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Determination of the normalized-surface-height autocorrelation function of a two-dimensional
randomly rough dielectric surface by the inversion of light-scattering data
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An expression is obtained on the basis of phase perturbation theory for the contribution to the mean differential
reflection coefficient from the in-plane co-polarized component of the light scattered diffusely from a two-
dimensional randomly rough dielectric surface when the latter is illuminated by s-polarized light. This result
forms the basis for an approach to inverting experimental light-scattering data to obtain the normalized-surface-
height autocorrelation function of the surface. Several parametrized forms of this correlation function, and the
minimization of a cost function with respect to the parameters defining these representations, are used in the
inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant
of the dielectric substrate if it is not known in advance. The input data used in validating this inversion consist
of computer simulation results for surfaces defined by exponential and Gaussian surface-height correlation
functions, without and with the addition of multiplicative noise, for a single or multiple angles of incidence.
The reconstructions obtained by this approach are quite accurate for weakly rough surfaces, and the proposed
inversion scheme is computationally efficient.
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I. INTRODUCTION

Statistical information about the roughness of a surface is
contained in its rms height and in its normalized-surface-height
autocorrelation function. Efforts to obtain these properties of
rough surfaces from measurements of light scattered into the
far field from them are of interest because of the contactless
nature of this approach, and because measurements in the far
field are easier to carry out than measurements in the near field.

This problem has been studied in the past by several
authors. In the case of a one-dimensional randomly rough
dielectric surface, Chakrabarti et al. [1] inverted by a Fourier
transformation an expression for the contribution to the mean
differential reflection coefficient, obtained in the Kirchhoff
approximation, from light scattered diffusely from the surface.
The incident light was s-polarized and the plane of incidence
was perpendicular to the generators of the surface. Good
agreement with numerically generated scattering data was
obtained for weakly rough surfaces.

The case of a two-dimensional randomly rough surface
was studied by Chandley [2], and by Marx and Vorburger [3].
Chandley used scalar diffraction theory and a thin random
phase screen approximation [4] to model the interaction of
light with the randomly rough surface. A thin phase screen
may be regarded as a layer of negligible thickness that alters
the phase of the wave scattered from it but does not change its
magnitude. It is derived from simple optical path length and
geometrical optics arguments. He used the angular dependence
of the mean intensity of the scattered light in the far field as
the experimental quantity to be inverted. The nature of his
scattering model allowed this inversion to be carried out by
means of a Fourier transformation. The dielectric constant of
the scattering medium does not appear explicitly in Chandley’s
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theory which means that it is impossible to use it to recover
the dielectric constant of the scattering medium from the
experimental scattering data if it is not known in advance.

In their study of this problem, Marx and Vorburger applied
the Kirchhoff approximation for the scattering of a scalar
plane wave from a two-dimensional randomly rough perfectly
conducting surface to obtain the mean intensity of the scattered
field. The determination of the rms height of the surface and
the normalized-surface-height autocorrelation function was
achieved by assuming an expression for the latter function
of a particular analytic form and by the determination of the
parameters defining it by a least-squares fit of the theoretical
mean intensity to the experimental result.

In contrast to these studies, in this paper we present an
approach to the determination of the rms height and the
normalized-surface-height autocorrelation function of a two-
dimensional randomly rough penetrable surface, in particular
a dielectric surface, from the inversion of optical scattering
data. It is based on a vector theory of rough surface scattering
rather than on a scalar theory, namely phase perturbation
theory [5]. The dielectric constant of the medium is taken
into account in this approach. This version of rough-surface-
scattering theory was chosen in this study because in a recent
comparison between experimental data and the predictions of
three perturbation theories for the scattering of electromag-
netic radiation from two-dimensional randomly rough metal
surfaces, it produced the best results [5]. We expect it to be
equally accurate in describing the scattering of visible light
from a two-dimensional randomly rough dielectric surface.
Specifically, we use the expression for the contribution to the
mean differential reflection coefficient from the in-plane, co-
polarized component of the light scattered incoherently when
the dielectric surface is illuminated at normal or non-normal
incidence by s-polarized light.

This expression is evaluated with the use of an expression
for the normalized-surface-height autocorrelation function that
contains adjustable parameters. The values of these parameters
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are then determined by a least-squares fit of the resulting
expression to the corresponding experimental scattering data.
The reconstruction of the parameters is performed using
scattering data for both a single and several angles of
incidence, and the sensitivity to noise of the reconstructed
parameters is investigated. We note that the contribution to
the mean differential reflection coefficient from the in-plane
co-polarized component of the light scattered incoherently
when the surface is illuminated by p-polarized light can also be
used for this purpose. However, the expression one works with
to effect this inversion is somewhat simpler in s polarization
than in p polarization. In addition, there is no Brewster effect
in s polarization, so that a smoother function of the scattering
angle is being inverted in s polarization than in p polarization.
It is for these reasons that we have chosen to work with s
polarization.

This paper is organized as follows: First, the scattering
system is presented (Sec. II) followed by elements of scattering
theory (Sec. III) that will be useful for the subsequent discus-
sion. Then in Sec. IV, we present the inversion scheme that
will be used to reconstruct the surface-height autocorrelation
function. The results obtained by the use of this procedure are
presented in Sec. V for a set of different correlation functions
and scattering geometries. Section VI presents discussions of
these results and the conclusions that can be drawn from this
study. The paper ends with an appendix detailing the derivation
of expressions, central to the present work, for the first few
moments of the scattering matrix for s-to-s scattering obtained
on the basis of phase perturbation theory.

II. THE PHYSICAL SYSTEM STUDIED

The physical system we study in this paper consists of
vacuum in the region x3 > ζ (x‖), and a dielectric medium,
characterized by a dielectric constant ε that is real, positive, and
frequency independent, in the region x3 < ζ (x‖) (Fig. 1). Here
x‖ = (x1,x2,0) is a position vector in the plane x3 = 0. The
surface profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2. It
is also assumed to constitute a stationary, zero-mean, isotropic,

x1

x2

x3

q
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FIG. 1. Schematics of the scattering geometry considered in this
work.

Gaussian random process defined by

〈ζ (x‖)ζ (x ′‖)〉 = δ2W (|x‖ − x ′‖|), (1a)

〈ζ 2(x‖)〉 = δ2, (1b)

where the angle brackets denote an average over the ensemble
of realizations of ζ (x‖), δ is the rms height of the surface,
and W (|x‖|) is the normalized-surface-height autocorrelation
function, with the property that W (0) = 1.

The surface profile function has a Fourier integral represen-
tation,

ζ (x‖) =
∫

d2Q‖
(2π )2

ζ̂ (Q‖) exp(iQ‖ · x‖), (2)

where Q‖ = (Q1,Q2,0) is a two-dimensional wave vector, so
that

ζ̂ (Q‖) =
∫

d2x‖ ζ (x‖)exp(−iQ‖ · x‖). (3a)

We also introduce the notation

ζ̂ (n)(Q‖) =
∫

d2x‖ ζ n(x‖) exp(−iQ‖ · x‖). (3b)

The Fourier coefficient ζ̂ (Q‖) is also a zero-mean Gaussian
random process defined by

〈ζ̂ (Q‖)ζ̂ (Q ′‖)〉 = (2π )2δ(Q‖ + Q ′‖) δ2g(|Q‖|), (4)

where g(|Q‖|), the power spectrum of the surface roughness,
is defined by

g(|Q‖|) =
∫

d2x‖ W (|x‖|) exp(−iQ‖ · x‖). (5)

It follows from Eqs. (1) and (5) that g(|Q‖|) is normalized
to unity,

∫
d2Q‖
(2π )2

g(|Q‖|) = 1. (6)

