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Surface scattering of neutral helium beams created by supersonic expansion is an established technique for
measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used
in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically
0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures
with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example,
for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to
high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane
structure with a two-dimensional square lattice of 100 × 100 circular holes. The nominal period and the hole
radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with
helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam
characteristics. It is demonstrated how to successfully extract values from the experimental data for the average
period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.
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I. INTRODUCTION

Helium (He) atom scattering is a well-established tech-
nique in surface science. Elastic helium scattering is used
to measure the structural properties of surfaces and thin
film growth through diffraction and step height interference
measurements [1–3]. Inelastic helium scattering is used to
measure surface dynamics properties such as diffusion and
vibrations [4–6]. The advantage of helium scattering lies in the
very low energy of the beam (typically less than 0.1 eV) and
the fact that the beam is neutral, which means that it is possible
to investigate insulating and/or fragile surfaces and adsorbates.
The small wavelength of the helium beam (less than 0.1 nm)
means that it is very well suited for investigating structures on
the atomic scale. Larger scale structures put severe demands on
the beam collimation and angular resolution of the diffraction
system. The largest period of a surface periodic structure that
has been resolved using helium scattering is, to our knowledge,
a surface reconstruction of α-quartz (0001) with a period of
5.55 nm [7]. For reviews of the use of helium atom surface
scattering in surface science see Refs. [8,9].

Transmission-helium-atom diffraction has so far been used
only in a limited number of experiments. This is mainly due to
the fact that the low energy of the helium atoms means that they
do not penetrate any solid materials. Furthermore, the He atom
is typically repelled 2–3 Å above the first atomic layer of the
surface due to the repulsive interaction between the closed He
electron shell and the surface charge density of the solid. Hence
transmission experiments can only be performed on porous
structures with sufficiently large openings. Experiments have
been carried out on grating structures with a period of up to
200 nm [10,11], and various Fresnel diffraction and focusing
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experiments have been done using zone plates and a Poisson
spot aperture [12–15]. In this paper we present an experiment
carried out on a two-dimensional lattice structure: a photonic-
crystal-membrane structure with a nominal period of 490 nm
and a hole radius of 100 nm.

Photonic crystals have a number of potential applica-
tions [16]. They have been demonstrated as building blocks in
integrated circuits [17], can be used as mirrors in applications
requiring very high optical power or operating temperatures
above a couple of hundred degrees Celsius [18], and are applied
in the fabrication of quantum dots and quantum light sources
applicable in quantum computing [19]. The commercial use of
photonic crystals is currently limited to transducer elements in
biosensors [20] and to maximize the light extraction efficiency
of light-emitting diodes (LED) [21]. The particular type
of photonic crystal structure investigated in this paper was
developed for the detection of single molecules [22], and
so it was particularly important to know if it was really
transparent to atoms. This can be difficult to determine from
a scanning-electron-microscope image, since the electrons
may still penetrate nanometer-thick residue layers making the
sample appear transparent in a region where it is not transparent
for atoms.

II. EXPERIMENTAL SETUP

The photonic-crystal-membrane sample characterized in
these experiments was composed of an array of through holes
in a 700 μm × 700 μm free-standing membrane, suspended in
a silicon frame. The thickness of the membrane was 150 nm
and made of silicon nitride and silicon oxide thin films (50 nm
Si3N4—50 nm SiO2—50 nm Si3N4). The holes were made
using electron beam lithography combined with reactive ion
etching. The pattern consisted of a square array of 100 × 100
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FIG. 1. Scanning-electron-microscopy image of the photonic
crystal sample. The structure consists of 100 × 100 holes on a square
grid with a period of 490 nm. The holes were circular each with a
diameter of 200 nm.

circular holes. Each hole had a radius of 100 nm and the grid
had a period of 490 nm, giving a 50 μm × 50 μm patterned
area containing a total of 10 000 holes. A scanning-electron-
microscopy image of the crystal is presented in Fig. 1. For a
detailed description of the preparation see Ref. [22].

