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Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces
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We calculate all the elements of the Mueller matrix for light scattering from a two-dimensional randomly rough
lossy metal surface. The calculations are carried out for arbitrary angles of incidence by the use of nonperturbative
numerical solutions of the reduced Rayleigh equations. We foresee that the ability to model polarization effects
in light scattering from surfaces will enable better interpretation of experimental data and allow for the design of
surfaces which possess useful polarization effects.

DOI: 10.1103/PhysRevA.86.031803 PACS number(s): 42.25.−p, 41.20.−q

Introduction. When light is scattered from a surface,
it carries a great deal of information about the statistical
properties of the surface in its polarization. Even when the
structures in question are beyond the imaging limit, polarized
optical scattering can be employed to distinguish between
material inhomogeneities, particles, or even buried defects and
the roughness of both interfaces of thin films [1]. However, to
extract information from experimental data, one has to be able
to model the polarization effects [2]. The ability to calculate
the polarization effects found in light scattering also opens the
door to the possibility of designing surfaces which produce
specified polarization properties in the scattered or transmitted
light [3,4].

All the information about the polarization transformations
light undergoes when scattered from rough surfaces is con-
tained in the Mueller matrix [5–7]. Still, very few calculations
of the Mueller matrix for a two-dimensional randomly rough
surface have so far been carried out by numerical methods,
largely because calculations of the scattering of light from
such surfaces are still computationally demanding [8–11].

An exception [12] is a calculation of the Mueller matrix
for perfectly conducting and metallic surfaces characterized
by a surface profile function that is a stationary, zero-mean,
isotropic, Gaussian random process, defined by a Gaussian
surface height autocorrelation function. These calculations
were carried out by a ray-tracing approach on the assumption
that the surface was illuminated at normal incidence. In this
work it was also shown that due to the assumptions of normal
incidence and the isotropy of the surface statistics, the elements
of the corresponding Mueller matrix possess certain symmetry
properties. Experimental Mueller matrices have later been
interpreted using the ray-tracing method [13]. Zhang and
Bahar [14] carried out an approximate analytic calculation
of the elements of the Mueller matrix for the scattering of
light from two-dimensional randomly rough dielectric surfaces
coated uniformly with a different dielectric material. A related,
yet qualitatively different, system is that of a slab of random
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scatterers deposited on a substrate. The Mueller matrix of this
system was discussed by Lam and Ishimaru [15,16].

In this Rapid Communication we report a step toward
realizing the possibilities mentioned above. We present an
approach to calculating, for arbitrary angles of incidence, all
the elements of the Mueller matrix for the scattering of light
from a two-dimensional weakly rough surface. It is based on
nonperturbative numerical solutions of the reduced Rayleigh
equation for the scattering of p- and s-polarized light from a
two-dimensional rough penetrable surface [10,17].

Theory and computational method. The system we study
consists of vacuum in the region x3 > ζ (x‖), where x‖ =
(x1,x2,0), and a metal whose dielectric function, for angular
frequency ω, is ε(ω) in the region x3 < ζ (x‖). The surface
profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2,
and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by 〈ζ (x‖)ζ (x′

‖)〉 = δ2W (|x‖ − x′
‖|).

The angle brackets here and in all that follows denote an
average over the ensemble of realizations of the surface profile
function, and δ = 〈ζ 2(x‖)〉1/2 is the rms height of the surface.
Each realization of the surface profile function was generated
numerically by the filtering method [11,18].

We begin by writing the electric field in the vacuum region
x3 > ζ (x‖) as the sum of an incident and a scattered field,
E(x,t) = [E(0)(x|ω) + E(s)(x|ω)] exp(−iωt), where

E(0)(x|ω) = [
E (0)

p (k‖)ê(0)
p (k‖) + E (0)

s (k‖)ê(0)
s (k‖)

]
× exp[ik‖ · x‖ − iα0(k‖)x3], (1a)

E(s)(x|ω) =
∫

d2q‖
(2π )2

[
E (s)

p (q‖)ê(s)
p (q‖) + E (s)

s (q‖)ê(s)
s (q‖)