III. SCATTERING THEORY

The surface x3 = ζ (x‖) is illuminated from the vacuum by
an electromagnetic field of frequency ω. The electric field in
the vacuum above the surface is the sum of an incident and a
scattered field, E(x; t) = E(i)(x; t) + E(s)(x; t), where

E(i)(x; t) =
{

− c

ω
[k̂‖α0(k‖) + x̂3k‖]Bp(k‖) + (x̂3 × k̂‖)

×Bs(k‖)

}
exp{i[k‖ − x̂3α0(k‖)] · x − iωt}, (7a)

E(s)(x; t) =
∫

d2q‖
(2π )2

{
c

ω
[q̂‖α0(q‖) − x̂3q‖]Ap(q‖) + (x̂3 × q̂‖)

×As(q‖)

}
exp{i[q‖ + x̂3α0(q‖)] · x − iωt}. (7b)

The subscripts p and s denote the p-polarized (TM) and s-
polarized (TE) components of each of these fields, respectively.
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The function α0(q‖) in Eqs. (7) is defined as

α0(q‖) =
[(

ω

c

)2

− q2
‖

]1/2

, Re α0(q‖) > 0, Im α0(q‖) > 0.

(8)

Maxwell’s equations imply linear relations between Aα(q‖)
and Bβ(q‖), which we write in the form (α = p,s,β = p,s)

Aα(q‖) =
∑

β

Rαβ(q‖|k‖)Bβ(k‖). (9)

The scattering amplitudes {Rαβ(q‖|k‖)} play a significant
role in the present theory because the mean differential
reflection coefficient is given in terms of them. The dif-
ferential reflection coefficient [∂Rαβ(q‖|k‖)/∂
s] is defined
such that [∂Rαβ(q‖|k‖)/∂
s]d
s is the fraction of the total
time-averaged flux in an incident field of β polarization the
projection of whose wave vector on the mean scattering
plane is k‖, that is scattered into a field of α polarization,
the projection of whose wave vector on the mean scattering
plane is q‖, within an element of solid angle d
s about the
scattering direction defined by the polar and azimuthal angles
(θs,φs). It is given by [6,7]

∂Rαβ(q‖|k‖)

∂
s

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0
|Rαβ(q‖|k‖)|2, (10)

with (see Fig. 1)

k‖ = ω

c
sin θ0(cos φ0, sin φ0,0), (11a)

q‖ = ω

c
sin θs(cos φs, sin φs,0), (11b)

where (θ0,φ0) and (θs,φs) are the polar and azimuthal angles of
incidence and scattering, respectively. S is the area of the plane
x3 = 0 covered by the rough surface. As we are dealing with
scattering from a randomly rough surface, it is the average of
this function over the ensemble of realizations of the surface
profile function that we have to calculate. The contribution to
this average from the light scattered incoherently is〈

∂Rαβ(q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0
[〈|Rαβ(q‖|k‖)|2〉

− |〈Rαβ (q‖|k‖)〉|2]. (12)

Closely related to the matrix of scattering amplitudes
R(q‖|k‖) is the scattering matrix S(q‖|k‖) whose elements
{Sαβ(q‖|k‖)} are given by

Sαβ(q‖|k‖) = α
1/2
0 (q‖)

α
1/2
0 (k‖)

Rαβ(q‖|k‖). (13)

These elements satisfy the reciprocity relations [8]

Spp(q‖|k‖) = Spp(−k‖| − q‖), (14a)

Sss(q‖|k‖) = Sss(−k‖| − q‖), (14b)

Sps(q‖|k‖) = −Ssp(−k‖| − q‖), (14c)

which serve as a check on the correctness of their derivation.
In terms of the elements of the scattering matrix, Eq. (10) takes
the form〈

∂Rαβ(q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2

cos θs[〈|Sαβ(q‖|k‖)|2〉

− |〈Sαβ (q‖|k‖)〉|2]. (15)

This is the definition we will work with.
In the Appendix it is shown that the ss element of the

expression given by Eq. (15) obtained on the basis of second-
order phase perturbation theory can be written as〈

∂Rss(q‖|k‖)

∂
s

〉
incoh

= (ε − 1)2

(2π )2

(
ω

c

)6 cos θs

[ds(q‖)ds(k‖)]2
exp[−2M(q‖|k‖)]

×
∞∑

n=1

[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2]n

n!

×
∫

d2u‖ Wn(|u‖|) exp[−i(q‖ − k‖) · u‖]. (16)

In writing this expression we have introduced the functions

dp(q‖) = εα0(q‖) + α(q‖), (17a)

ds(q‖) = α0(q‖) + α(q‖), (17b)

where

α(q‖) =
[
ε

(
ω

c

)2

− q2
‖

]1/2

Re α(q‖) > 0, Im α(q‖) > 0.

(18)

The function M(q‖|k‖) is given by (see the Appendix)

M(q‖|k‖) = 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)

×
∫

d2p‖
(2π )2

Re F (q‖|p‖|k‖)g(|p‖ − k‖|), (19)

where

F (q‖|p‖|k‖) = sgn(q̂‖ · k̂‖)

{
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

dp(p‖)
(p̂‖ × k̂‖)3

− (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

ds(p‖)

}
, (20)

with sgn(·) denoting the sign function.
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We now turn to an evaluation of the ingredients in Eq. (16). We begin with the expression for 2M(q‖|k‖) given by Eqs. (19)–(20).
With the use of Eqs. (5)–(6) we rewrite it in terms of W (x‖):

2M(q‖|k‖) = δ2α
1/2
0 (q‖)α1/2

0 (k‖) sgn(q̂‖ · k̂‖)

{
2[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)

π2
Re

∫ ∞

0
dp‖ p‖

∫ π

−π

dφp

∫ ∞

0
dx‖ x‖W (x‖)

×
∫ π

−π

dφx exp[−ip‖x‖ cos(φp − φx)] exp[ik‖x‖ cos(φk − φx)]

×
[
α0(p‖)α(p‖)

dp(p‖)
sin(φp − φq) sin(φk − φp) − (ω/c)2

ds(p‖)
cos(φq − φp) cos(φp − φk)

]}
, (21)

where φq , φp, φk , and φx are the azimuthal angles of the unit vectors q̂‖, p̂‖, k̂‖, and x̂‖, respectively, measured from the positive
x1 axis (see Fig. 1). On evaluating the angular integrals this result becomes

2M(q‖|k‖) = 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|
{
α(q‖) + α(k‖) − (ε − 1) Re

[ ∫ ∞

0
dp‖ p‖

(
α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

) ∫ ∞

0
dx‖ x‖

×W (x‖)J0(p‖x‖)J0(k‖x‖) +
∫ ∞

0
dp‖ p‖

(
− α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

)∫ ∞

0
dx‖ x‖W (x‖)J2(p‖x‖)J2(k‖x‖)

]}
, (22)

where Jn(z) is a Bessel function of the first kind and order n, and we have used the relation x sgn(x) = |x|. Finally, due to the
circular symmetry of W (|u‖|) we obtain the result

∫
d2u‖ Wn(|u‖|)exp[−i(q‖ − k‖) · u‖] = 2π

∫ ∞

0
du‖ u‖Wn(u‖)J0(|q‖ − k‖|u‖). (23)

In the case of normal incidence (k‖ = 0) and in-plane (q̂‖ ‖ k̂‖) scattering, Eq. (16) becomes

〈
∂Rss(q‖|0)

∂
s

〉
incoh

= (ε − 1)2

(2π )2

(
ω

c

)6 cos θs

[ds(q‖)ds(0)]2
exp[−2M(q‖|0)]

∞∑
n=1

[4δ2α0(q‖)α0(0)]n

n!