The diffraction measurements were carried out using the
molecular beam apparatus MAGIE [23]. A diagram of the
experimental setup is presented in Fig. 2. The helium beam was
created by supersonic expansion through a 10-μm-diameter
nozzle and collimated with a 400-μm-wide circular skimmer.
Measurements were carried out using both a room temperature
and a cooled beam, both with a stagnation pressure of
91 bar. The former had a beam temperature of (296 ± 3) K,
corresponding to a wavelength of 0.57 Å with a spread of
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FIG. 2. Top-view diagram of the experimental setup. The beam
is created by supersonic expansion through a nozzle and the central
part of the beam is selected by a conically shaped aperture (skimmer).
Apertures AP1 and AP2 further collimate the beam. The sample is
inserted in the beam line and the diffraction pattern is obtained by
scanning the detector with a vertical slit horizontally across the pattern
while the sample is kept still. See main text for further details.

±0.015 Å. The cooled beam had a beam temperature of
(126 ± 3) K, corresponding to a wavelength of 0.87 Å with
a spread of ±0.015 Å. This is a relatively large temperature
variation, compared to standard values obtained by other
groups. This is due to some issues with the temperature
regulation at the time of the experiments. However, it has no
influence on the results. The uncertainty on the wavelength
is determined by this temperature fluctuation, not by the
velocity spread of the beam. The photonic crystal sample was
placed in the beam line at a distance zss = (1528 ± 5) mm
after the skimmer. A 10-μm-wide vertical slit was placed a
distance z = (1044 ± 5) mm after the sample just in front of
the detector. This slit was then moved horizontally in steps
of approximately 5.7 mm along the x̂1 direction to scan the
diffraction pattern.

Care was taken to align the sample so that it was
perpendicular to the incident beam and to align one of the
axes of the photonic crystal with the scan direction x̂1. We
estimate that the alignment is precise to within ±0.5◦. To
test the overall configuration the sample was rotated 45◦
and 90◦ around its normal from the initial alignment and
additional room temperature measurements were performed.
To reduce background contributions to the measured signal,
two collimating apertures were inserted before and after the
sample at distances of (566 ± 5) mm (AP1, 400 μm in
diameter) and (282 ± 5) mm (AP2, 200 μm in diameter)
from the sample. The second aperture AP2 was moved along
with the slit in front of the detector when scanning. Even
with these precautions the signal-to-background ratio was
still not optimal. For the different measurements performed
at 126 K, the maximum count rate was (610 ± 10) s−1 and the
minimum count rate was (441 ± 3) s−1, which corresponds
to the strength of the fundamental peak and the background,
respectively. The final diffraction patterns presented here were
made by averaging over a total of 10 individual scans across
the diffraction pattern.

III. THE DIFFRACTION MODEL

A. Diffraction grating

Since the distances between the source and the sample and
between the sample and the detector are very large compared
to the size of the grid and the wavelength of the beam, the
Fraunhofer approximation is valid and we can model the
propagation of the helium beam as a scalar wave. We look
at the propagation of the scalar beam from a plane sample
to a scanning plane parallel to the sample. In the Fraunhofer
approximation, the diffracted field at position x behind a single
circular hole centered at position x′ can be described by [24]

ψcirc(x|x′) = 4πA

ikz
eikzei kr2

2z

[
J1(kwr/z)

kwr/z

]
ψinc(x′), (1a)

where the in-plane distance between the center of the hole and
the observation position is defined as

r = |x‖ − x′
‖|. (1b)

In this equation k = 2π/λ is the incident wave number, λ

is the wavelength, w is the radius of the hole, z = (x3 − x ′
3) is

the distance from the sample plane to the scanning plane, J1(·)
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denotes the Bessel function of the first kind and order one, A

is the area of the hole, and ψinc(x′) is the incident field at the
sample. A position in-plane with a normal in the propagation
direction x̂3 is denoted x‖ = (x1,x2,0). The incident field
ψinc(x′) changes across the sample, but we assume that it is
approximately constant across a single hole.

To model the result of the diffraction grating we take the
superposition of the fields found using Eq. (1) for each hole in
the two-dimensional grid of N × N holes:

ψ(x) =
∑

n

ψcirc(x|x′
n), (2)

where n = (n1,n2) is the hole coordinate in the grid (ni ∈
[1,N ]), and x′

n is the hole position.
To relate the field ψ(x) to the measured quantity we glide

a slit over the intensity in the scanning plane I (x) = |ψ(x)|2
and integrate over the intensity inside the slit at each position.
This leads to a quantity similar to the one captured in the
experiment:

Isim(xd ) =
∫ xd+ ws

2

xd− ws
2

dx1

∫ hs

−hs

dx2{|ψ(x)|2}
∣∣∣∣
x3=z

, (3)

where xd is the center position of the slit along the scanning
direction x̂1, and ws and hs are the width and the height of the
scanning slit, respectively.

