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Scattering of electromagnetic waves from two-dimensional randomly rough perfectly
conducting surfaces: The full angular intensity distribution
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By a computer simulation approach we study the scattering of p- or s-polarized light from a two-dimensional,
randomly rough, perfectly conducting surface. The pair of coupled inhomogeneous integral equations for two
independent tangential components of the magnetic field on the surface are converted into matrix equations by the
method of moments, which are then solved by the biconjugate gradient stabilized method. The solutions are used
to calculate the mean differential reflection coefficient for given angles of incidence and specified polarizations
of the incident and scattered fields. The full angular distribution of the intensity of the scattered light is obtained
for strongly randomly rough surfaces by a rigorous computer simulation approach.
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I. INTRODUCTION

Theoretical and computational studies of the scattering
of light from two-dimensional, randomly rough, perfectly
conducting surfaces are carried out primarily for two reasons.
These are that a perfectly conducting surface is a good
approximation to a finitely conducting surface in the far
infrared region of the optical spectrum, but computationally
less intensive to study than a finitely conducting surface,
and that the development of computational methods for
calculations of scattering from rough, perfectly conducting
surfaces can serve as the first step in the development of
methods that can be used in calculations of scattering from
rough, finitely conducting surfaces.

In the earliest numerical studies of the scattering of
light from a two-dimensional, randomly rough, perfectly
conducting surface [1], the pair of coupled inhomogeneous
integral equations for two independent tangential components
of the total magnetic field on the rough surface obtained
from scattering theory was first converted into a pair of
coupled inhomogeneous matrix equations by the method of
moments [2]. The system of matrix equations was then solved
by Neumann-Liouville iteration. This is a formally exact
approach, but one that is computationally intensive. It is an
O(MN2) approach, where N is the number of unknowns to
be determined and M is the number of iterations.

Subsequent work on this problem has proceeded in two
directions. One is the exact solution of the integral equations
of scattering theory by numerical methods that are faster than
a straightforward application of the method of moments fol-
lowed by an iterative solution of the resulting matrix equation.
For example, Wagner et al. [3] have developed a fast multipole
fast Fourier transform method to calculate the scattering of an
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electromagnetic wave from a small-height, two-dimensional,
randomly rough, perfectly conducting surface that is an
O(N ln N ) method. For rougher two-dimensional perfectly
conducting surfaces they have shown that the multilevel fast
multipole algorithm, also an O(N ln N ) method, is more
efficient.

The other direction that has been taken is the approximate
solution of the exact integral equations. In the sparse-matrix
flat-surface iterative approach of Tsang et al. [4,5], the matrix
elements connecting two close points on the surface are
treated exactly, while those connecting two distant points are
treated approximately, in an iterative solution of the matrix
equations obtained by the method of moments. This approach
has been applied to the study of the scattering of electro-
magnetic waves from a two-dimensional, randomly rough,
perfectly conducting surface [6,7]. It has been elaborated and
made faster by Johnson and his colleagues, resulting in an
O(N ) method in some cases, and has been applied to the
scattering of electromagnetic waves from a two-dimensional,
randomly rough, perfectly conducting surface [8]. Soriano and
Saillard [9] have developed a sparse-matrix flat-surface iter-
ative approach, in which the matrix equations are solved by
an iterative Krylov method, the biconjugate gradient stabilized
method [10].

In this article we return to the approach used in [1],
where the sparse-matrix flat-surface approximation is not used:
the matrix elements connecting two points are calculated
accurately for all separations of the two points. However, the
resulting matrix equations are solved here by the biconjugate
gradient stabilized method instead of by Neumann-Liouville
iteration, as in [1]. We show that this approach, together with
the increase in computational power since [1] was written,
provides a simple and reliable way of calculating the mean
differential reflection coefficient for given angles of incidence
and specified polarizations of the incident and scattered fields,
with a modest expenditure of CPU time.

This article is organized as follows: We start by presenting
the scattering geometry considered (Sec. II), followed by the
mathematical formulation of the scattering problem (Sec. III),

1050-2947/2010/81(1)/013806(13) 013806-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.013806


SIMONSEN, MARADUDIN, AND LESKOVA PHYSICAL REVIEW A 81, 013806 (2010)

FIG. 1. (Color online) A sketch of the scattering geometry
considered in the present work, where the coordinate system used
and angles of incidence and scattering are defined.

including the central integral equation on which the computer
simulations are based. Section IV is devoted to the presentation
and discussion of the numerical results obtained from a
rigorous computer simulation approach based on an integral
equation for the surface currents derived in Sec. III. A detailed
discussion of the numerical aspects of such calculations is
given in Sec. V. Finally, the conclusions that can be drawn
from this work are presented in Sec. VI.

II. SCATTERING GEOMETRY

The physical system we consider in this work consists of
vacuum in the region x3 > ζ (x‖), where x‖ = (x1, x2, 0), and
a perfect conductor in the region x3 < ζ (x‖) (Fig. 1). The
surface profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2

and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by 〈ζ (x‖)ζ (x′

‖)〉 = δ2W (|x‖ − x′
‖|),

where the angle brackets denote an average over the en-
semble of realizations of the surface profile function, and
δ = 〈ζ 2(x‖)〉 1

2 is the rms height of the surface. In the numerical
calculations carried out in the present work we will assume
a Gaussian form for W (|x‖ − x′

‖|), namely W (|x‖ − x′
‖|) =

exp[−(x‖ − x′
‖)2/a2], where a is the transverse correlation

length of the surface roughness. Each realization of the surface
profile function with these properties is generated numerically
by a two-dimensional version of the filtering method used
in [11].