∫
d2u‖ Wn(|u‖|)exp(−iq‖ · u‖),

(24)

and Eq. (22) can be written as

2M(q‖|0) = 2δ2α
1/2
0 (q‖)α1/2

0 (0)

{
α(q‖) + α(0) − (ε − 1) Re

∫ ∞

0
dp‖ p‖

[
α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

] ∫ ∞

0
dx‖ x‖W (x‖)J0(p‖x‖)

}
.

(25)

From Eq. (11) it is noted that for normal incidence k̂‖ =
(cos φ0, sin φ0,0), even if k‖/k‖ is not well defined in this
case. Moreover, for scattering into directions that are normal
to the mean surface we have q̂‖ = k̂‖, so for all directions
q‖ corresponding to in-plane scattering |q̂‖ · k̂‖| = 1. These
results were used in arriving at the expressions presented in
Eqs. (24) and (25).

IV. THE INVERSE PROBLEM

To determine the function W (x‖) from in-plane scattering
data defined as

〈
∂Rss(θs)

∂
s

〉
incoh,input

≡
〈
∂Rss(q‖|k‖)

∂
s

〉
incoh

∣∣∣∣
|q̂‖·k̂‖|=1

,

we assume an analytic form for it that contains adjustable
parameters. The values of these parameters, together with the
rms height δ, are determined by minimizing a cost function
with respect to variations of these parameters. The cost

function we use is

χ2(P) =
∫ π

2

− π
2

dθs

[〈
∂Rss(θs)

∂
s

〉
incoh,input

−
〈
∂Rss(θs)

∂
s

〉
incoh,calc

]2

, (26)

where P denotes the set of variational parameters used to
characterize 〈∂Rss(θs)/∂
s〉incoh,calc. The minimization of this
function with respect to the elements of P was carried
out by the use of the routine “lmdif1” contained in the
Fortran package MINPACK which is part of the general
purpose mathematical library SLATEC [9]. The routine lmdif1
implements a modified version of the Levenberg-Marquardt
algorithm [10,11], and it calculates the Jacobian by a forward-
difference approximation.

The function 〈∂Rss(θs)/∂
s〉incoh,input was obtained from
rigorous, nonperturbative, purely numerical solutions [8,12] of
the reduced Rayleigh equation for the scattering of polarized
light from a two-dimensional randomly rough penetrable
dielectric surface [13]. These calculations were carried out
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FIG. 2. Reconstruction of the rms roughness δ� and transverse correlation length a� from in-plane scattering data obtained for exponentially
correlated surfaces. (a) The incoherent component of the in-plane, co-polarized (s-to-s) mean differential reflection coefficient 〈∂Rss/∂
s〉incoh

as a function of the polar angle of scattering θs obtained from computer simulations (open circles), and from second-order phase perturbation
theory with the use of the reconstructed surface-roughness parameters (solid curve), for a two-dimensional randomly rough dielectric surface
defined by Eq. (28a). The surface-roughness parameters assumed in the computer simulations have the values δ = 9.50 nm and a = 158.20 nm,
while the reconstructed values of these parameters are δ� = 9.519 nm and a� = 158.565 nm. The dielectric constant of the substrate is ε = 2.64,
and the wavelength of the s-polarized light incident normally on the mean surface is λ = 632.8 nm. (b) The input (open circles) and reconstructed
(solid curve) surface-height autocorrelation function W (|x‖|) for the random surface. The shaded gray region represents the absolute difference
between the input and reconstructed surface-height autocorrelation functions.

for an ensemble of random surfaces generated [12] on the
basis of expressions for W (|x‖|) of either the exponential form

W (|x‖|) = exp

(
−x‖

a

)
, (27a)

or the Gaussian form

W (|x‖|) = exp

{
−

(
x‖
a

)2}
. (27b)

In Eqs. (27), a denotes the transverse correlation length of the
surface roughness.

The function 〈∂Rss(θs)/∂
s〉incoh,calc was obtained by eval-
uating the expression for it obtained using phase perturbation
theory [Eq. (16)] for the trial function assumed to represent
W (|x‖|). Several forms for this trial function were used in
our calculations. In the first set of forms we assumed an
exponential or Gaussian trial function, that is,

W (|x‖|) = exp

(
− x‖

a�

)
, (28a)

or

W (|x‖|) = exp

{
−

(
x‖
a�

)2}
. (28b)

In this case the variational parameters of the reconstruction are
δ�,a�, and potentially also ε�.

For the second set of forms for the trial function a stretched
exponential was assumed,

W (|x‖|) = exp

{
−

(
x‖
a�

)γ �}
, (29)

which reduces to the exponential and Gaussian forms when
γ � = 1 and γ � = 2, respectively. In this case the varia-

tional parameters of the reconstruction are δ�,a�,γ �, and
potentially ε�.

V. RESULTS

We will now illustrate the inversion method developed here
by applying it to the reconstruction of W (|x‖|), first by the use
of one of the trial functions (28) and then by the use of the
more general trial function (29).

A. Exponentially correlated surface roughness

For the first scattering system we consider, it is assumed
that the surface-height autocorrelation function W (|x‖|) is
exponential, Eq. (27a), and characterized by a transverse cor-
relation length a = 158.20 nm and an rms height of the surface
δ = 9.50 nm. The medium above the surface is vacuum and the
dielectric constant of the substrate is ε = 2.64 (photoresist).
The wavelength (in vacuum) of the s-polarized incident light
is λ = 632.8 nm. For this geometry and by the method of
Ref. [12], we calculated the mean differential reflection
coefficients by averaging the results from 5000 realizations
of the surface profile function. For normal incidence, the in-
plane, s-to-s co-polarized incoherent component of the mean
differential reflection coefficient (DRC) obtained in this way is
presented as a function of the scattering angle θs by open circles
in Fig. 2(a) [the same data set also appears in Figs. 3(a)–5(a)].
These data constitute the input function 〈Rss(θs)/∂
s〉incoh,input

for our first set of reconstruction examples.
As our first example of reconstruction based on this data set,

we assume that the trial function W (|x‖|) has the exponential
form given by Eq. (28a). The set of variational parameters
is therefore P = {δ�,a�}. The use of a mean differential
reflection coefficient generated by the use of a known W (|x‖|)
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FIG. 3. Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the dielectric constant of the substrate ε� from
the in-plane scattering data. This figure is the same as Fig. 2 except now the dielectric constant of the substrate is also reconstructed. The
reconstructed surface-roughness parameters are found to be δ� = 9.272 nm, a� = 158.042 nm, and the reconstructed dielectric constant has the
value ε� = 2.718.

in our inversion approach enables us to assess the quality of
the reconstructions we obtain. By starting the minimization
procedure with the values δ� = 2.00 nm and a� = 75.00 nm,
the values of these parameters that minimize the cost function
χ2(P), Eq. (26), were found to be δ� = 9.519 nm and a� =
158.565 nm, to be compared with the values δ = 9.50 nm
and a = 158.20 nm used to generate the input data. In the
minimization procedure we assumed that both δ� and a�

were restricted to positive values. The inversion is quite
accurate. The function 〈∂Rss(θs)/∂
s〉incoh,calc calculated with
the reconstructed values of δ� and a� by means of second-order
phase perturbation theory is plotted as the solid curve in
Fig. 2(a) while the reconstructed correlation function W (|x‖|)
is plotted as the solid curve in Fig. 2(b). The reconstructed
W (|x‖|) is nearly superimposed on the input W (|x‖|) [open
symbols Fig. 2(b)]. The shaded region in Fig. 2(b), and in the
subsequent plots of W (|x‖|), represents the magnitude of the
difference between the input and reconstructed values of this
function. This difference is seen to be very small.