B. Source description

The supersonic source gives rise to a beam of helium atoms
with a narrow speed distribution which, together with the beam
collimation, leads to the high spatial (transverse) coherence
necessary to obtain a diffraction pattern [25]. In principle, the
speed distribution will cause the diffraction pattern to “smear
out” due to the difference in wavelength; however, in the
experimental results that we present, the speed distribution
is so narrow that this effect is not very prominent. A change
in wavelength equal to the spread given in Sec. II shifts the
position of the first-order diffraction peaks by approximately
3 μm. Hence, in the following, the beam is assumed to be
characterized by the wavelength that corresponds to its center
energy (or speed).

To describe the helium source used in the experiments
we adapt the virtual source model that was introduced by
Beijerinck and Verster to describe supersonic expansions [26].
Here, the atoms initially collide until they eventually reach the
molecular flow regime at a distance from the nozzle referred
to as the quitting surface. When this happens, the individual
trajectories can be traced back to a plane that is perpendicular to
the mean direction of travel and where the width of the spatial
distribution function of the trajectories is at a minimum—the
virtual source. This spatial distribution can be fitted with one
or two Gaussian functions [26,27].

Within the virtual source model, the incident beam is
considered as an incoherent and weighted superposition of
spherical waves (point sources) located approximately in the
skimmer plane. Here, the weight (or amplitude) used in
the superposition is taken to be a Gaussian function whose
width, called σ below, mimics the half width of the skimmer.
Mathematically the incident field at position x′ can therefore

be written in the form

ψinc(x′) =
∫

d2x∗
‖

e
− x∗‖

2

2σ2

√
2πσ 2

eik|x′−x∗|

|x′ − x∗|e
iφ(x∗

‖), (4)

where x∗
‖ denotes a position in the skimmer plane, with the

center of the skimmer opening at the origin. The integral
in Eq. (4) is performed over the entire skimmer plane, but
numerically we introduce a cutoff after the Gaussian factor
becomes small (after a few standard deviations). In Eq. (4)
φ(x∗

‖) represents a random-phase function associated with
the spherical wave at x∗

‖. This function is assumed to be an
uncorrelated stochastic variable that is uniformly distributed
on the interval [0,2π ). The incident amplitude has been set to
one in Eq. (4).

To perform simulations using the incident field, the integral
in Eq. (4) has to be evaluated numerically and the results that
depend on it are averaged over an ensemble of realizations of
the random-phase function.

It is shown in Sec. IV that the form of the incident field
given by Eq. (4) is sufficient to explain the measured results.

C. Fit to experimental data

A rescaling is necessary to compare the results of the
diffraction model described in Secs. III A and III B with the
experimental data. The experimental data are captured as
counts per second, which we must scale the simulation data to
fit. The experimental data also contains a strong background
signal. To take these effects into account we have fitted the
results from the diffraction model to the experimental data
using two variables: one for scaling the overall intensity to
match the source intensity α and one for shifting the results
and taking the background into account I0,

〈I (xd )〉 = α〈Isim(xd )〉 + I0. (5)

Here 〈·〉 is the mean over several realizations of the random-
phase function φ(x∗) in Eq. (4). The best values for α and
I0 were then found by a least-squares fit of I (xd ) to the
experimental data Iexp(xd ). The fit was performed using the
error norm

∥∥Iexp(xd ) − 〈I (xd )〉∥∥2 =
√√√√∑

xd

|Iexp(xd ) − 〈I (xd )〉|2
σ 2

exp

, (6)

where σexp is the standard error of the experimental measure-
ments.