]
× exp[iq‖ · x‖ + iα0(q‖)x3]. (1b)

Here k‖ = (k1,k2,0), the unit polarization vectors are
ê(0)
p (k‖) = (c/ω)[α0(k‖)k̂‖ + k‖x̂3], ê(0)

s (k‖) = k̂‖ × x̂3,
ê(s)
p (q‖) = (c/ω)[−α0(q‖)q̂‖ + q‖x̂3], ê(s)

s (q‖) = q̂‖ × x̂3,
while α0(q‖) = [(ω/c)2 − q2

‖ ]1/2, with Re α0(q‖) > 0,
Im α0(q‖) > 0. Here, c is the speed of light in vacuum,
and a caret over a vector indicates that it is a unit
vector. In terms of the polar and azimuthal angles of
incidence (θ0,φ0) and scattering (θs,φs), the vectors k‖
and q‖ are given by k‖ = (ω/c) sin θ0(cos φ0, sin φ0,0) and
q‖ = (ω/c) sin θs(cos φs, sin φs,0).
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A linear relation exists between the amplitudes E (s)
α (q‖) and

E (0)
β (k‖), which we write in the form (α = p,s)

E (s)
α (q‖) = ∑

β=p,s Rαβ(q‖|k‖)E (0)
β (k‖). (2)

It was shown by Brown et al. [17] that the scattering amplitudes
Rαβ(q‖|k‖) satisfy the matrix integral equation (the reduced
Rayleigh equation)∫

d2q‖
(2π )2

I (α(p‖) − α0(q‖)|p‖ − q‖)

α(p‖) − α0(q‖)
N +(p‖|q‖)R(q‖|k‖)

= −I (α(p‖) + α0(k‖)|p‖ − k‖)

α(p‖) + α0(k‖)
N −(p‖|k‖), (3)

with Rpp and Rps forming the first row of the matrix R, where

I (γ |Q‖) =
∫

d2x‖ exp[−iγ ζ (x‖)] exp(−iQ‖ · x‖), (4)

and α(p‖) = [ε(ω)(ω/c)2 − p2
‖]1/2, with Re α(p‖) > 0,

Im α(p‖) > 0. The matrices N ±(p‖|q‖) are given by

N±(p‖|q‖)

=
(

p‖q‖ ± α(p‖)p̂‖ · q̂‖α0(q‖) −ω
c
α(p‖)[p̂‖ × q̂‖]3

±ω
c

[p̂‖ × q̂‖]3α0(q‖) ω2

c2 p̂‖ · q̂‖

)
.

(5)

These equations were solved by the method described in detail
in Ref. [10]. First, a realization of the surface profile function
was generated on a grid of Nx × Nx points within a square

region of the x1x2 plane of edge L. In evaluating the q‖ integral
in Eq. (3) the infinite limits of integration were replaced by
finite ones, |q‖| < Q/2, and the integral was carried out by
a two-dimensional version of the extended midpoint rule [19]
using a grid in the q1q2 plane that is determined by the Nyquist
sampling theorem and the properties of the discrete Fourier
transform. The function I (γ |Q‖) was evaluated by expanding
the integrand in Eq. (4) in powers of ζ (x‖) and calculating the
Fourier transform of ζ n(x‖) by the fast Fourier transform. The
resulting equations were solved by LU factorization.

The scattering amplitudes Rαβ(q‖|k‖) play a central role
in the calculation of the elements of the Mueller matrix. In
terms of these amplitudes the elements of the Mueller matrix
M are [20]