In the preceding example it was assumed that the dielectric
constant of the scattering medium was known. For our second
example we take the input data from our first example, given
by the open circles in Fig. 2(a), but now assume that together
with the roughness parameters the dielectric constant of the
substrate is unknown. Therefore the variational parameter
set is now P = {δ�,a�,ε�}. The results of this inversion are
shown in Fig. 3, and it is seen that also in this case a rather
good reconstruction is obtained. By starting the minimization
procedure with the values δ� = 2.00 nm, a� = 75.00 nm, and
ε� = 2.00, the values of these parameters that minimize the
cost function χ2(P) were determined to be δ� = 9.272 nm,
a� = 158.042 nm, and ε� = 2.718. These are to be compared
with the input values δ = 9.50 nm, a = 158.20 nm, and ε =
2.64. The function 〈∂Rss(θs)/∂
s〉incoh,calc calculated with the
reconstructed values of δ�,a�,ε� by means of second-order
phase perturbation theory is plotted as the solid curve in
Fig. 3(a), while the reconstructed correlation function W (|x‖|)
is plotted as the solid curve in Fig. 3(b). From a comparison of

the results presented in Figs. 2 and 3 it is seen that the addition
of a single variational parameter changes the reconstruction of
W (|x‖|) only marginally.

A more stringent test of our inversion scheme is obtained
when the trial function for W (|x‖|) has a functional form that
differs from the form assumed in generating the input data
that the reconstruction is based on. As our third example,
we therefore present results of our calculations when the
trial W (|x‖|) is assumed to have the stretched exponential
form given by Eq. (29). The set of variational parameters is
now P = {δ�,a�,γ �}. By starting the minimization procedure
with the values δ� = 2.00 nm, a� = 75.00 nm, and γ � =
2.00, the values of these parameters that minimize the cost
function were found to be δ� = 9.425 nm, a� = 161.717 nm,
and γ � = 1.012. These values are fairly close to the input
values δ = 9.50 nm, a = 158.20 nm, and γ = 1.0 used in
obtaining the simulation data. However, the importance of
this example is to show that our minimization procedure is
in fact able to distinguish a Gaussian form for the correlation
function from an exponential form. In Fig. 4(a) we plot the
function 〈∂Rss(θs)/∂
s〉incoh,calc calculated by means of the
second-order phase perturbation theory for the reconstructed
values of δ�,a�,γ � (solid curve), together with a plot of the
input function (open circles). The agreement between these
two results is quite good. In Fig. 4(b) we present plots of the
input (open circles) and reconstructed (solid curve) correlation
functions W (|x‖|). The latter curve very nearly coincides with
the former curve.

In our final example assuming an exponentially correlated
surface, we again use the stretched exponential trial function
for W (|x‖|), but now also assume that the dielectric constant
of the scattering medium is unknown. The set of variational
parameters is now P = {δ�,a�,ε�,γ �}. We start the minimiza-
tion of the cost function χ2(P) with the values δ� = 2.00 nm,
a� = 75.00 nm, ε� = 2.00, and γ � = 2.00. The values of these
parameters that minimize the cost function are found to be
δ� = 9.774 nm, a� = 166.709 nm, ε� = 2.507, and γ � =
1.027. The proximity of these values to the input values, that
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FIG. 4. Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the exponent γ � from in-plane scattering data.
This figure is the same as Fig. 2 except that now the trial function for W (|x‖|) has the stretched exponential form given by Eq. (29). The
reconstructed surface-roughness parameters are found to have the values δ� = 9.425 nm, a� = 161.717 nm, and γ � = 1.012.

are the same as those used previously, is poorer than for the first
three examples, but the reconstructed values are still quite sat-
isfactory. The reconstructed function 〈∂Rss(θs)/∂
s〉incoh,calc

[Fig. 5(a)] and the reconstructed correlation function W (|x‖|)
[Fig. 5(b)] calculated with these reconstructed values are still
in good quantitative agreement with the corresponding input
functions.

The parameters for the scattering system obtained in the
different reconstruction scenarios detailed in this subsection
are summarized in Table I.

B. Gaussian-correlated surface roughness

The second scattering system, from which we will use data
for the purpose of inversion, is characterized by a Gaussian
correlation function instead of the exponential correlation
function assumed in the earlier set of examples. Compared to

TABLE I. Summary of the scattering system parameters obtained
during the different reconstruction scenarios based on in-plane,
s-to-s co-polarized scattering data corresponding to an exponentially
correlated surface: δ�, a�, ε�, and γ �. The scattering system pa-
rameters assumed in generating the input data were δ = 9.50 nm,
a = 158.20 nm, ε = 2.64, and θ0 = 0◦. Note that an exponential
correlation function corresponds to the exponent γ = 1 for the
stretched exponential. The last column indicates the relevant figure
where the results of the reconstruction in question are presented.
The symbol “—” indicates that the corresponding variable was
not reconstructed and instead had the value assumed in the input
data (numerical simulations). In the two first reconstructions a trial
correlation function of the form (28a) was used, while in the last
two the form (29) was assumed. The initial values of {δ�,a�,ε�,γ �}
assumed in the reconstructions were {2 nm,75 nm,2,2}, respectively.

δ� (nm) a� (nm) ε� γ � Comments

9.519 158.565 – – Fig. 2
9.272 158.042 2.718 – Fig. 3
9.425 161.717 – 1.012 Fig. 4
9.774 166.709 2.507 1.027 Fig. 5

the previous scattering system, in addition to the different form
of W (|x‖|), the only parameters that have changed are the rms
roughness and the dielectric constant of the substrate; they now
take the values δ = 15.82 nm (an increase of more than 65%
compared to its previous value) and ε = 2.6896, respectively.
Except for the angles of incidence, all other parameters
characterizing the scattering system remained unchanged, i.e.,
a = 158.20 nm and λ = 632.8 nm.

For these parameters, a computer simulation approach [12]
was used to generate scattering data that were obtained by
averaging the results from 24000 surface realizations. Results
obtained this way are presented as open symbols in Fig. 6(a)
for the polar angle of incidence θ0 = 50.2◦. It is these data we
will base our inversion on in this subsection; that is, here this
data set represents 〈∂Rss/∂
s〉incoh,input.

Motivated by the reconstruction done in Sec. V A using
scattering data obtained for the exponentially correlated
surface, we will now perform similar inversions for Gaussian-
correlated surfaces using various variational parameter sets,
P , that are subsets of {δ�,a�,ε�,γ �}. In such cases, the starting
values assumed in the minimization will be {2 nm,75 nm,2,1},
respectively, if nothing is said to indicate otherwise.

Figure 6 presents the results of the reconstruction for
P = {δ�,a�} under the assumption that the trial function
used for W (|x‖|) is of the Gaussian form, Eq. (28b). In this
way, the reconstruction procedure resulted in the numerical
values δ� = 15.873 nm and a� = 158.000 nm. These values
agree rather well with the values assumed in generating the
scattering data used in the inversion. Moreover, the input and
reconstructed correlation functions, as well as the absolute
difference between them, are depicted in Fig. 6(b); the solid
red line in Fig. 6(a) represents the mean DRC predicted by the
inversion.

