
started with the values δ� = 0.50 µm and a� = 1.00 µm and
the values of these parameters that minimize the cost function
χ2(P ), Eq. (23), were found to be δ� = 1.62 ± 0.04 µm
and a� = 9.46 ± 0.11 µm. These values are in excellent
agreement with the corresponding values found from the
analysis of the surface topography map. This agreement is
reflected in the good correspondence between the functions
〈∂Rss(θs)/∂
s〉incoh,input [open symbols in Fig. 10(a)] and
the function 〈∂Rss(θs)/∂
s〉incoh,calc calculated on the
basis of Eq. (15a) (for α = s) using the reconstructed
values for the surface roughness parameters [solid line in
Fig. 10(a)]. Figure 10(b) compares the input and reconstructed
surface-height autocorrelation function W (|x‖|). It should be
mentioned that to arrive at the results presented in Fig. 10 it
was assumed that the polar angle of incidence was θ0 = 28◦,
not θ0 = 30◦ for which the experiments were claimed to have
been performed. We speculate that this behavior could be
due to an alignment issue of the sample; for instance, it is
observed from the experimental data in Fig. 10(a) that the
specular peak is at an angle less than 30◦.

The second experimental sample that we consider is sam-
ple 8053 from Ref. [15]. This is also a gold sample and the
morphological characterization of it revealed the rms rough-
ness δ = 0.75 ± 0.04 µm and the lateral correlation length
a = 3.00 ± 0.20 µm [15]; in terms of the wavelength of the
incident light (λ = 10.6 µm) one has δ ≈ λ/14 and a ≈ 2λ/7.
Also for this sample both the height distribution and the
correlation function were found to be well described by the
Gaussian forms.

The symbols in Fig. 11(a) are the measured data points for
the in-plane dependence of the copolarized component of the
mean DRC when s-polarized light is incident (from vacuum)
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FIG. 10. (Sample 7047) Reconstruction of the rms roughness δ� and transverse correlation length a� from measured scattering data in s
polarization obtained for a Gaussian correlated gold surface. The wavelength of the incident light (in vacuum) is λ = 10.6 µm for which the
dielectric function of gold is assumed to be ε(ω) = −2489.77 + 2817.36i [44]. The values of the surface roughness parameters of the sample
used in the experiment were determined to be δ = 1.60 ± 0.05 µm and a = 9.50 ± 1.30 µm (or δ ≈ λ/7 and a ≈ λ) [15]. (a) The mean
differential reflection coefficient 〈∂Rss/∂
s〉incoh as a function of the polar angle of scattering θs obtained experimentally for the polar angles
of incidence θ0 = 30◦ (symbols), and from second-order phase perturbation theory for θ0 = 28◦ with the use of the reconstructed surface
roughness parameters (solid lines), for a two-dimensional randomly rough gold surface whose correlation function is defined by Eq. (26).
The experimental data points (symbols) are taken from Ref. [15] for sample 7047. When performing the reconstruction, however, only the
experimental data points marked by blue open symbols were included. The values of the reconstructed surface roughness parameters are
δ� = 1.62 ± 0.04 µm and a� = 9.46 ± 0.11 µm when the minimization procedure was started from the values δ� = 0.50 µm and a� = 1.00 µm.
The dashed-dotted and dashed vertical lines indicate the specular and antispecular (backscattering) directions, respectively. (b) The input (open
circles) and reconstructed (solid line) surface-height autocorrelation function W (|x‖|) for the random surface; the former was obtained from
Eq. (25) using the experimentally determined value for a.

on the surface of sample 8053 at the polar angle of incidence
θ = 15◦. As was done when basing the reconstruction on data
for sample 7047, we neglected some of the measured data
points around the specular and antispecular directions (filled
symbols) so that only the experimental data points shown as

blue open symbols in Fig. 11(a) are considered part of the
function 〈∂Rss(θs)/∂
s〉incoh,input. Using these input data, the
minimization of the cost function (23) with respect to the set
of variational parameters P = {δ�, a�}, resulted in the recon-
structed surface roughness parameters δ� = 0.92 ± 0.13 µm