IV. RESULTS AND DISCUSSION

Helium-diffraction-intensity measurements in transmission
were performed for beam temperatures 126 K and 296 K,
and the results are presented as circles in Figs. 3(a) and 3(b),
respectively. The presented measurements are the arithmetic
mean of 10 independent horizontal detector scans (x1 scans)
for each beam temperature. The reason for performing the
measurements in this way was to prevent slow temperature
variations in the laboratory from influencing the results. We
have used a similar approach previously [14]. The error bars
reported for each experimental data point correspond to the
standard deviation on the mean calculated for each point.
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FIG. 3. Measured-helium-diffraction intensities (symbols) trans-
mitted through the sample depicted in Fig. 1 as a function of the
horizontal detector position xd when using a vertical slit of width
ws = 10 μm in front of the detector. The temperatures of the incident
helium beam were (a) 126 K and (b) 296 K. The sample was aligned
so that one of the lattice vectors of the square grating was parallel
with x̂1. The solid lines represent the best fits obtained on the basis
of Eqs. (3), (5), and (6) when assuming the experimental parameters
presented in Table I. The source widths σ for the two temperatures
were (a) 77 μm and (b) 52 μm. The simulation results presented are
the mean of the results for 1000 source realizations.

The measurements presented in Fig. 3 show pronounced
diffraction patterns. The count rates for the zeroth- and
first-order diffraction peaks are all more than 10 % higher than
the background level. The observed diffraction patterns behave
as expected: They are symmetric around the location of the fun-
damental order peak located at x1 = 0, and the positions and
widths of the diffraction peaks vary with beam temperature.
In particular, one observes that when the temperature of the
incident beam is increased, the distance between the positions
of the fundamental and the first diffractive orders and the
widths of the peaks both become smaller. Since the wavelength
associated with the beam of incidence is inversely proportional
to the temperature of the beam (see Table I), such behavior is
expected from the grating equation from physical optics [28].
We have checked that for the geometrical parameters used
in the design of the experimental setup, the location of the
first-order diffraction peaks seen in Fig. 3 are observed at
positions that are consistent with the predictions obtained from
the grating equation for both beam temperatures.

TABLE I. Parameters used for the simulation results shown in
Figs. 3, 4, 5, and 6. All of the parameters are based on measurements
on the experimental setup.

Parameter 126 K 296 K

Wavelength λ (Å) 0.87 0.57
Source-to-sample distance z (m) 1.5284
Skimmer radius (mm) 200
Hole radius w (nm) 100
Hole periodicity p (nm) 490
Sample to scan slit distance zss (m) 1.044
Slit size ws × hs 10 μm × 1 mm

We now turn to the modeling of the diffraction patterns
that were obtained experimentally, which is performed on
the basis of the virtual source diffraction model outlined in
Sec. III [see Eqs. (3)–(6)]. The solid lines that appear in Fig. 3
represent the predictions of the diffraction model for the two
beam temperatures considered. These results were obtained by
averaging the results of 1000 realizations of the source. In order
to produce these simulation results, the geometrical parameters
characterizing the experimental setup, the sample, and the
temperature (and wavelength) of the incident beam were
assumed to be fixed (based on the experimental parameters).
An overview of these parameters and their values is presented
in Table I.

It was found that the diffraction model produces diffraction
patterns whose forms are sensitive to the width of the virtual
source σ [see Eq. (4)]. The widths of the diffraction peaks
strongly depend on the shape of the incoming field. By
changing the width σ in the source model, the widths of
the modeled diffraction peaks change. A wider Gaussian
envelope used for the incident beam (a larger value for σ )
will broaden the diffraction peaks. In principle, the source
width can be measured experimentally [29,30]. However, such
measurements typically yield significant uncertainty on the
source width. Therefore, we instead decided to determine this
parameter by fitting the diffraction model to the experimental
diffraction data based on Eq. (5) and the cost function Eq. (6).
This means that the free parameters used in the diffraction
model were the source width σ , the amplitude α, and the
background intensity I0 [see Eq. (5)]. In this way the diffraction
model was fitted to the measured data sets with respect to the
parameter set {σ,α,I0}. We discuss the robustness of the fit at
the end of this section.

From the results presented in Fig. 3 it is observed that
the diffraction model from Sec. III is capable of representing
the measured diffraction patterns well, when it comes to the
positions of the diffraction peaks, their widths, and the relative
amplitudes of the peaks. The widths of the virtual sources were
determined in the fitting procedure to be 77 μm [Fig. 3(a)] and
52 μm [Fig. 3(b)] for the beam temperatures 126 K and 296 K,
respectively.