III. FORMULATION

A. Integral equation

The starting point for our analysis is the Stratton-Chu
formula [12] for the magnetic field in the vacuum,

θ (x3 − ζ (x‖))H>(x|ω)

= H(x|ω)inc + 1

4π

∫
d2x ′

‖[∇′g0(x|x′)]|x ′
3=ζ (x′

‖) × JH (x′
‖|ω),

(1)

where θ (z) is the Heaviside unit step function, and H(x|ω)inc

is the magnetic component of the incident field.

The function g0(x|x′) is the scalar free-space Green’s
function and has the representations

g0(x|x′) = exp
[
i ω

c
|x − x′|]

|x − x′| (2a)

=
∫

d2q‖
(2π )2

2πi

α0(q‖)
exp[iq‖ · (x‖ − x′

‖)]

× exp[iα0(q‖)|x3 − x ′
3|], (2b)

where

α0(q‖) =
√(ω

c

)2
− q2

‖ , Re α0(q‖) > 0, Im α0(q‖) > 0,

(3)

and ω and c are the frequency and speed of light in vacuum,
respectively. In writing Eq. (1) we have assumed the time
dependence exp(−iωt) for the field, but have not indicated
this explicitly. The (electric) surface current density JH (x‖|ω)
is defined by JH (x‖|ω) = [n × H>(x|ω)]

∣∣
x3=ζ (x‖), where n =

(− ζ1(x‖),−ζ2(x‖), 1) is a vector that is normal to the surface
x3 = ζ (x‖) at each point of it, directed into the vacuum, and we
have introduced the notation ζj (x‖) = ∂ζ (x‖)/∂xj (j = 1, 2).

On evaluating Eq. (1) at x3 = ζ (x‖) + η and at x3 =
ζ (x‖) − η, where η is a positive infinitesimal, adding the
resulting two equations, and taking the vector cross product
of the sum with n, we obtain the integral equation satisfied by
the surface current JH (x‖|ω),

JH (x‖|ω) = 2J(i)
H (x‖|ω) + 1

2π
P

∫
d2x ′

‖

n × {[[∇′g0(x|x′)]] × JH (x′
‖|ω)}, (4)

where J(i)
H (x‖|ω) = n × H(x|ω)inc

∣∣
x3=ζ (x‖), P denotes the

Cauchy principal value, and we have simplified the notation
by introducing the definition

[[f (x|x′)]] = f (x|x′)
∣∣∣∣ x3=ζ (x‖)

x′
3=ζ (x′‖)

. (5)

The system of three equations (4) can be reduced to a
system of two equations through the use of the condition
n · JH (x‖|ω) = 0. Thus, only two components of JH (x‖|ω)
are independent. We choose JH (x‖|ω)1 and JH (x‖|ω)2 as the
independent components, while

JH (x‖|ω)3 = ζ1(x‖)JH (x‖|ω)1 + ζ2(x‖)JH (x‖|ω)2. (6)

From Eq. (4) we find with the aid of Eq. (6) that the
components JH (x‖|ω)1 and JH (x‖|ω)2 satisfy the following
pair of equations:

JH (x‖|ω)1

= 2J
(i)
H (x‖|ω)1 − 1

2π
P

∫
d2x ′

‖
{[

g
(0)
3 (x‖|x′

‖)

− g
(0)
1 (x‖|x′

‖)ζ1(x′
‖) − ζ2(x‖)g(0)

2 (x‖|x′
‖)

]
JH (x′

‖|ω)1

+ g
(0)
1 (x‖|x′

‖)[ζ2(x‖) − ζ2(x′
‖)]JH (x′

‖|ω)2
}

(7a)
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JH (x‖|ω)2

= 2J
(i)
H (x‖|ω)2 − 1

2π
P

∫
d2x ′

‖

× {
g

(0)
2 (x‖|x′

‖)[ζ1(x‖) − ζ1(x′
‖)]JH (x′

‖|ω)1

+ [
g

(0)
3 (x‖|x′

‖) − g
(0)
2 (x‖|x′

‖)ζ2(x′
‖)

− ζ1(x‖)g(0)
1 (x‖|x′

‖)
]
JH (x′

‖|ω)2
}
, (7b)

where

g
(0)
l (x‖|x′

‖) =
[[

∂

∂xl

g0(x|x′)
]]

= (xl − x ′
l )

[
i(ω/c)

|x − x′|2 − 1

|x − x′|3
]

× exp[i(ω/c)|x − x′|]
∣∣∣∣ x3=ζ (x‖ )

x′
3=ζ (x′‖ )

. (8)

Equations (7) are solved by converting them to a pair of
coupled matrix equations. This is done by generating a
realization of the surface profile function on a grid of N2 points
within a square region of the x1-x2 plane of edge L, where
the ratio L/N = 	x is chosen to be 	x = λ/7, with λ the
wavelength of the incident field. The integrals over this region
in Eqs. (7) are carried out by means of a two-dimensional
version of the extended midpoint method [13], and the values
of JH (x‖|ω)1 and JH (x‖|ω)2 are calculated at the points of
this grid. The resulting matrix equations are then solved by
means of the biconjugate gradient stabilized method [10].
Once JH (x‖|ω)1 and JH (x‖|ω)2 have been obtained in this
way, JH (x‖|ω)3 is obtained from Eq. (6).