FIG. 11. (Sample 8053) The same as Fig. 10 but for sample 8053 from Ref. [15] for the polar angle of incidence θ0 = 15◦. In this
publication, this sample is reported to have approximately Gaussian statistics and characterized by the rms roughness δ = 0.75 ± 0.04 µm
and the lateral correlation length a = 3.00 ± 0.20 µm. The reconstruction based on the experimental data points [open symbols in Fig. 11(a)]
and the form (26) for W (|x‖|), resulted in the values δ� = 0.92 ± 0.13 µm and a� = 2.58 ± 0.49 µm when the minimization procedure was
started from the values δ� = 0.10 µm and a� = 0.50 µm. The region bounded by the two gray dashed lines represents the variation in W (|x‖|),
when assuming the form (26), that is due to the experimental uncertainty on the value of the lateral correlation length a. Similarly, the shaded
region bounded by the two red dashed lines represents the bounds on W (|x‖|) stemming from the upper and lower bounds of the confidence
interval on the reconstructed parameter a�.
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and a� = 2.58 ± 49 µm. These results were obtained by as-
suming a Gaussian form (26) for W (|x‖|) and the initial
values δ� = 0.10 µm and a� = 0.50 µm. Moreover, for this
data set, the polar angle of incidence assumed in the recon-
struction is the same as was used in performing the experiment
(θ0 = 15◦).

The reconstructed roughness parameters obtained for sam-
ple 8053 are significantly less precise (larger error bars) than
what was found previously for sample 7047. By consider-
ing the confidence intervals, one finds that the reconstructed
roughness parameters δ� and a� are still consistent with the
experimentally obtained values reported in Ref. [15] for δ and
a even if the confidence intervals of the reconstructed and
experimentally obtain roughness parameters barely overlap.
The results in Fig. 11(a) show a good agreement between the
input and reconstructed in-plane angular dependence of the
mean DRC. The solid line in Fig. 11(b) shows that the number
value of the lateral correlation length is underestimated as
compared to what is found by a direct examination of the sur-
face topography. The red dashed lines in this figure represent
the Gaussian correlation function for values of the correlation
length corresponding to upper and lower bounds on the confi-
dence interval for a�. It is seen from Fig. 11(b), as expected,
that the input correlation function (open symbols) is inside the
shaded region bounded by the red dashed lines. Furthermore,
in the same figure the region between the two dashed gray
lines represents the variation in W (|x‖|), when assuming the
form (26), that is due to the experimental uncertainty on the
value of the lateral correlation length a. The absolute relative
errors in the number values of the reconstructed and experi-
mentally obtained surface roughness parameters δ and a are
found to be 16.5% and 7.9%, respectively.

VI. CONCLUSIONS

A detailed derivation of the expressions for the in-plane,
p-to-p incoherent light scattering from a two-dimensional ran-
domly rough metal surface is presented within second-order
phase perturbation theory. Similar expressions were recently
obtained in Ref. [13] for the scattering of s-polarized light.
On the basis of second-order phase perturbation theory, it is
shown that the mean differential reflection coefficient can be
calculated accurately for a wide range of two-dimensional
randomly rough metal surfaces. In particular, this is also
the case for p-to-p scattering close to the “pseudo-Brewster”
scattering angle for which the reflectivity of the correspond-
ing planar metal surface has a minimum. In contrast, in a
recent study focusing on p-to-p incoherent light scattering
from dielectric surfaces, it was shown that the same theory
produces unreliable results for polar scattering angles around
the Brewster angle [16].