As expected the values we obtained for σ when producing
the numerical results (solid lines) shown in Fig. 3 do agree
well with values reported previously in the literature for
cooled and room temperature He beams [29,30]. Note that
the authors of Refs. [29] and [30] use FWHM (full width
at half maximum) values to specify the width of the virtual
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FIG. 4. Comparison of the measured transmission intensities for
a helium beam temperature of 296 K. The sample’s rotation angle
around the x3 axis was either φ = 0° (circles) or φ = 90° (squares).
The former data set is identical to the one presented in Fig. 3. For
reasons of clarity, the latter data set was shifted downwards by 50
counts.

source, while we use the standard deviation σ to represent
this width. These two measures for a Gaussian are related
via FWHM = 2

√
2 ln 2σ . The measurements reported in these

references were conducted using a zone plate to directly
image the virtual source. The beam temperatures used in
these two studies were 125 K and 320 K, which are close
to the temperatures used in our experiments and allow for a
comparison. For the measurements done at room temperature,
the size of the virtual source is usually described as the sum of
two Gaussian functions with different widths. The size of the
virtual source for a beam of temperature 320 K was reported in
Ref. [29]. If the results from Ref. [29] are fitted using a single
Gaussian in order to more closely resemble the model used in
this paper, one obtains σ = (50 ± 10) μm. This value should
be compared to the result σ = 52 μm that we report for the
beam temperature 296 K obtained using the diffraction model
Eqs. (3)–(5) and the experimental data reported in Fig. 3(b).

For a 125 K beam, the size of the virtual source is described
with just one Gaussian. The lower level value reported in
Ref. [30] corresponds to σ = (100 ± 10) μm. This is larger
than the value σ = 77 μm we obtained in the modeling for
the beam temperature 126 K [Fig. 3(a)]. We speculate that this
may be due to the fact that the two measurements were not
obtained at exactly the same temperature.

Since the grating in our sample is supposed to be square,
a rotation of the sample around the x3 axis by an angle of
90◦ should, in principle, not alter the diffraction pattern that it
produces. In Fig. 4 we present a comparison of two measured
diffraction patterns for a beam temperature of 296 K (room
temperature); the top data set corresponds to the original
position of the sample (φ = 0°) and the lower data set was
collected after rotating the sample to φ = 90° in the sample
plane. The latter data set was shifted downward by 50 counts
per second for reasons of clarity. It is observed that the two
data sets presented in Fig. 4 are consistent.

The diffraction patterns are expected to change relative to
what is presented in Fig. 4 if the sample is rotated an angle

φ from the scan direction if this angle is not a multiple of
90°. In Fig. 5 the experimentally obtained mean scan-curve
corresponding to a rotation angle of 45◦ is presented. From
this figure it is apparent that the obtained diffraction pattern
is different from those presented in Fig. 4, which correspond
to a sample rotation of φ = 0° and 90°. The measured data
set shown in Fig. 5 does not clearly display a diffraction
pattern with several peaks. This is at least the case with a
scan interval along the x1 axis from −500 mm to 500 μm. A
square grid will produce a square diffraction pattern and the
widths of the diffraction peaks can depend on the rotation of
the sample. If the scanning direction is not properly aligned
along one of the axes of the grid, the diffractive orders that
were previously captured at the same position by the scanning
slit might move slightly and the peaks might become more
diffuse. Depending on the rotation angle φ, the scanning slit
may pick up contributions from different diffraction peaks at
different locations.