M11 = C(|Rpp|2 + |Rsp|2 + |Rps |2 + |Rss |2),

M12 = C(|Rpp|2 + |Rsp|2 − |Rps |2 − |Rss |2),

M13 = C(RppR∗
ps + RspR∗

ss + RpsR
∗
pp + RssR

∗
sp),

M14 = iC(RppR∗
ps + RspR∗

ss − RpsR
∗
pp − RssR

∗
sp),

M21 = C(|Rpp|2 − |Rsp|2 + |Rps |2 − |Rss |2),

M22 = C(|Rpp|2 − |Rsp|2 − |Rps |2 + |Rss |2),

M23 = C(RppR∗
ps − RspR∗

ss + RpsR
∗
pp − RssR

∗
sp),

M24 = iC(RppR∗
ps − RspR∗

ss − RpsR
∗
pp + RssR

∗
sp),

M31 = C(RppR∗
sp + RspR∗

pp + RpsR
∗
ss + RssR

∗
ps),

M32 = C(RppR∗
sp + RspR∗

pp − RpsR
∗
ss − RssR

∗
ps),
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FIG. 1. (Color online) Color-level plots
of the contribution to the Mueller matrix
elements from the light scattered incoherently
as functions of q1 and q2 for angles of
incidence (θ0,φ0) = (2◦,45◦). An ensemble
consisting of Np = 10 000 surface realiza-
tions was used in obtaining these results.
The elements, 〈Mij 〉incoh (i,j = 1,2,3,4), are
organized as a matrix with 〈M11〉incoh in the
top left corner, 〈M12〉incoh top row and second
column, etc. The white spots indicate the
specular direction in reflection.
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FIG. 2. (Color online) Same as Fig. 1,
but now for angles of incidence (θ0,φ0) =
(25◦,45◦).

M33 = C(RppR∗
ss + RspR∗

ps + RpsR
∗
sp + RssR

∗
pp),

M34 = iC(RppR∗
ss + RspR∗

ps − RpsR
∗
sp − RssR

∗
pp),

M41 = −iC(RppR∗
sp − RspR∗

pp + RpsR
∗
ss − RssR

∗
ps),

M42 = −iC(RppR∗
sp − RspR∗

pp − RpsR
∗
ss + RssR

∗
ps),

M43 = −iC(RppR∗
ss − RspR∗

ps + RpsR
∗
sp − RssR

∗
pp),

M44 = C(RppR∗
ss − RspR∗

ps − RpsR
∗
sp + RssR

∗
pp), (6)

where

C = 1

2L2

( ω

2πc

)2 cos2 θs

cos θ0
, (7)

and L2 is the area of the plane x3 = 0 covered by the rough
surface. For clarity, we note that the conventions used in
deriving the above expressions for the elements of the Mueller
matrix are as follows. The Stokes parameters are defined as⎛

⎜⎜⎜⎝
I

Q

U

V

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

|Ep|2 + |Es |2
|Ep|2 − |Es |2
2 Re(EpE∗

s )

2 Im(EpE∗
s )

⎞
⎟⎟⎟⎠, (8)

where the superscript ∗ denotes complex conjugation, and
Ep and Es are the amplitudes of the p- and s-polarized
components of the electric field, respectively. It is also of
importance to note that the definition of the handedness of

circularly polarized light is opposite to that of, e.g., Hauge
et al. [21].

As we are concerned with scattering from a randomly
rough surface, it is the average, 〈M〉, of the Mueller matrix
over the ensemble of realizations of the surface profile
function that we seek. In evaluating an average of the form
〈RαβR∗

γ δ〉 we can write Rαβ as the sum of its mean value
and its fluctuation about the mean, Rαβ = 〈Rαβ〉 + (Rαβ −
〈Rαβ〉). We then obtain the result 〈RαβR∗

γ δ〉 = 〈Rαβ〉〈R∗
γ δ〉 +

(〈RαβR∗
γ δ〉 − 〈Rαβ〉〈R∗

γ δ〉). The first term on the right-hand
side of this equation arises in the contribution to an element
of the ensemble averaged Mueller matrix from the light
scattered coherently (specularly); the second term arises in
the contribution to that ensemble averaged matrix element
from the light scattered incoherently (diffusely). It is the latter
contribution, 〈M〉incoh, that we calculate.