B. Scattered field

With the surface current JH (x‖|ω) in hand, one is ready to
start approaching the calculation of the scattered field. To this
end, let us start by writing the scattered electric field (in the
far zone) in the form

E(x|ω)sc =
∫

d2q‖
(2π )2

E(q+, ω) exp[iq+ · x],

=
∫

d2q‖
(2π )2

[Ep(q+, ω) γ̂ p(q+, ω)

+ Es(q+, ω) γ̂ s(q+, ω)] exp[iq+ · x], (9)

where Eν = E · γ̂ ν (ν = p, s). In writing Eq. (9) we have
introduced the (unit) polarization vectors γ̂ ν(q±, ω) for p-
and s-polarized scattered light that are mutually orthogonal and
also orthogonal to the wave vector q±. They can, in accordance
with Sipe [14], be defined as

γ̂ s(q±, ω) = q± × x̂3

|q± × x̂3| = q̂‖ × x̂3, (10a)

γ̂ p(q±, ω) = γ̂ s(q±, ω) × q̂±

= q‖ x̂3 ∓ α0(q‖, ω) q̂‖
ω/c

, (10b)

where we have introduced the wave vector for upward (q+)
and downward (q−) propagating (plane) waves,

q±(q‖, ω) = q‖ ± α0(q‖)x̂3. (10c)

From Eqs. (10) it is readily shown that the set {γ̂ p(q±, ω),
γ̂ s(q±, ω), q̂±(q‖, ω)} forms a (right-handed) orthonormal
triad. This implies, for instance, suppressing the function
arguments for simplicity, that γ̂ µ · γ̂ ν = δµν , q± · γ̂ ν = 0, as
well as

γ̂ s = q̂± × γ̂ p, (11a)

γ̂ p = −q̂± × γ̂ s , (11b)

q̂± = γ̂ p × γ̂ s . (11c)

With the use of one of the Maxwell’s equations (Faraday’s
law), ∇ × E = i(ω/c)H, and Eqs. (11), it follows from Eq. (9)
that the scattered magnetic field can be written

H(x|ω)sc =
∫

d2q‖
(2π )2

[Ep(q+, ω) γ̂ s(q+, ω)

− Es(q+, ω) γ̂ p(q+, ω)] exp[iq+ · x]. (12)

On the other hand, the scattered magnetic field is also given in
terms of the surface current JH (x‖|ω) by the second term on
the right-hand side of Eq. (1), and with the use of Eq. (2b) one
is led to (ν = p, s)

Eν(q+, ω) = − (ω/c)

2α0(q‖)

∫
d2x‖

γ̂ ν(q+, ω) · JH (x‖|ω) exp[−iq+ · x]. (13)

The total time-averaged scattered flux is given by the real
part of the 3-component of the (complex) Poynting vector
[Sc = c/(8π ) E × H∗] of the scattered field, integrated over
the plane x3 = 0. From the fields in the form of Eqs. (9)
and (12) and the use of Eqs. (11) we find that it is given
by

Psc = c2

8πω

∫
q‖< ω

c

d2q‖
(2π )2

α0(q‖)[|Ep(q+, ω)|2 + |Es(q+, ω)|2],

(14)

and we recall that q+ = q+(q‖, ω), defined in Eq. (10c),
depends on the parallel momentum q‖. Moreover, the vector q‖
is given in terms of the polar and azimuthal scattering angles
θs and φs by

q‖ = ω

c
sin θs (cos φs, sin φs, 0) . (15)

The expression given by Eq. (14) can then be rewritten as

Psc = c2

8πω

1

4π2

(ω

c

)3
∫

ds cos2 θs

× [|Ep(q+, ω)|2 + |Es(q+, ω)|2], (16)

where ds = sin θsdθsdφs is the element of solid angle about
the scattering direction (θs, φs).

C. Incident field

The incident electric field vector that will be considered in
this study has the form of a (Gaussian) beam propagating in
the direction of

k = ω

c
(sin θ0 cos φ0, sin θ0 sin φ0, − cos θ0) (17)
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and is represented by a superposition of incoming plane waves,

E(x|ω)inc =
∫

q‖< ω
c

d2q‖ E (i)(q−, ω) exp[iq− · x]

×W (q‖, k‖), (18a)

where W (q‖, k‖) denotes an envelope (or window) function,
here defined as

W (q‖, k‖) = w2

2π
exp

[
−w2

2
(q‖ − k‖)2

]
, (18b)

with w its (and the beam’s) half-width. Note that in the limit
of large beam widths (w → ∞), the envelope W (q‖, k‖) tends
toward δ(q‖ − k‖) so that, in this limit, the incident beam
becomes a plane wave.

A beam as defined by Eqs. (18) does not adhere to the
usual definition of p- or s-polarized waves since the plane
of incidence is not well-defined in this case (except when
w = ∞). However, we will still refer to an incident beam of
the form given by Eqs. (18) as p-polarized if its electric field
vector is in the plane “of incidence” defined by the vectors
k and x̂3. Therefore, for a p-polarized beam, the projection
of its amplitude vector E (i)

p (q−, ω) onto the x1-x2 plane will
be parallel to k‖. Moreover, the vector amplitude for an s-
polarized beam, E (i)

s (q−, ω), is defined as

Ê (i)
s (q−, ω) = q̂− × Ê (i)

p (q−, ω), (19)

similarly to the relation satisfied by the plane-wave polariza-
tion vectors γ̂ ν [cf. Eq. (11a)].

Since in this work we are concerned exclusively with
isotropic surfaces, we will, with no loss of generality, assume
that the vector k‖, if nonzero, is parallel to the x1 axis (i.e.,
k‖ = k‖x̂1). Under this assumption the amplitude vector for a
p-polarized incident beam, E (i)

p (q−, ω), will lie in the x1-x3

plane, that is, its second component will be zero, which with
the condition ∇ · E = 0 [or equivalently q− · E (i)(q−, ω) = 0]
leads us to define

Ê (i)
p (q−, ω) = α0(q‖) x̂1 + q1 x̂3[

q2
1 + α2

0(q‖)
] 1

2

. (20a)

The amplitude for the corresponding s-polarized beam follows
from Eq. (19), and, with the use of Eq. (10c), it can be written
as

Ê (i)
s (q−, ω) = q1q2 x̂1 − [

q2
1 + α2

0(q‖)
]

x̂2 − q2α0(q‖) x̂3

(ω/c)
[
q2

1 + α2
0(q‖)

] 1
2

.