An inversion approach based on in-plane, copolarized scat-
tering data is introduced for the normalized surface-height
autocorrelation function W (|x‖|) and the rms roughness of a
two-dimensional randomly rough metal surface. To this end, a
cost function is defined as the in-plane angular integral of the
square difference between the input mean DRC and the simi-
lar quantity calculated within second-order phase perturbation
theory for the same scattering angles. By minimizing this cost
function, the surface rms roughness and the correlation func-

tion W (|x‖|) could be obtained for an assumed parametrized
form of the latter function. The forms for W (|x‖|) that we con-
sidered were the Gaussian and stretched exponential forms.

In this way, several sets of inversions were performed on
two classes of scattering data. The first class of scattering data
were produced by rigorous computer simulations based on the
nonperturbative numerical solution of the reduced Rayleigh
equation [26]. For several sets of roughness parameters, nor-
mal and non-normal incidence, and p and s polarization of
the incident light, inversion based on such scattering data
resulted in quite accurate reconstruction of both the correla-
tion function and the rms roughness. This was also the case
when we deliberately chose the roughness parameters such
that the scattering data displayed well-pronounced enhanced
backscattering peaks which are signatures of multiple scat-
tering. Even if second-order phase perturbation theory is not
able to produce such peaks, its use in the inversion of the
in-plane scattering data still produced rather useful, and often
accurate, results. At least, this was the case for the roughness
parameters we assumed in producing the scattering data on
which the inversion was performed.

The second class of scattering data were obtained by exper-
imentally measuring the intensity of the light that is diffusely
scattered in plane from two-dimensional randomly rough gold
surfaces that were specially prepared to be characterized by
Gaussian correlation functions. The reconstruction of the first
scattering data set from this class that we considered produced
statistical properties of the randomly rough surface that agreed
quite well with those assumed in fabricating the rough surface
of the sample. The second sample we considered assumed
roughness parameters for which second-order phase pertur-
bation theory is expected to be less reliable due to the higher
local slopes that the surface has. Hence, it is not surprising that
the results that we obtain by the inversion are less accurate
than for the first sample (wider confidence intervals). How-
ever, the roughness parameters obtained by inversion were
still consistent with the input parameters even if the input val-
ues were close to the boundaries of the confidence intervals.

The inversion approach that we have presented is practical,
rather accurate (in many cases), computationally efficient,
and therefore fast to perform. However, the drawback of
the present formulation of the approach is that it relies on
a parametrization for the autocorrelation function W (|x‖|).
Further research should, therefore, focus on the nonparametric
reconstruction of the autocorrelation of the surface profile
function. Moreover, one also needs to determine the wave-
length, ranges of roughness, and correlation lengths for which
the proposed approach can produce reliable results. These
issues will be addressed in future work.
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APPENDIX: DERIVATION OF EQ. (15)

The expressions derived in this Appendix are valid for
a scattering geometry where the substrate is either metallic
or dielectric. To simplify the notation, ε will here denote
the dielectric function of the substrate suppressing any ex-
plicit reference to the frequency dependence of this quantity.
The starting point for our derivation of the pp element of
Eq. (15) is the pp elements of Eqs. (12), (15), and (16)–(19)
from Ref. [45], and the definition (12) of the scattering ma-
trix S(q‖|k‖) in terms of the matrix of reflection amplitudes
R(q‖|k‖). From these equations we obtain for the pp element
of the scattering matrix the expansion

Spp(q‖|k‖) = S(0)
pp (q‖|k‖)−iS(1)

pp (q‖|k‖)− 1
2 S(2)

pp (q‖|k‖) + · · · ,

(A1)

where the superscript denotes the order of the corresponding
term in the surface profile function ζ (x‖). The coefficient

S(0)
pp (q‖|k‖) is

S(0)
pp (q‖|k‖) = (2π )2δ(q‖ − k‖)

εα0(k‖) − α(k‖)

εα0(k‖) + α(k‖)

= (2π )2δ(q‖ − k‖)
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1
2
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1
2
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1
2