Results. We have calculated in this way the 16 elements of
the Mueller matrix when light of wavelength λ = 457.9 nm is
incident on a two-dimensional randomly rough silver surface
whose dielectric function at this wavelength is ε(ω) = −7.5 +
0.24i [22]. The roughness of the surface is defined by a sur-
face height autocorrelation function W (|x‖|) = exp(−x2

‖/a
2),

where a = λ/4 and the rms height δ = λ/40. For the numerical
parameters we used L = 25λ and Nx = 319, which implies
thatQ/2 = 3.2(ω/c) is the cutoff in the integral in Eq. (3) [10].
The calculated Mueller matrices were found to be physically
realizable and therefore self-consistent by the method of
Ref. [23].
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FIG. 3. (Color online) The incoherent contribution to the diagonal
Mueller matrix elements, 〈Mii〉incoh, in the plane of incidence
(parameters as in Fig. 2). The vertical dotted line indicates the
backscattering direction. The lines, from top to bottom, correspond
to i = 1,2,4 and 3.

The results presented in Fig. 1 were obtained for angles
of incidence (θ0,φ0) = (2◦,45◦), i.e., for essentially normal
incidence. The first thing to notice from Fig. 1 is that the
individual matrix elements possess the symmetry properties
predicted by Bruce [12,24]. The elements of the first and last
column are circularly symmetric; each element of the second
and third columns is invariant under a combined 90◦ rotation
about the origin and a change of sign; and the elements of
the second column are 45◦ rotations of the elements of the
third column in the same row [25]. Note that the elements
〈M31〉incoh, 〈M41〉incoh, 〈M14〉incoh, and 〈M24〉incoh are zero to
the precision used in this calculation. However, simulations
indicate that this does not hold for anisotropic surfaces.

The results presented in Fig. 2 were obtained for angles of
incidence (θ0,φ0) = (25◦,45◦), and display some interesting
features. The elements 〈M11〉incoh, 〈M22〉incoh, and 〈M33〉incoh

contain a (weak) enhanced backscattering peak at q‖ = −k‖
(Fig. 3). The absolute value of the element 〈M44〉incoh has a dip
in the retroreflection direction. This dip is not present in the
results of a calculation based on small-amplitude perturbation
theory to the lowest (second) order in the surface profile
function, and is therefore a multiple-scattering effect, just as
the enhanced backscattering peak is. In contrast to what was
the case for normal incidence, the elements 〈M31〉incoh and
〈M24〉incoh are no longer zero.

If we denote the ensemble average of the contribu-
tion to a normalized element of the Mueller matrix from
the light that has been scattered incoherently by mij =
〈Mij 〉incoh/〈M11〉incoh, we can estimate the order of magnitude
of the Mueller matrix elements by calculating the quantities
sij = 〈|mij (q‖)|〉q‖ , where

〈f (q‖)〉q‖ =
∫

d2q‖ f (q‖)
c2

πω2
, (9)

and the integral over q‖ is taken over the circular region 0 <

q‖ < ω/c. It was found that s11, s22, s23, s32, s33, s44 are of
O(1), s12, s13, s21, s34, s42, s43 are of O(0.1), and s14, s24, s31,
s41 are of O(0.01). These results are only weakly dependent
on the polar angle of incidence θ0, for the values of θ0 assumed
in this study.

Conclusion. We have presented an approach to the calcula-
tion of all 16 elements of the Mueller matrix for light scattered
from a two-dimensional, randomly rough, lossy metal surface,
for arbitrary values of the polar and azimuthal angles of
incidence. It is based on a rigorous numerical solution of
the reduced Rayleigh equation for the scattering of p- and
s-polarized light from a two-dimensional rough surface of a
penetrable medium that captures multiple-scattering processes
of all orders. The results display multiple-scattering effects in
certain matrix elements, such as an enhanced backscattering
peak in the retroreflection direction, and an unexpected dip
in the same direction. The matrix elements also display
symmetry properties that, for normal incidence, agree with
those predicted by Bruce [12].

The approach used and the results presented in this Rapid
Communication will lead to a better understanding of the
polarimetric properties of random surfaces. Such knowledge
may be critical for improved photovoltaic and remote sensing
applications. It also has the potential to be used in engineering
surface structures which produce well-defined polarization
properties in scattered and transmitted light.
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