(20b)

With the beam amplitudes in the form of Eqs. (20) it is readily
established that relations similar to those satisfied by the plane-
wave polarization vectors [e.g., Eqs. (10) and (11)] also hold
for the polarization amplitudes, Ê (i)

ν , of the Gaussian beam.
Moreover, also note that in the limit of a large beam width

(w → ∞) Eqs. (20) reduce to the plane wave polarization
vectors given previously in Eqs. (10) since in this limit q‖ = k‖
with k‖ = k1. This is another reason for associating the vector
amplitudes of Eqs. (20) with p- and s-polarized components,
respectively.

With the polarization vectors available for the incident
p- and s-polarized components of the incident beam, the

incident electric field, of given polarization ν, can, according
to Eqs. (18) and Eqs. (20), be written (assuming unit amplitude
for simplicity) in the following form:

Eν(x|ω)inc =
∫

q1<
ω
c

d2q‖ Ê (i)
ν (q−, ω) exp[iq− · x]

× W (q‖, k‖). (21)

In precisely the same way as Eq. (12) was established for the
scattered field, it follows from Eqs. (21) by using Eqs. (19) and
relations for Ê (i)

ν similar to those of Eqs. (11) that the magnetic
component of the incident beam then takes the form

Hp(x|ω)inc =
∫

q‖< ω
c

d2q‖ Ê (i)
s (q−, ω) exp[iq− · x]

× W (q‖, k‖) (22a)

for a p-polarized beam and

Hs(x|ω)inc = −
∫

q‖< w
c

d2q‖ Ê (i)
p (q−, ω) exp[iq− · x]

× W (q‖, k‖) (22b)

for an s-polarized beam.
With the incident field in the form of Eqs. (21) and (22), the

magnitude of the total time-averaged incident flux is the same
for light of both polarizations and is given by

P (p,s)
inc = c2

8πω
pinc, (23)

where

pinc = w4
∫

q‖< ω
c

d2q‖ α0(q‖) exp[−w2(q‖ − k‖)2] (24a)

= 2πw4
(ω

c

)3
exp(−w2k2

‖)
∫ π

2

0
dθ sin θ cos2θ

× I0

(
2w2 ω

c
k‖ sin θ

)
exp

[
−w2 ω2

c2
sin2 θ

]
, (24b)

and I0(z) is the modified Bessel function of the first kind
and zero order. In passing, it should be noted that in the large
beamwidth limit, for which the beam approaches a plane wave,
it follows from Eq. (24a) that pinc = S α0(k‖), where S is the
area of the plane x3 = 0 covered by the rough surface.

D. Mean differential reflection coefficient

The differential reflection coefficient is defined as the
fraction of the total time-averaged flux incident on the surface
that is scattered into the element of solid angle ds about
the scattering direction (θs, φs). Since we are concerned with
scattering from a randomly rough surface, it is the averaged (or
mean) of this quantity over an ensemble of realizations of the
surface that we need to calculate. From its definition, we find
from Eqs. (14) and (23) that the mean differential reflection
coefficient for the scattering of incident light of α polarization
into light of β polarization is given by〈

∂Rβα

∂s

〉
= 1

4π2

(ω

c

)3
cos2 θs

〈|Eβ(q+, ω)|2〉
pinc

. (25)
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If we write the scattering amplitude Eβ(q+, ω) as the sum
of its mean value and the fluctuation about the mean,

Eβ(q+, ω) = 〈Eβ(q+, ω)〉 + [Eβ(q+, ω) − 〈Eβ(q+, ω)〉],
(26)

each term contributes separately to the mean differential
reflection coefficient〈

∂Rβα

∂s

〉
= 1

4π2

(ω

c

)3
cos2 θs

〈|Eβ(q+, ω)|2〉
pinc

(27a)

= 1

4π2

(ω

c

)3
cos2 θs

|〈Eβ(q+, ω)〉|2
pinc

+ 1

4π2

(ω

c

)3

× cos2 θs

〈|Eβ(q+, ω)|2〉 − |〈Eβ(q+, ω)〉|2
pinc

.

(27b)

The first term in Eq. (27b) gives the contribution to the mean
differential reflection coefficient from the light that has been
scattered coherently,〈

∂Rβα

∂s

〉
coh

= 1

4π2

(ω

c

)3
cos2 θs

|〈Eβ(q+, ω)〉|2
pinc

. (28)

The second term gives the contribution to the mean differential
reflection coefficient from the light that has been scattered
incoherently,〈

∂Rβα

∂s

〉
incoh

= 1

4π2

(ω

c

)3
cos2 θs

×〈|Eβ(q+, ω)|2〉 − |〈Eβ(q+, ω)〉|2
pinc

. (29)

The dependencies of the right-hand sides of these expres-
sions on the polarization index α is through the dependence
of the amplitudes Eβ(q+, ω) on the surface current JH (x‖|ω)
in Eqs. (13). This surface current satisfies the inhomogeneous
integral equations, Eqs. (7), in which the inhomogeneous terms
depend on the incident field, and hence on its polarization α =
p, s. Thus, Eβ(q+, ω) depends implicitly on the polarization
α of the incident field, and so, therefore, does the differential
reflection coefficient.

The procedure now is to generate a large number Np of
realizations of the surface profile function ζ (x‖), and for each
realization to solve the scattering problem for an incident field
of p or s polarization. The solution is then used to calculate
the scattering amplitude Eβ(q+, ω) and |Eβ(q+, ω)|2. An arith-
metic average of the Np results for these quantities yields the
quantities |〈Ep(q+, ω)〉|2 and 〈|Es(q+, ω)|2〉 entering Eqs. (28)
and (29) for the mean differential reflection coefficient.

E. Energy conservation

To facilitate the discussion of the conservation of energy,
let us define the following quantity:

Uβ
α (θ0, φ0) =

∫
ds

〈
∂Rβα

∂s

〉
. (30)

Recalling the definition of the mean differential reflection co-
efficient, it follows that the physical significance of Uβ

α (θ0, φ0)
is that it is the fraction of the flux of the incident α-polarized

light that is scattered into β-polarized light by the rough surface
irrespective of scattering direction.