[εα0(k‖) + α(k‖)]
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2

= (2π )2δ(q‖ − k‖)(ε − 1)
f

1
2

p (q‖)

dp(q‖)

f
1
2

p (k‖)

dp(k‖)
, (A2)

where fp(q‖), α0(q‖), and α(q‖) are defined by Eqs. (18a), (8)
and (17), respectively. The coefficient S(1)

pp (q‖|k‖) is obtained
as

S(1)
pp (q‖|k‖) = −2(ε − 1)α

1
2
0 (q‖)α

1
2
0 (k‖)

× εq‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)

dp(q‖)dp(k‖)
ζ̂ (q‖ − k‖),

(A3)

while the coefficient S(2)
pp (q‖|k‖) is given by

S(2)
pp (q‖|k‖) = −4(ε − 1)

α
1
2
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2
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On substituting Eqs. (A2)–(A4) into (A1) we find that through terms of second order in the surface profile function Spp(q‖|k‖)
is given by

Spp(q‖|k‖) = sgn(q̂‖ · k̂‖)(ε − 1)
f

1
2

p (q‖) f
1
2

p (k‖)

dp(q‖)dp(k‖)

{
(2π )2δ(q‖ − k‖) sgn(q̂‖ · k̂‖)

+ 2i
α

1
2
0 (q‖)α

1
2
0 (k‖)

f
1
2

p (q‖) f
1
2

p (k‖)
sgn(q̂‖ · k̂‖)[εq‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)]ζ̂ (q‖ − k‖)

+ 2
α

1
2
0 (q‖)α

1
2
0 (k‖)

f
1
2

p (q‖) f
1
2

p (k‖)
sgn(q̂‖ · k̂‖)

∫
d2 p‖
(2π )2

ζ̂ (q‖ − p‖)ζ̂ (p‖ − k‖)

×
[

1

2
[α(q‖) + α(k‖)](q‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)) +

(
ε − 1

ε

)(
α(q‖)q̂‖ · p̂‖α(p‖)p̂‖ · k̂‖α(k‖)

− [εq‖ p‖ − α(q‖)q̂‖ · p̂‖α(p‖)][εp‖k‖ − α(p‖)p̂‖ · k̂‖α(k‖)]

dp(p‖)
− ε

(
ω

c

)2
α(q‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3α(k‖)

ds(p‖)

)]}
.

(A5)

This expression for Spp(q‖|k‖) is manifestly reciprocal, i.e., it satisfies Eq. (13). In writing the expression (A5), we have for
reasons of later convenience factored out a phase sgn(q̂‖ · k̂‖), where sgn(·) denotes the signum (or sign) function defined by
x = sgn(x)|x|.
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We next express Eq. (A5) in the from of a Fourier integral

Spp(q‖|k‖) = sgn(q̂‖ · k̂‖)(ε − 1)
[ fp(q‖) fp(k‖)]

1
2

dp(q‖)dp(k‖)

∫
d2x‖ exp[−i(q‖ − k‖) · x‖]

×
{

1 + 2i

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2

Hp(q‖|k‖)ζ (x‖) + 2

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2

×
∫

d2 p‖
(2π )2

Fp(q‖|p‖|k‖)
∫

d2u‖ exp[−i(p‖ − k‖) · u‖]ζ (x‖)ζ (x‖ + u‖)

}
, (A6)

where the functions Hp(q‖|k‖) and Fp(q‖|p‖|k‖) are defined by the expressions in Eqs. (19a) and (20a), respectively. For
polarization α = p, s, the functions Fα (q‖|p‖|k‖), defined by Eq. (20), satisfy the relation Fα (q‖|p‖|k‖) = Fα (−k‖| − p‖| − q‖).
Moreover, the quantities Fα (q‖|p‖|k‖) are continuous functions of their first argument q‖ when the wave vector of the scattered
light q = q‖ + α0(q‖)x̂3 varies in the plane of incidence.