We now continue by reconstructing the same variational
parameter sets, P , as were used in Sec. V A for the exponential
surface roughness; the only difference now is that we will
assume the form of the trial function (28b) where we previously
used Eq. (28a). A summary of the reconstructed parameters
is presented in Table II. Moreover, in Fig. 7 the input and
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FIG. 5. Reconstruction of the rms roughness δ�, the transverse correlation length a�, the exponent γ �, and the dielectric constant of the
substrate ε� from in-plane scattering data. This figure is the same as Fig. 2 except that now the trial function for W (|x‖|) has the stretched
exponential form given by Eq. (29), and the dielectric constant of the scattering medium is assumed to be unknown. The reconstructed
surface-roughness parameters are found to have the values δ� = 9.774 nm, a� = 166.709 nm, γ � = 1.027, and the reconstructed value of the
dielectric constant is ε� = 2.507.

different reconstructed correlation functions obtained in this
way are presented, together with comparisons of them. The
mean DRCs that result from these reconstructions are visually
indistinguishable from those of Fig. 6(a), and such plots have
therefore not been presented.

From Figs. 6–7 and Table II we see that the reconstructed
results for the Gaussian-correlated surface roughness are in
general good, at least for the angle of incidence θ0 = 50.2◦
assumed here. The quality of the results obtained is on a
par with the results obtained previously for the exponentially
correlated surface roughness, even though in the Gaussian
case the rms roughness is significantly larger and the angle of
incidence is nonzero.

It should be mentioned that we have also performed
reconstructions based on input data corresponding to other
polar angles of incidence than θ0 = 50.2◦, and it was found that

the values of the reconstructed parameters essentially remained
unchanged; if there were any changes at all, the quality of the
reconstruction seemed to improve for smaller polar angles of
incidence. Assuming different initial values of the parameters
of the setP seemed not to affect the reconstruction. Hence, our
results seem to indicate that reconstruction based on different
input data, at least for the scattering data that we considered,
influences the numerical values of the reconstructed parame-
ters of the surface-height correlation function only to a small
extent. Furthermore, the reconstruction seems to be reliable
for a wide range of angles of incidence.

C. Sensitivity to noise

Any experimental data set will contain some level of
noise. Therefore, it is imperative to have reliable inversion

-90 -60 -30 0 30 60 90
θs [deg]

0

1

2

3

4

5

6

7

8

9

〈∂
R

ss
/∂Ω

s 〉 in
co

h

Input
Reconstructed

(a)

-400 -200 0 200 400
x|| [nm]

0.0

0.2

0.4

0.6

0.8

1.0

W
(|x

|||)

Input
Reconstructed

(b)

× 30

10

10
4

FIG. 6. Same as Fig. 2, but now for a Gaussian-correlated surface where the polar angle of incidence is θ0 = 50.2◦. The trial function assumed
in the reconstruction was the Gaussian form (28b), and the values for the parameters obtained were δ� = 15.873 nm and a� = 158.000 nm. The
scattering system assumed in generating the input data were characterized by δ = 15.82 nm, a = 158.20 nm, ε = 2.6896, and λ = 632.8 nm.
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TABLE II. Summary of the values reconstructed from in-plane
scattering data obtained for the polar angle of incidence θ0 = 50.2◦

and corresponding to a Gaussian-correlated surface characterized
by δ = 15.82 nm and a = 158.20 nm. The dielectric constant of the
substrate was ε = 2.6896. Note that a Gaussian correlation function
corresponds to an exponent γ = 2.00 for the stretched exponential.
The symbol “—” indicates that the corresponding parameter was
not reconstructed and instead had the value assumed in numerically
generating the input data. When inverting for any of the parameters in
the set {δ�,a�,ε�,γ �} the initial values used were {2 nm,75 nm,2,1},
respectively.

δ� (nm) a� (nm) ε� γ � Comments

15.922 157.928 – – Fig. 6
16.161 157.785 2.645 – Fig. 7(a)
16.170 154.592 – 1.929 Fig. 7(b)
16.180 157.148 2.651 1.986 Fig. 7(c)

approaches that can be applied successfully to data sets
containing noise. Until now, we have used simulated data
as the basis for the reconstruction, and the only source of
uncertainty (or noise) in such simulations results is the finite
number of surface realizations used to obtain them. However,
since a sufficiently high number of realizations has been used in
generating such data, the uncertainty has been modest. To start
investigating the sensitivity of the reconstructed parameters
to noise, we will, for reasons of comparison, base it on the
data set used in Sec. V B [open symbols in Fig. 6(a)] and
add noise to it. Due to the way these simulation results were
generated [12], only 36 points exist in this data set. However,
experimental angular resolved scattering data sets typically
will have significantly better angular resolution (and, thus,
more points). Therefore, to better mimic the more relevant
experimental situation, we have interpolated by splines these
simulation results [solid symbols in Fig. 8(a)] to an angular
resolution of �θs = 1◦ for θs in the interval from −90◦ to
90◦. Then, to these (locally smooth) interpolated data, we
have added multiplicative Gaussian white noise of a standard
deviation of 5% and zero mean [gray erratic signal oscillating
around zero in Fig. 8(a) resulting in the open blue data in
Fig. 8(a)]. It is this latter data set that will be used as the noisy
input signal for the reconstructions to be performed below. In
passing, it is noted that additive noise (of constant amplitude)
mainly will affect the tails of the in-plane angular intensity
distributions of the scattered light due to their typical convex
shape. In this study we have chosen to focus on multiplicative
noise since it affects the whole intensity distribution and
therefore represents a greater challenge for the reconstruction
approach.

Results for the reconstructed parameters based on this
Gaussian white noisy data set, performed in a fashion identical
to what was done in the preceding subsection, are listed in
Table III. From this table, we observe that the results obtained
are rather good, even for the significant noise level assumed.
Moreover, one finds that the quality of the reconstruction is
not dramatically degraded compared to what was previously
obtained using the non-noisy data set (see Table II). Not
surprisingly, the poorest results of the inversion are obtained
for the variational parameter set P of cardinality 4, and this
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FIG. 7. Correlation functions obtained by reconstructing several
variational parameter sets P for the Gaussian surface roughness
parameters defined in Fig. 6: (a) P = {δ�,a�,ε�}, (b) P = {δ�,a�,γ �},
and (c) P = {δ�,a�,ε�,γ �}. The numerical values of the reconstructed
parameters are listed in Table II. The shaded areas represent the
absolute error between the input and reconstructed correlation
functions.

“worst case” is presented as solid red lines in Fig. 8. The results
presented in Table III and Fig. 8, which for the non-noisy case
should be compared to Table II and Fig. 7(c), support the view
that the reconstruction approach presented in this paper is able
to produce reliable results also when the input data are noisy.
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FIG. 8. The sensitivity of the reconstruction to multiplicative Gaussian white noise of 5% standard deviation. (a) The incoherent component
of the in-plane mean DRC for s-to-s scattering from a Gaussian-correlated surface roughness. The solid symbols represent the same data set that
appears as open symbols in Fig. 6(a). This (smooth) data set was first interpolated to an angular resolution of 1◦, and then multiplicative Gaussian
white noise of 5% standard deviation was added to it. The open blue symbols represent the resulting noisy signal that the reconstruction is based
on; the irregular signal in gray oscillating around zero is the actual noise being added. The (noninterpolated) original data set is indicated by
green filled symbols. The solid red line represents the incoherent component of the mean DRC resulting from reconstructing the variational set
P = {δ�,a�,ε�,γ �} (actual values given by the last line of Table III). (b) The input and reconstructed correlation function W (|x‖|) for variational
parameter set P; the “non-noisy” equivalent of this graph is presented in Fig. 7(c). It should be noted that reconstruction using any subset of P
results in more accurate results for the correlation function (see Table III), so what is shown here is indeed the “worst case” situation for the
cases that we have considered.

For instance, when reconstructing 4 parameters, the relative
errors in the reconstructed correlation lengths are about 3.5%
and −0.7% for the noisy and non-noisy cases, respectively,
which is not dramatic given the level of noise that was added
to the input data.