For a perfectly conducting surface, all power flux incident
onto the rough surface has to be converted into scattered power
flux leaving the surface, since there is no absorption in the
system. Hence, this is nothing but energy conservation, and it
can be expressed in terms of Uβ

α (θ0, φ0) as

U(θ0, φ0) =
∑

α=p,s

Uα(θ0, φ0) =
∑

β=p,s

∑
α=p,s

Uβ
α (θ0, φ0) = 1,

(31)

where the α-summation over the polarization of the incident
light is nontrivial only in cases where the incident beam does
not have a well-defined p or s polarization. It was pointed
out in the previous section that the mean differential reflection
coefficient can be separated into a coherent component and an
incoherent component. The same applies therefore toU(θ0, φ0)
and related quantities.

We note that Eq. (31) is rather useful for estimating the
quality of the simulations, including making sure that the
discretization interval is fine enough. However, it should be
stressed that relation (31) is only a necessary condition, and its
satisfaction does not guarantee that the simulations are correct.

IV. RESULTS AND DISCUSSIONS

We have carried out calculations of the scattering of p- and
s-polarized light from a randomly rough, perfectly conducting
surface with an rms height δ = λ and a transverse correlation
length a = 2λ, where λ is the wavelength of the incident field.
The polar angles of incidence are θ0 = 0◦, 20◦, and 40◦, while
the azimuthal angle of incidence in all cases is φ0 = 0◦. The
surface is generated at a 112 × 112 grid of points covering an
area L2 = 16λ × 16λ. The integration mesh size is therefore
	x = λ/7. The calculations were carried out for an incident
field in the form of a Gaussian beam [Eqs. (20)] of width
w = 4λ.

In Fig. 2 we plot the mean differential reflection coefficients
as functions of the polar scattering angle θs for the in-plane
(φs = 0◦) and out-of-plane (φs = ±90◦), and co- (p → p) and
cross- (p → s) polarized scattered light due to a p-polarized
Gaussian beam incident on the surface. The results depicted
in Figs. 2 were obtained as averages over 12,000 realizations
of the surface profile function. In obtaining these results we
have noted that at least for the roughness parameters we have
assumed, the contribution to the mean differential reflection
coefficient from the light scattered coherently is smaller than
the contribution from the light scattered incoherently by a
factor of approximately 10−4 (see Table I for details).

There is no single scattering contribution in the cases of in-
plane cross-polarized [Fig. 2(b)] and out-of-plane copolarized
[Fig. 2(c)] scattering. This we believe is the main reason
for the reduced amplitude of the mean differential reflection
coefficients in these cases relative to those of Figs. 2(a) and 2(d)
where single scattering is allowed. The peaks at θs = 0◦
and −20◦1 for in-plane copolarized scattering [Figs. 2(a)]

1When discussing the results of Figs. 2 and 3 in the text, we
follow the sign convention for θs introduced in the caption of Fig. 2.
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FIG. 2. (Color online) The mean differential reflection coefficients, 〈∂Rβα/∂s〉 (α → β), as functions of the polar scattering angle θs

for the in-plane (φs = φ0 or φs = φ0 + 180◦) (a) copolarized (p → p) and (b) cross-polarized scattering (p → s), and the out-of-plane
(φs = φ0 ± 90◦) (c) copolarized (p → p) and (d) cross-polarized scattering (p → s) of a p-polarized incident beam (α = p) of width w = 4λ

(θ0 = 0◦ and θ0 = 20◦; φ0 = 0◦) scattered from a Gaussian randomly rough, perfectly conducting surface. The Gaussian correlated surface
had a correlation length a = 2λ and an rms height δ = λ. To facilitate comparison between the various configurations presented in this figure,
notice that we have used similar scales for all ordinate axes. Moreover, to simplify the presentation of the figures, a convention was adopted
where negative (positive) values of θs correspond to φs = φ0 + 180◦ (φs = φ0).

are enhanced backscattering peaks [15–18]. However, the
structures seen as peaks in the backscattering directions of
the cross-polarized scattering [Fig. 2(b)] are not real peaks, as
will be seen below from the full angular intensity distributions.
The results that the mean differential reflection coefficients
for out-of-plane co- and cross-polarized scattering [Figs. 2(c)
and 2(d)] are even functions of θs are consequences of
the scattering geometry, namely that φ0 = 0◦, φs = ±90◦,
and the isotropy of the power spectrum of the surface
roughness.

In Fig. 3 we present corresponding results to those of Fig. 2,
but for an s-polarized incident Gaussian beam. There is no

Elsewhere, however, the standard spherical coordinate convention
(θs � 0◦) will be followed.

single scattering contribution to the in-plane cross-polarized
and out-of-plane copolarized scattering, as in the case of p

polarization. Also in this case the peaks seen in the in-plane
copolarized scattering [Fig. 3(a)] are enhanced backscattering
peaks, while the structures seen in the in-plane cross-polarized
scattering [Fig. 3(b)] in the backscattering direction are not real
peaks.

The full angular distribution of the intensity of the scat-
tered light is presented as color contour plots in Figs. 4–6,
which correspond to the polar angles of incidence θ0 = 0◦,
20◦, and 40◦, respectively, and for several combinations
of the polarizations of the incident and scattered light.2

2Note that we from now and onward will adapt standard spherical
coordinates so that θs � 0◦.

013806-6



SCATTERING OF ELECTROMAGNETIC WAVES FROM TWO- . . . PHYSICAL REVIEW A 81, 013806 (2010)

TABLE I. The energy conservation for various polar angles
of incidence (θ0) and incidence polarizations (α) for the surface
parameters given in the text. The surface and scattering amplitude
were discretized on 112 × 112 and 101 × 101 grids, respectively.
These results were obtained on the basis of Eqs. (30) and (31).