From Eq. (A6) and with the use of Eq. (1), we find

〈Spp(q‖|k‖)〉 = sgn(q̂‖ · k̂‖)(ε − 1)
[ fp(q‖) fp(k‖)]

1
2

dp(q‖)dp(k‖)

∫
d2x‖ exp[−i(q‖ − k‖) · x‖]

×
{

1 + 2δ2

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2
∫

d2 p‖
(2π )2

Fp(q‖|p‖|k‖) g(|p‖ − k‖|)
}

∼= sgn(q̂‖ · k̂‖)(ε − 1)
[ fp(q‖) fp(k‖)]

1
2

dp(q‖)dp(k‖)

∫
d2x‖ exp[−i(q‖ − k‖) · x‖]

× exp

{
2δ2

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2
∫

d2 p‖
(2π )2

Fp(q‖|p‖|k‖) g(|p‖ − k‖|)
}
. (A7)

It follows that

|〈Spp(q‖|k‖)〉|2 = |ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2 exp[−2Mp(q‖|k‖)]

∫
d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)], (A8)

where we have introduced the function Mp(q‖|k‖) defined by Eq. (15b) with α = p.
We next find that

〈|Spp(q‖|k‖)|2〉 = |ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2

∫
d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)]

×
{

1 + 4

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2δ2W (|x‖ − x′
‖|)

+ 4δ2Re

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2
∫

d2 p‖
(2π )2

Fp(q‖|p‖|k‖) g(|p‖ − k‖|)
}

∼= |ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2

∫
d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)] exp

{
4δ2Re

[
α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

] 1
2

×
∫

d2 p‖
(2π )2

Fp(q‖|p‖|k‖) g(|p‖ − k‖|) + 4δ2

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2W (|x‖ − x′
‖|)

}

= |ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2 exp[−2Mp(q‖|k‖)]

∫
d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)]

× exp

{
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2W (|x‖ − x′
‖|)

}
. (A9)

On subtracting the expression in Eq. (A8) from the expression in Eq. (A9) we obtain

〈|Spp(q‖|k‖)|2〉 − |〈Spp(q‖|k‖)〉|2 = |ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2 exp[−2Mp(q‖|k‖)]

∫
d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)]

×
{

exp

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2W (|x‖ − x′
‖|)

]
− 1

}
. (A10)
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Since the integrand on the right-hand side of Eq. (A10) depends on x‖ and x′
‖ only through the difference x‖ − x′

‖, it is convenient
to make the change of variable x′

‖ = x‖ − u‖ in this equation. The integral over x‖ that the resulting equation contains gives the
area S of the plane x3 = 0 covered by the randomly rough surface. In this way we obtain

〈|Spp(q‖|k‖)|2〉 − |〈Spp(q‖|k‖)〉|2 =S|ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2 exp[−2Mp(q‖|k‖)]

×
∫

d2u‖ exp[−i(q‖ − k‖) · u‖]

{
exp

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2W (|u‖|)
]

− 1

}
.

(A11)

The double integral over u‖ that this equation contains can be transformed to a single integral over the length of this vector
by noting that the part of the integrand in the curly brackets in Eq. (A11) is a function of u‖ = |u‖| only. This enables us to
perform the directional integration analytically to produce a result depending on the Bessel function of the first kind and order
zero [denoted J0(·) below]. In this way we find that Eq. (A11) can alternatively be written in the equivalent form

〈|Spp(q‖|k‖)|2〉 − |〈Spp(q‖|k‖)〉|2 =2πS|ε − 1|2 | fp(q‖) fp(k‖)|
|dp(q‖)dp(k‖)|2 exp[−2Mp(q‖|k‖)]

×
∫ ∞

0
d u‖ u‖J0(|q‖ − k‖|u‖)

{
exp

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fp(q‖) fp(k‖)

∣∣∣∣|Hp(q‖|k‖)|2W (u‖)

]
− 1

}
. (A12)