It should be mentioned that we found that if the parameters
were estimated using a noisy version of the original scattering
data instead of the interpolated data, as done above, the
results using the trial function (28b) essentially remained
unchanged. However, for the stretched exponential form (29),
the results were more sensitive to the initial values used in
the minimization, resulting in less robust results than those
obtained by the use of the former data set. We will see in
the next subsection that this can also be the case when using
multiple angles of incidence.

TABLE III. Same as Table II, but now the data set used in the
inversion consisted of an interpolated version of the data set used to
produce the results of Table II, with added multiplicative Gaussian
white noise of a standard deviation of 5% (and mean zero). In Fig. 8,
the noisy input data set is depicted as blue open symbols, while the
noise appears in gray.

δ� (nm) a� (nm) ε� γ � Comments

15.955 157.705 – – –
16.151 157.571 2.653 – –
15.946 157.824 – 2.003 –
15.941 163.661 2.606 2.102 Fig. 8

D. Inversion of data obtained from multiple angles of incidence

When the experimental setup is prepared to measure the
in-plane scattering of light for one angle of incidence, it is
relatively straightforward to perform additional measurements
for other angles of incidence. Therefore, it is of interest to
study how the reconstructed parameters will depend on using
multiple angles of incidence, and thus several data sets, in
the inversion. In order to include, say, N data sets into the
reconstruction, the cost function used in the minimization is
generalized to

χ2(P) =
N∑

n=1

χ2
n (P), (30)

where χ2
n (P) is defined by Eq. (26) and corresponds to the

contribution to the total cost function χ2(P) from a single
angle of incidence θ

(n)
0 ∈ {θ (1)

0 ,θ
(2)
0 , . . . ,θ

(N)
0 }.

Assuming the Gaussian-correlated surface roughness of the
previous subsections, in-plane data for the mean DRCs were
obtained from computer simulations for the polar angles of
incidence θ0 = 1.6◦, 25.3◦, and 50.2 [12]. A series of joint
inversions were then performed based on the three resulting
data sets seen as open symbols in Fig. 9(a). The parameters
obtained by such an approach are presented in Table IV and
the resulting mean DRCs obtained when reconstructing δ�, a�,
and ε� are presented as solid lines in Fig. 9(a). A comparison of
the results presented in Tables II and IV reveals that including
additional data sets into the inversion scheme, at least for the
data sets we used in obtaining these results, did not change
the estimates of the parameters in any significant way. If there
is any change, it may seem as if a multiangle reconstruction
may slightly improve the results when using the trial function
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FIG. 9. The same as (a) Fig. 6(a) and (b) Fig. 8(a) but for the polar angles of incidence θ0 = 1,6◦, 25.3, and 50.2 and multiangle
reconstruction of the data sets corresponding to these angles of incidence assuming the variational parameter set P = {δ�,a�,ε�}. The solid
lines, independent of color, represent the reconstructed mean DRCs. The parameter values obtained from the reconstructions are listed in
Tables IV and V.

(28b), while it becomes slightly worse for the trial function
(29). However, before one can draw firm conclusions on this
issue, proper estimates of the error bars associated with each
of these parameters will have to be obtained, something that
is outside the scope of the present work.

If now noise is added to these data sets after first interpo-
lating them to a higher angular resolution, as was done above
for the single data set corresponding to θ0 = 50.2◦, then on
performing multiangle reconstructions based on the resulting
data, the values presented in Table V are obtained [see also
Fig. 9(b)]. The first thing to observe from Table V is that
the multiangle inversions based on the stretched exponential
trial function (29) produce rather inaccurate results compared
to inversions based on only one of these data sets (see
Table III). Potentially one could first estimate the exponent
of the stretched exponential from a single data set, since we
have found that it does not matter which of the data sets we
use, and then use this value for γ � as a fixed parameter in
a multiangle inversion. However, we will not consider this
situation farther here, since we feel that it is probably more
fruitful to consider alternative forms of the trial functions.

On the other hand, when using the Gaussian trial function
(28b) in the minimization, a comparison of the results
presented in Tables III and V shows that the multiangle
reconstructions are producing more accurate results than those
obtained when the inversion is based on the single angle
scattering data set corresponding to θ0 = 50.2◦. We have also

TABLE IV. Same as Table II, but now the reconstruction is based
on several data sets corresponding to the polar angles of incidence
θ0 = 1.6◦, 25.3◦, and 50.2◦ [open symbols in Fig. 9(a)].

δ� (nm) a� (nm) ε� γ � Comments

15.920 157.649 – – –
16.074 157.929 2.658 – Fig. 9(a)
16.308 152.620 – 1.896 –
16.208 155.652 2.665 1.953 –

found this result to be true when any of the other two data sets
were used in the single-angle inversion. This is an important
result, since it may indicate that including several experimental
data sets into the inversion may improve the estimates of
the parameters. The results from Table V also hint at the
importance of the choice taken for the trial function, since
a priori it is not known which form of W (|x‖|) will result
in a cost function, χ (P), that has a deep and well-defined
minimum, in contrast to many local minima of comparable
depths.

It is also interesting to note that the results obtained for
the multiangle noisy case (Table V) seem to be more accurate
than those for the corresponding multiangle non-noisy case
(Table IV). However, here it is important to recall that
significantly more points are used in the inversion in the former
than in the latter case, and we speculate that this could be the
main reason for the improvement.

E. Computational cost of the inversion scheme

In principle, an inversion scheme, similar to the one
proposed in this work, could be based on one of the
rigorous simulation approaches that recently have become
available to calculate light scattering from two-dimensional

TABLE V. Same as Table III, but now the reconstruction is
based on several data sets obtained for the polar angles of incidence
θ0 = 1.6◦, 25.3◦, and 50.2◦. The data sets with the multiplicative
5% standard deviation Gaussian white noise data added to them, on
which the reconstructions are based, are depicted as open symbols in
Fig. 9(b).

δ� (nm) a� (nm) ε� γ � Comments

15.843 158.694 – – –
15.822 158.863 2.669 – Fig. 9(b)
16.866 145.591 – 1.749 –
17.050 140.664 2.730 1.675 –
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randomly rough surfaces [6,7,14]. However, for such an
inversion scheme to be practically relevant, it is has to be
numerically efficient, since during the inversion process, the
forward-scattering problem has to be solved for a large set
of parameters. From this perspective, the rigorous numerical
simulation approaches mentioned previously fall short since
they typically require days of computer time, or more, to run
for just one set of parameters.

In contrast, the phase perturbation theoretical approach to
the forward scattering problem that we base our inversion
scheme on is computationally efficient. For instance, for an
angular resolution of 1◦, it takes less than 2 s to obtain the
mean DRC in the plane of incidence for one set of surface
parameters (and one angle of incidence). Furthermore, the
CPU times it took to perform the four inversions whose results
are given in Table II were 25 s and 140 s when reconstructing
2 and 4 parameters, respectively (initial values as in Sec. V B).
The remaining two inversions required CPU times somewhere
in between the two previously given CPU times. All reported
computer CPU times are based on the use of a single computer
core on an Intel i7 960 CPU operating at 3.20 GHz.