θ0 (deg) α U Uincoh Ucoh (10−4) Up
α /U U s

α/U

0 p 0.9976 0.9975 0.9 0.5054 0.4946
20 p 0.9962 0.9961 0.9 0.5315 0.4686
40 p 0.9951 0.9947 3.8 0.5407 0.4592
0 s 0.9970 0.9967 3.1 0.5021 0.4979

20 s 0.9966 0.9963 2.8 0.4939 0.5061
40 s 0.9953 0.9948 4.9 0.4834 0.5166

To the best of our knowledge, this is the first time that
the full angular distributions of the light scattered from a
strongly rough surface have been obtained by a rigorous
computer simulation approach. It is observed from Figs. 4–6
that the angular distributions, for given polarizations of
the incident and scattered light, are far from trivial, and

show strong and complex angular dependencies. With the
full angular dependence of the scattered light available,
the energy conservation of the simulations performed can
be obtained by comparing the power incident on the surface
to that being scattered from it [see Eq. (31)]. For normal
incidence, we obtained Up = 0.9976 and Us = 0.9970 for
p- and s-polarized incident light, respectively. For the other
angles of incidence considered, θ0 = 20◦ and 40◦, energy
conservation was satisfied within 0.5% or better (see Table I
for details). Even if energy conservation is only a necessary
requirement, such results, however, still testify to the accu-
racy of the simulations and the approaches used to obtain
them.

It is interesting to note that for the roughness parameters
considered, the power in a normally incident beam is divided
essentially equally between p- and s-polarized scattered light
(independent of the polarization of the incident light). This
effect we attribute to multiple scattering. For the other angles
of incidence, it is observed from Table I that the fraction of
incident power being scattered into the same polarization as
that of the incident beam (copolarized scattering), but still

FIG. 3. (Color online) Same as Fig. 2, but for an s-polarized incident beam.
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FIG. 4. (Color online) The complete angular distributions of the mean differential reflection coefficient, 〈∂Rβα/∂s〉, for the scattering of
an α-polarized Gaussian beam incident on the surface at polar angle θ0 = 0◦ and azimuthal angle φ0 = 0◦. The perfectly conducting rough
surface was characterized by a Gaussian height distribution of rms value δ = λ and a Gaussian correlation function of transverse correlation
length a = 2λ. The incident beam was p-polarized in panels (a), (c), and (e) (left column); and s-polarized in panels (b), (d), and (f) (right
column). Moreover, in panels (a) and (b) the polarization of the scattered light was not recorded; in panels (c) and (d) (central row) only
p-polarized scattered light was recorded; while panels (e) and (f) correspond to recording only s-polarized scattered light. The rough surface,
covering an area 16λ × 16λ, was discretized at a grid of 112 × 112 points corresponding to a distcretization interval λ/7 for both directions.
The presented figures were obtained by averaging the mean differential reflection coefficient over 12,000 surface realizations.

independent of scattering direction, increases with the polar
angle of incidence.

We will now discuss Figs. 4–6 in more detail: We start by
considering the case of normal incidence: θ0 = 0◦ and φ0 = 0◦
(Figs. 4). Recall that with the assumptions and conventions
used in this work, the electric field of an incident p-polarized

Gaussian beam is in the plane of incidence. In Fig. 4(a)
we present a contour plot of the mean differential reflection
coefficient for the scattering of p-polarized light into either
p- or s-polarized scattered light (i.e., the polarization state of
the scatted light is not being recorded). The angle-dependent
scattering, in this case, is for the most part rather isotropic,
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FIG. 5. (Color online) Same as Figs. 4, but for a polar angle of incidence θ0 = 20◦.

except for a slight anisotropy seen as an elongated (along the
q2 direction) structure around the normal scattering direction.
This structure is caused by the wider intensity distribution
in the direction perpendicular to the incident electric field as
compared to the intensity distribution along it. The central
peak present in Fig. 4(a) is the enhanced backscattering peak
and is not related to specular scattering which for these
roughness parameters can be neglected (see Table I for details).
A similar behavior is seen for the scattering of (normally)
incident s-polarized light into either p- or s-polarized light
[Fig. 4(b)]. Here an apparent enhanced backscattering peak is
also observed. In the case of s polarization, one sees though that
the central anisotropic portion of the scattering has a different

orientation compared to that in the case of p polarization.
It remains true, however, that there is a stronger scattering
perpendicular to the (average) direction of the incident
electric field independent of the polarization of the incident
light.

Based on these findings, one may be misled into believing
that the scattering for normal incidence into the two possible
(linear) polarizations, p or s, is also more or less isotropic,
except maybe for some minor polarization dependence for
the smaller scattering angles θs . However, this is rather far
from being true. In Figs. 4(c) and 4(d) we present the
scattering into p-polarized scattered light from, respectively,
a (normally) incident p- and s-polarized Gaussian beam.
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FIG. 6. (Color online) Same as Figs. 4, but for a polar angle of incidence θ0 = 40◦.

Similarly, depicted in Figs. 4(e) and 4(f) are the scattering into
s-polarized scattered waves for an incident p- or s-polarized
Gaussian beam. We note that taking the sum of the distributions
shown in, for example, Figs. 4(c) and 4(e) produces the
angular distribution shown in Fig. 4(a). From Figs. 4(c)–4(f)
it follows that the intensity distributions for scattering from
one polarization into another, or into the same one, show a
dipolelike angular dependence.