The data measured for the rotation angle φ = 45° are
consistent with what is expected theoretically. To see this, we
present in Fig. 5 the prediction of the virtual source diffraction
model as a solid line, where we have rotated the result obtained
on the basis of Eq. (2) in plane by 45◦ before performing the
scan along x̂1 described by Eq. (3). Good agreement is found
between the measured and simulated data. It is important
to stress that in obtaining the theoretical data, the only free
parameter was a small adjustment in the background signal
I0. Since the source used in obtaining the measured results
presented in Figs. 3(b) and 5 is the same, the values for the
source parameters {σ,α} should be the same. However, the
value for the background I0 is known to vary over time. As
the measurements at different angles were performed several
days apart, this value is expected to change. Therefore, the
values for {σ,α} obtained when producing the solid line
in Fig. 3(b) were assumed when producing the theoretical
prediction (solid line) presented in Fig. 5, with only a small
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FIG. 5. Same as Fig. 3(b), but the photonic crystal was rotated
an angle φ = 45◦ relative the scan direction. This is the orientation
between the two curves in Fig. 4. Parameters used for the simulation
is shown in Table I. The source parameters {σ,α} are the same as
were found for the fit shown in Fig. 3(b). The dashed simulation fit
also used the background I0 found previously, while the solid curve
uses an adjusted background.
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FIG. 6. Error norm shown for a large change in the source width
σ and the radius of the holes in the grid. Hole radius variation from
0 nm to half of the period between holes, and source width σ variation
from 0 μm to the radius of the skimmer opening. The other parameters
were held constant equal to the parameters in Table I for a beam
temperature of 126 K. The dashed lines indicate the parameters used
for the simulation shown in Fig. 3(a) (w = 100 nm, σ = 77 μm).

adjustment to I0. The dashed line in Fig. 5 shows the
simulation when taking all parameters in the set {σ,α,I0} from
Fig. 3(b). The values for {σ,α} obtained by inversion of one
experimentally obtained scan-curve can be used to accurately
predict the results for other scan directions obtained by using
the same source setup. This testifies to the consistency and
usefulness of the approach.

We have explicitly demonstrated the usefulness of the vir-
tual source diffraction model for the purpose of representing,
interpreting and simulating neutral-helium-atom diffraction
through periodic structures. Central to the approach is the
determination of parameters that characterize the virtual source
and, potentially, properties of the sample that are not known
in advance. We now turn to the robustness and accuracy of the
determination of such parameters. To this end, we present in
Fig. 6 a contour plot of the cost function (or the error norm) (6)
for a large variation of the source width σ and the radius of
the holes. In obtaining these results the beam temperature was
assumed to be 126 K, the experimental data from Fig. 3(a) were
used, and the geometrical parameters of the experimental setup
were those of Table I. From the results presented in Fig. 6, a
well-defined region of parameter space is observed for which
the cost function is at a minimum. Moreover, this region also
encompasses the known values for the radius of the holes w

and the previously fitted value for the source width σ . The cost
function (the error) is also observed to be a smoothly varying
function of w and σ . This is at least the case for the region of
parameter space that we considered. Such behavior of the cost
function makes the determination of the unknown parameters
(like {σ,w}) easier.

To test the robustness of the optimization procedure, a
broader search with more free parameters was also performed
using the Nelder-Mead algorithm with adaptive parame-
ters [31]. Optimizations with respect to the source width σ ,
the hole radius, and the period of the grating were performed
successfully using the measured scan data from Fig. 3(a).
When starting the optimization from a large random simplex
covering the parameter space, we reliably found a minimum
in the cost function that corresponded to parameters that were
close to the values for the hole radius and the lattice constant
determined from scanning-electron-microscopy images (see
Fig. 1) and the source width σ determined previously using
a lower-dimensional parameter space. For instance, starting
from a large and randomly chosen initial simplex, a typical
fit was {σ,w,p} = {74 μm,105 nm,500 nm}. This is close
to the parameters used previously. One issue we encountered
in the optimization process was that the cost function was
rather flat around the minimum. Slight variations in the cost
function when only taking a few realizations of the source
made it hard to find exact parameters. The situation improved
when increasing the number of realizations used to calculate
the theoretical diffraction pattern, but at the expense of longer
simulation time. This leads us to conclude that the virtual
source diffraction model can be a viable tool for characterizing
the average properties of photonic crystals similar to the one
shown in Fig. 1, but that a higher number of source realizations
is needed in the modeling in order to obtain reliable parameter
retrival.

V. CONCLUSIONS AND OUTLOOK

Helium diffraction measurements from a photonic crystal
structure have been presented. The diffraction patterns mea-
sured are in excellent agreement with the theoretical results
obtained by including effects of a source of finite extension.
The model constructed to fit the experimental data could
be used as a future tool for extracting the parameters of
periodic gratings on the nanometer scale. Furthermore, the
model may be used to describe the behavior of helium beams,
which is important for a range of applications, including the
development of an efficient neutral helium microscope [32,33].
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