Even if such CPU times do depend strongly on the angular
resolution of the data set used in the inversion, the amount of
noise that it contains, and the initial values from which the
reconstruction is started, these numbers for the computational
cost do illustrate that the proposed inversion method is rather
quick to perform; this, together with its robustness, should
make it useful in practical situations.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown that second-order phase pertur-
bation theory can be used to model the incoherent scattering of
light by a two-dimensional randomly rough dielectric surface
and to calculate the mean differential reflection coefficient
for such a surface. As a result it has been expected that it
should be an effective tool for the inversion of light-scattering
data to obtain statistical properties of a random surface on
which the mean differential reflection coefficient depends.
This expectation has been borne out for weakly rough two-
dimensional randomly rough dielectric surfaces. Together with
several parametrized forms for the normalized-surface-height
autocorrelation function W (|x‖|), namely an exponential, a
Gaussian, and a stretched exponential, and the minimization
of a cost function with respect to the parameters defining
these forms, phase perturbation theory has been used in this
paper to determine W (|x‖|), the rms height of the surface,
the transverse correlation length of the surface roughness, the

dielectric constant of the scattering medium when it was not
known in advance, as well as the exponent of the stretched
exponential. The function W (|x‖|) has been reconstructed quite
accurately. The agreement between the reconstructed values
of δ, a, and ε and the input values of these parameters is
gratifyingly satisfactory.

This agreement remains very good when significant mul-
tiplicative Gaussian white noise is included in the input data.
When simulated data for multiple angles of incidence are used
in the inversion scheme, it is found that in the absence of
noise in the input data the quality of the reconstructions is
slightly poorer than when only a single angle of incidence is
used. However, when noise is introduced into the input data
the use of results obtained from multiple angles of incidence
yields slightly better reconstructions than when data from only
a single angle of incidence are used. The reasons for this
behavior of the reconstructions is not understood, and deserve
further study.

An investigation of the computational cost of the inversion
approach developed here shows that it is quite computationally
efficient compared to the several orders of magnitude higher
computational cost of carrying out the inversions by the use
of scattering data obtained by rigorous simulations. The CPU
times required for carrying out an inversion calculation using
our approach for a given angular resolution, one set of surface
parameters, and a single angle of incidence, namely seconds,
are short enough that this approach can be useful in practical
situations.

The inversion approach developed here needs to be explored
to determine ranges of roughness, wavelength, and dielectric
parameters for which it gives reliable results. Error estimates
for the reconstructed values of the roughness and material
parameters sought should be obtained. The use of more
flexible trial functions for W (|x‖|) in reconstructions should
be explored, as well as the use of more than one wavelength.
Reflectivity data can serve as the basis of an inversion scheme
based on phase perturbation theory, and its utility for this
purpose should be examined. This issue will be explored in
subsequent work.
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APPENDIX: DERIVATION OF EQUATION (16)

Even if we in this work are concerned with a scattering geometry where the substrate is a dielectric, this assumption will not
be made in this appendix. Instead, the dielectric function of the substrate will here be assumed complex, so that the substrate can
be either a dielectric or a metal. This generalization is done in order to facilitate future reference to the results of this appendix,
and because the expressions can be derived simultaneously for a dielectric or metallic substrate with little extra effort.

The starting point for our derivation of Eq. (16) is Eqs. (12), (15), and (16)–(18) of Ref. [15], and the definition of the scattering
matrix S(q‖|k‖) in terms of the matrix of the scattering amplitudes R(q‖|k‖), Eq. (13). From these results we obtain for the ss

element of the scattering matrix the expansion

Sss(q‖|k‖) = S(0)
ss (q‖|k‖) − iS(1)

ss (q‖|k‖) − 1
2S(2)

ss (q‖|k‖) + · · · , (A1)
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where the superscript denotes the order of the corresponding term in the surface profile function ζ (x‖). The coefficient S(0)
ss (q‖|k‖)

is given by

S(0)
ss (q‖|k‖) = (2π )2δ(q‖ − k‖)

α0(k‖) − α(k‖)

α0(k‖) + α(k‖)

= (2π )2δ(q‖ − k‖)

(
α0(q‖) − α(q‖)

α0(q‖) + α(q‖)

)1/2(
α0(k‖) − α(k‖)

α0(k‖) + α(k‖)

)1/2

= (2π )2δ(q‖ − k‖)

[
α2

0(q‖) − α2(q‖)
]1/2[

α2
0(k‖) − α2(k‖)

]1/2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

= (2π )2δ(q‖ − k‖)
(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]
, (A2a)

where the functions α0(q‖) and α(q‖) are defined by Eqs. (8) and (18), respectively. The coefficient S(1)
ss (q‖|k‖) is found to be

S(1)
ss (q‖|k‖) = 2(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]
(q̂‖ · k̂‖)ζ̂ (q‖ − k‖), (A2b)

while the coefficient S(2)
ss (q‖|k‖) is given by

S(2)
ss (q‖|k‖) = − 4α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

{
− 1

2
(1 − ε)

(
ω

c

)2

[α(q‖) + α(k‖)](q̂‖ · k̂‖)ζ̂ (2)(q‖ − k‖)

+ (1 − ε)2

ε

(
ω

c

)2 ∫
d2p‖
(2π )2

ζ̂ (q‖ − p‖)(q̂‖ × p̂‖)3α(p‖)(p̂‖ × k̂‖)3ζ̂ (p‖ − k‖)

}

+ 4α
1/2
0 (q‖)α1/2

0 (k‖)(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

∫
d2p‖
(2π )2

ζ̂ (q‖ − p‖)

×
{

1 − ε

ε
(q̂‖ × p̂‖)3

α2(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 + (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖)

= −4(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

×
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

{
− 1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + 1 − ε

ε
(q̂‖ × p̂‖)3α(p‖)(p̂‖ × k̂‖)3

− 1 − ε

ε
(q̂‖ × p̂‖)3

α2(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 − (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖)

= −4(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

×
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

{
− 1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (1 − ε)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3

− (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖). (A2c)

In obtaining this expression we have used the result that

ζ̂ (2)(q‖ − k‖) =
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)ζ̂ (p‖ − k‖). (A3)
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When we substitute the results given by Eqs. (A2) into Eq. (A1) we find that through terms of second order in the surface
profile function, Sss(q‖|k‖) takes the form

Sss(q‖|k‖) = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)s]

{
(2π )2δ(q‖ − k‖) sgn(q̂‖ · k̂‖) − 2iα

1/2
0 (q‖)

×α
1/2
0 (k‖)|q̂‖ · k̂‖|ζ̂ (q‖ − k‖) − 2α

1/2
0 (q‖)α1/2

0 (k‖) sgn(q̂‖ · k̂‖)
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

[
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖)

+ (ε − 1)(q̂‖ × p̂‖)3
α0(p‖)α(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 − (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

]
ζ̂ (p‖ − k‖)

}
. (A4)

This expression for Sss(q‖|k‖) is manifestly reciprocal; i.e., it satisfies Eq. (14b). Moreover, for reasons of later convenience, in
writing Eq. (A4) we have factored out a phase sgn(q̂‖ · k̂‖), where sgn(·) denotes the sign function defined by x = sgn(x)|x|.

We next express Eq. (A4) in the form of a Fourier integral:

Sss(q‖|k‖) = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

{
1 − 2iα

1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|ζ (x‖)

− 2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)
∫

d2u‖ exp [−i(p‖ − k‖) · u‖]ζ (x‖)ζ (x‖ + u‖)

}
, (A5)

where

F (q‖|p‖|k‖) = sgn(q̂‖ · k̂‖)

{
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

dp(p‖)
(p̂‖ × k̂‖)3

− (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

ds(p‖)

}
, (A6)

and the functions dp(p‖) and ds(p‖) are defined in Eq. (17). One notes from Eq. (A6) that F (q‖|p‖|k‖) = F (−q‖|p‖|k‖) so that
the expression inside the curly brackets in Eq. (A5) is a continuous function of the lateral scattering wave vector q‖ (and in
particular at q‖ = 0).