For copolarized scattering, that is, the polarization of the
incident light and the (recorded) polarization of the scattered
light are the same, the “forward direction” of the dipolelike pat-
tern is oriented along q1 [Figs. 4(c) and 4(f)], while for cross-

polarization, it is oriented along the q2 direction.3 For normal
incidence, the k vector used to define the incident Gaussian
beam does not (together with x̂3) define a plane of incidence.
However, we have used the convention in the simulations

3The simulation results reported herein assumed an azimuthal angle
of φ0 = 0◦, which also determines the directions of the electric field
vector associated with the incident Gaussian beam and also defines
(in our convention) the rotation angle of the incident plane. Another
choice for φ0 would consequently also alter the orientation of the
dipolelike patterns.
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that the plane of incidence is defined as the plane having
φ̂0 = − sin φ0q̂1 + cos φ0q̂2 as its normal vector, which is
well-defined for all polar angles of incidence (also θ0 = 0◦) and
coincides with the usual definition when θ0 �= 0. Since φ0 = 0◦
was assumed for all the simulation results presented, it follows
(with this convention) that the plane of incidence is the q1-q3

plane. With this definition for the plane of incidence, we may
rephrase the above observation: For co- and cross-polarized
scattering, the dipole-like pattern is oriented along and perpen-
dicular to the plane of incidence, respectively. Later we will see
that this statement also holds true for non-normal incidence.

It is noted that we have checked and found that the scattering
of a normally incident unpolarized beam by the rough surface
produces, when both its p- and s-polarized components are
recorded, a fully rotationally symmetric intensity distribution
[equal to the sum of the distributions in Figs. 4(a) and 4(b)].
If only p- or s-polarized scattered light is recorded, one will
still, with the same type of unpolarized illumination, obtain
rotationally symmetric intensity distributions [equal to the
sum of the distributions from Figs. 4(c) and 4(d), in the case
of p polarization, and the sum of Figs. 4(e) and 4(f) for s

polarization].
We now turn our attention to the scattering for non-normal

incidence. In Figs. 5 we present the results for the angular
distribution of the mean differential reflection coefficient for
either a p- or s-polarized Gaussian beam incident onto the
surface at a polar angle θ0 = 20◦ and scattered into various
polarization states.

From Figs. 5(a) and 5(b), for which the polarization of
the scattered light is not recorded, one observes that there
are pronounced enhanced backscattering peaks located around
the backscattering direction (at θs = 20◦ and φs = 180◦). It
is also observed that the p-polarized incident beam tends to
scatter more light into the forward plane (q1 > 0) than does an
s-polarized incident beam.

The first thing to notice from Figs. 5(c)–5(f), where the
polarization of the scattered light is recorded, is that the copo-
larized scattering shows up as an elongated structure with the
long axis of the pattern directed along the plane of incidence,
while the cross-polarized scattering has the long axis of the
scattering pattern perpendicular to this plane. This observation
is in agreement with what was already observed above for
normal incidence. However, for non-normal incidence, the
patterns do show less symmetry, as expected, and an even
richer and more complicated angular structure. In principle,
the enhanced backscattering peak phenomenon should exist in
both co- and cross-polarized scattering [16–18]. However, for
the roughness parameters assumed in this work, one observes
instead of a well-pronounced peak in the backscattering
direction, a ridge of constant enhanced intensity in parts of
the backscattering plane (q1 < 0) forming (what seems to be)
a half circle of constant polar scattering angle θs ≈ θ0 = 20◦
with φs ∈ [90◦, 270◦] [Figs. 5(d) and 5(e)]. In exactly the
backscattering direction, θs = θ0 and φs = 180◦, there seems
to be little, if any, “extra” enhancement in the cross-polarized
scattering as compared to the intensities at other values of
φs in the interval [90◦, 270◦]. The enhancement ridge seen in
Figs. 5(d) and 5(e) we speculate is caused by a constructive
interference effect similar in nature to the underlying enhanced
backscattering.

In passing, we note that having available only the in-plane
and out-of-plane results for the same angle of incidence,
the local enhancements observed in, for example, Figs. 2(b)
and 3(b) for θ0 = 20◦, could easily have been mistaken for
well-localized features in the backscattering direction, similar
to what one has for copolarized scattering [Figs. 5(c) and 5(f)].
In this respect, the angular intensity distributions of the kind
presented in Figs. 4–6 can provide important contributions to
a better understanding of the multiple scattering phenomena.

Figures 6 present contour plots of the angular distributions
of the mean differential reflection coefficient for a polar angle
of incidence θ0 = 40◦. Since these results rather closely resem-
ble those of Figs. 5, we will not discuss them further. However,
we note that the structures due to coherent interference seen in
the cross-polarized components for θ0 = 20◦ are much harder
to identify in the results for θ0 = 40◦. This is believed to be
caused by the relatively large angle of incidence, for which it
is known that coherent effects become weaker [15].

V. NUMERICAL ASPECTS

The rigorous computer simulation approach presented in
this work is rather computationally demanding. Therefore,
it is important to be able to perform such simulations in
an efficient manner. One of the most challenging aspects of
implementing a surface integral method for a two-dimensional
rough surface is the memory requirement. By discretizing
the relevant integral equations, in this case Eq. (4), they are
converted into a linear system Ax = b, where A denotes a
dense complex system matrix; b is the right-hand side given
in terms of the incident field; and the unknown vector to
be solved for, x, consists (in our case) of the independent
components of the surface current JH (x‖|ω). If the randomly
rough surface x3 = ζ (x‖) is discretized into N × N points,
then the number of unknowns would be N = 2N2, since for
a perfectly conducting rough surface we have two unknowns
per surface point (the two independent components of JH ).
Hence, the amount of memory needed to hold the (full) system
matrix of the scattering from a perfectly conducting surface
is MA = 4 N4 m, where m is the size of a single scalar
complex variable, which on most systems for single and double
precision, respectively, is mS = 8 bytes and mD = 16 bytes.