The substitution of the result from Eq. (A12), or equivalent Eq. (A11), into Eq. (14) for α = β = p yields Eq. (15) for α = p.
We now turn to the case of s polarization. In the Appendix of Ref. [13], Eq. (A5), an expression for Sss(q‖|k‖) was recently

derived within second-order phase perturbation theory. In order to harmonize the notation for the expressions for Sαα (q‖|k‖) for
p- and s-polarized light, we here recast Eq. (A5) of Ref. [13] in the alternative form

Sss(q‖|k‖) = − sgn(q̂‖ · k̂‖)(ε − 1)
[ fs(q‖) fs(k‖)]

1
2

ds(q‖)ds(k‖)

∫
d2x‖ exp[−i(q‖ − k‖) · x‖]

×
{

1 + 2i

[
α0(q‖)α0(k‖)

fs(q‖) fs(k‖)

] 1
2

Hs(q‖|k‖)ζ (x‖) + 2

[
α0(q‖)α0(k‖)

fs(q‖) fs(k‖)

] 1
2

×
∫

d2 p‖
(2π )2

Fs(q‖|p‖|k‖)
∫

d2u‖ exp[−i(p‖ − k‖) · u‖]ζ (x‖)ζ (x‖ + u‖)

}
, (A13)

with fs(q‖) and Hs(q‖|k‖) defined by Eqs. (18b) and (19b), respectively, and

Fs(q‖|p‖|k‖) = −
(

ω

c

)2

F (q‖|p‖|k‖). (A14)

Here the function F (q‖|p‖|k‖) is defined by Eq. (A6) of Ref. [13] so that the expression for Fs(q‖|p‖|k‖) is given by Eq. (20b).
The expression for Sss(q‖|k‖) in Eq. (A13) is, up to a phase factor, form equivalent to the expression for Spp(q‖|k‖) given in
Eq. (A6); we only have to make sure that we use the functions dα (q‖), fα (q‖), Hα (q‖|k‖), and Fα (q‖|p‖|k‖) when writing the
expression for Sαα (q‖|k‖). The consequence of this is that the expressions in Eqs. (A7)–(A15) derived for p-to-p scattering also
should hold for s-to-s scattering given that the polarization indices p are replaced by the indices s, and hence the expression
within phase perturbation theory for the 〈∂Rss/∂
s〉incoh is given by Eq. (15) with α = s.

Before closing this Appendix, we would like to make a few final remarks. For some forms of the correlation function W (|u‖|),
like the Gaussian form, it can be of advantage to expand in powers of δ2 the exponential function present in the integrands of
Eqs. (A11) or (A12) and integrate the resulting series term by term. Applying this procedure to the integrand in Eq. (A12) (also
valid for α = s) will, for instance, produce

〈|Sαα (q‖|k‖)|2〉 − |〈Sαα (q‖|k‖)〉|2 =2πS|ε − 1|2 | fα (q‖) fα (k‖)|
|dα (q‖)dα (k‖)|2 exp[−2Mα (q‖|k‖)]

×
∞∑

n=1

1

n!

[
4δ2

∣∣∣∣α0(q‖)α0(k‖)

fα (q‖) fα (k‖)

∣∣∣∣|Hα (q‖|k‖)|2
]n ∫ ∞

0
d u‖ u‖J0(|q‖ − k‖|u‖)W n(u‖). (A15)

The expression in Eq. (A15) may represent an advantage over the expression in Eq. (A12) if the integrals contained in the
former equation can be calculated analytically while the integral in the latter has to be calculated numerically. For instance, if
the correlation function W (|u‖|) has the Gaussian form (25), it is straightforward to show that for n a positive integer∫

d2u‖ exp[−i(q‖ − k‖) · u‖]W n(|u‖|) = πa2

n
exp

[
− a2

4n
(q‖ − k‖)2

]
, (A16)

which is the integral that will result after expanding the exponential function of the integrand in Eq. (A11).
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