From Eq. (A5) we find that

〈Sss(q‖|k‖)〉 = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

×
{

1 − 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|)
}

(A7a)

∼= sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

× exp

[
−2δ2α

1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|)
]
. (A7b)

It follows that

|〈Sss(q‖|k‖)〉|2 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp [−2M(q‖|k‖)]
∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)], (A8)

where

2M(q‖|k‖) = 4δ2α
1/2
0 (q‖)α1/2

0 (k‖) Re
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|). (A9)

We next find that

〈|Sss(q‖|k‖)|2〉 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

{
1 − 2iα

1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|〈ζ (x‖) − ζ (x ′‖)〉

+ 4α0(q‖)α0(k‖)(q̂‖ · k̂‖)2〈ζ (x‖)ζ (x ′‖)〉 − 2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

∫
d2u‖ [exp [−i(p‖ − k‖) · u‖]

×F (q‖|p‖|k‖)〈ζ (x‖)ζ (x‖ + u‖)〉 + exp[i(p‖ − k‖) · u‖]F ∗(q‖|p‖|k‖)〈ζ (x ′‖)ζ (x ′‖ + u‖)〉]
}
. (A10)
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From this result we obtain

〈|Sss(q‖|k‖)|2〉 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2 ∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

×[1 + 4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|x‖ − x ′‖|) − 2M(q‖|k‖)]

∼=
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp[−2M(q‖|k‖)]
∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

× exp[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|x‖ − x ′‖|)]. (A11)

Thus, we have finally

〈|Sss(q‖|k‖)|2〉 − |〈Sss(q‖|k‖)〉|2 = S

∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp[−2M(q‖|k‖)]
∫

d2u‖ exp [−i(q‖ − k‖) · u‖]

×{exp[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|u‖|)] − 1}. (A12)

The substitution of this result into Eq. (15) yields Eq. (16).

[1] S. Chakrabarti, A. A. Maradudin, and E. R. Méndez, Re-
construction of the power spectrum of a randomly rough
dielectric surface from reflectivity data, Phys. Rev. A 88, 013812
(2013).

[2] P. J. Chandley, Determination of the autocorrelation function of
height on a rough surface from coherent light scattering, Opt.
Quantum Electron. 8, 329 (1976).

[3] E. Marx and T. Vorburger, Direct and inverse problems for light
scattered by rough surfaces, Appl. Opt. 29, 3613 (1990).

[4] W. T. Welford, Optical estimation of statistics of surface
roughness from light scattering measurements, Opt. Quantum
Electron. 9, 269 (1977).

[5] A. G. Navarrete Alcala, E. I. Chaikina, E. R. Mendez, T. A.
Leskova, and A. A. Maradudin, Specular and diffuse scattering
of light from two-dimensional randomly rough metal surfaces:
experimental and theoretical results, Wave. Random Complex
19, 600 (2009).

[6] I. Simonsen, A. A. Maradudin, and T. A. Leskova, The scattering
of electromagnetic waves from two-dimensional randomly
rough perfectly conducting surfaces: The full angular intensity
distribution, Phys. Rev. A 81, 013806 (2010).

[7] I. Simonsen, Optics of surface disordered systems: A random
walk through rough surface scattering phenomena, Eur. Phys. J.
Special Topics 181, 1 (2010).

[8] T. A. Leskova, P. A. Letnes, A. A. Maradudin, T. Nordam,
and I. Simonsen, The scattering of light from two-dimensional
randomly rough metal surfaces, Proc. SPIE 8172, 817209
(2011).

[9] SLATEC Common Mathematical Library, Version 4.1,
www.netlib.org/slatec/ (also see http://people.sc.fsu.edu/∼
jburkardt/f_src/slatec/slatec.html).

[10] K. Levenberg, A method for the solution of certain problems in
least squares, Q. Appl. Math. 2, 164 (1944).

[11] D. W. Marquardt, An algorithm for least squares estimation of
nonlinear parameters, J. Soc. Ind. Appl. Math. 11, 431 (1963).

[12] T. Nordam, P. A. Letnes, and I. Simonsen, Numerical simula-
tions of scattering of light from two-dimensional surfaces using
the reduced Rayleigh equation, Front. Phys. 1, 8 (2013).

[13] G. C. Brown, V. Celli, M. Haller and A. Marvin, Vector theory
of light scattering from a rough surface: unitary and reciprocal
expansions, Surf. Sci. 136, 381 (1984).

[14] I. Simonsen, A. A. Maradudin, and T. A. Leskova, The Scattering
of Electromagnetic Waves from Two-Dimensional Randomly
Rough Penetrable Surfaces, Phys. Rev. Lett. 104, 223904 (2010).

[15] A. R. McGurn and A. A. Maradudin, Perturbation theory
results for the diffuse scattering of light from two-dimensional
randomly rough metal surfaces, Waves in Random Media 6, 251
(1996).

043829-15

http://dx.doi.org/10.1103/PhysRevA.88.013812
http://dx.doi.org/10.1103/PhysRevA.88.013812
http://dx.doi.org/10.1103/PhysRevA.88.013812
http://dx.doi.org/10.1103/PhysRevA.88.013812
http://dx.doi.org/10.1007/BF00619546
http://dx.doi.org/10.1007/BF00619546
http://dx.doi.org/10.1007/BF00619546
http://dx.doi.org/10.1007/BF00619546
http://dx.doi.org/10.1364/AO.29.003613
http://dx.doi.org/10.1364/AO.29.003613
http://dx.doi.org/10.1364/AO.29.003613
http://dx.doi.org/10.1364/AO.29.003613
http://dx.doi.org/10.1007/BF00619527
http://dx.doi.org/10.1007/BF00619527
http://dx.doi.org/10.1007/BF00619527
http://dx.doi.org/10.1007/BF00619527
http://dx.doi.org/10.1080/17455030903033208
http://dx.doi.org/10.1080/17455030903033208
http://dx.doi.org/10.1080/17455030903033208
http://dx.doi.org/10.1080/17455030903033208
http://dx.doi.org/10.1103/PhysRevA.81.013806
http://dx.doi.org/10.1103/PhysRevA.81.013806
http://dx.doi.org/10.1103/PhysRevA.81.013806
http://dx.doi.org/10.1103/PhysRevA.81.013806
http://dx.doi.org/10.1140/epjst/e2010-01221-4
http://dx.doi.org/10.1140/epjst/e2010-01221-4
http://dx.doi.org/10.1140/epjst/e2010-01221-4
http://dx.doi.org/10.1140/epjst/e2010-01221-4
http://dx.doi.org/10.1117/12.899304
http://dx.doi.org/10.1117/12.899304
http://dx.doi.org/10.1117/12.899304
http://dx.doi.org/10.1117/12.899304
http://www.netlib.org/slatec/
http://people.sc.fsu.edu/~jburkardt/f_src/slatec/slatec.html
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.3389/fphy.2013.00008
http://dx.doi.org/10.3389/fphy.2013.00008
http://dx.doi.org/10.3389/fphy.2013.00008
http://dx.doi.org/10.3389/fphy.2013.00008
http://dx.doi.org/10.1016/0039-6028(84)90619-8
http://dx.doi.org/10.1016/0039-6028(84)90619-8
http://dx.doi.org/10.1016/0039-6028(84)90619-8
http://dx.doi.org/10.1016/0039-6028(84)90619-8
http://dx.doi.org/10.1103/PhysRevLett.104.223904
http://dx.doi.org/10.1103/PhysRevLett.104.223904
http://dx.doi.org/10.1103/PhysRevLett.104.223904
http://dx.doi.org/10.1103/PhysRevLett.104.223904
http://dx.doi.org/10.1088/0959-7174/6/3/006
http://dx.doi.org/10.1088/0959-7174/6/3/006
http://dx.doi.org/10.1088/0959-7174/6/3/006
http://dx.doi.org/10.1088/0959-7174/6/3/006