For each surface realization, there are essentially three
time-consuming steps in this kind of simulation. They are:
(i) to set up the system matrix; (ii) to solve the linear system
for the unknown surface currents; and (iii) to calculate the
reflection amplitudes. Of the three, it is primarily the first two
that are critical and, if not handled properly, particularly the
second. For instance, the total CPU time taken to complete
the calculation using single precision and an iterative solver
for one angle of incidence and one surface realization with
N = 112, including reading input and writing output data,
is ttot = 76.0 s on an Intel Core2 CPU (Q9550) operating
at 2.83 GHz and running the Linux operating system. On
the other hand, for the same simulation the three steps
mentioned above take tA = 36.0 s to set up the system matrix,
tAx=b = 31.1 s to solve the linear system by the use of the
iterative stabilized biconjugated gradient (BiCGStab) method,
and tE = 8.9 s to calculate the reflection amplitudes on a
101 × 101 grid, in total 76.0 s. Hence, the additional steps
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TABLE II. The CPU time spent on various stages of the
calculations for one realization of the surface profile function and
one angle of incidence. All CPU times are measured in seconds, and
the numbers have been rounded to the closest half second, and they
refer to a machine running an Intel Core2 CPU (Q9550) operating at
2.83 GHz and running the Linux operating system. The surface was
discretized on an N × N grid of points. The reported CPU times are:
the total CPU time spent for simulating one surface realization for
one angle of incidence including reading and writing of data (ttot); the
setup of the system matrix of the linear system Ax = b determining
the surface currents (tA); the time to solve this system by a the iterative
BiCGStab method or the direct LU decomposition method (tAx=b);
and finally the time to calculate the reflection amplitudes, E(q+, ω)
for both scattered polarizations on a grid of 101 × 101 points (tE ).
The number of unknowns to be solved for is N = 2N2, where the
memory [in Gigabytes (Gb)] required to hold the complex system
matrix A, using single precision, is denoted by MA ∝ N 2 = 4N 4.

N ttot(s) tA(s) tAx=b(s) tE (s) N MA(Gb)

BiCGStab LU

64 10.5 4.0 3.5 127 3.0 8192 0.50
80 22.0 9.5 8.0 474 4.5 12800 1.22

100 58.5 23.0 28.5 1780 7.0 20000 2.98
112 76.0 36.0 31.0 3540 9.0 25088 4.69

of the calculation, like generating the surface, reading and
writing data to file, etc., contribute only insignificantly to the
overall CPU time (t ∼ 0.05 s). The computation times for other
surface discretizations are summarized in Table II. The reason
that it takes a relatively long time (compared to ttot) to set up
the matrix elements is the cost of calculating the exponential
function contained in the Green’s function.

However, the most critical point to address when trying to
reduce the overall CPU time, is the method used to solve
the linear system. In this work, an iterative solver known
as the BiCGStab method [10] has been used and found to
perform well and to produce reliable results for our application.
The iteration process of the BiCGStab solver (using a Jacobi
preconditioner) was terminated when the relative error was
10−5 (or less), which for normal incidence and with N = 112
required typically a little more then 20 iterations when starting
from an initial guess xguess = 0 (of course, other surface
parameters and initial guesses may require more or fewer
iterations in order to reach the desired accuracy). Using a
direct solver, like the LU-decomposition, would have taken
significantly longer (see Table II). For instance, the time
taken to solve the linear system for N = 112 by a direct LU
solver is 114 times longer than that taken by the BiCGStab
solver (Table II). Moreover, this difference is expected to
increase with increasing N due to the different scaling with the
number of unknowns (as also shown by the times presented
in Table II). It should be noted that a direct solver, like
the LU-decomposition, opens the possibility for carrying out
calculations for several angles of incidence (the right-hand
sides of the system) simultaneously with little addition to
the overall computation time. This is not the case for the
BiCGStab method, where the solution time for several angles
of incidence scales linearly with the number of angles of
incidence. There are, however, other iterative methods that can

solve a linear system with several right-hand sides with only
moderate increase in computational times. One such method is
the (restarted) generalized minimal residual (GMRES) method
[19]. Compared to the BiCGStab used here, the GMRES
is typically more memory demanding and, therefore, this
possibility has not been explored in this work.

For the sake of comparison, we have repeated the calcu-
lations reported by Tran and Maradudin in Ref. [1] using the
same numerical parameters (the surface roughness parameters
were already the same). For the calculations carried out in
Ref. [1] solving the integral equations on a grid of 64 × 64
surface points, each iteration (of which there were six) required
365 CPU seconds (on a Cray XMP/EA-116 machine), and to
calculate the scattered fields, in-plane or out-of-plane, required
360 CPU seconds for each realization of the surface profile
function, for a total of 2550 CPU seconds for each realization
of the surface profile function. A similar calculation required
only 7.6 CPU seconds per surface realization, a dramatic
improvement in speed.4 This dramatic reduction occurred for
two reasons: First, we have the overall improvement in general
computer hardware. Second, we hold the whole system matrix
in memory due to sufficient memory, while the approach used
in Ref. [1] was to regenerate the matrix elements as they were
needed. This time cost of the latter is not insignificant, as we
can see from Table II, and both factors contribute to the overall
speedup.

VI. CONCLUSIONS

In conclusion, we have shown that the use of the method of
moments and the BiCGStab method provides a formally exact
solution to the problem of the scattering of an electromagnetic
field from a two-dimensional, randomly rough, perfectly con-
ducting surface, with a modest expenditure of computational
time.

Moreover, the full angular distribution of the intensity of
the scattered light, both co- and cross-polarized, was obtained
by a formally rigorous approach for a strongly rough surface.
Such distributions can display rather complex angular patterns
that are rooted in the multiple scattering processes taking place
when light interacts with a strongly rough surface.

Due to the full angular intensity distribution being acces-
sible, the conservation of energy was checked explicitly for
all the calculations reported and found to be satisfied with an
error smaller than 0.5%, or better, something that testifies to
the accuracy of the approach and a satisfactory discretization.
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