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The present work reports a general method for the calculation of the polarizability of a truncated sphere on
a substrate. A multipole expansion is used, where the multipoles are not necessarily localized in the center of
the sphere but can freely move on the revolution axis. From the weak formulation of the boundary conditions,
an infinite set of linear equations for the multipole coefficients is derived. To obtain this set, the interaction
between the island and the substrate is taken into account by the technique of image multipoles. For numerical
implementation, this set is truncated at an arbitrary multipole order. The accuracy of the method is judged
through the stability of the truncated sphere polarizability and the fulfillment of the boundary conditions, which
are demonstrated to be satisfied in large regions of the parameter space. This method brings an improvement
with respect to the Bedeaux cddé. M. Wind, J. Vlieger, and D. Bedeaux, PhysicalAl, 33(1987; M. M.
Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaibid 143 164(1987] where the multipoles are located in the
center of the sphere.

[. INTRODUCTION substrates. In particular, optical methods, which have also
the capability of being run in any environment, are widely
Thein situ characterization of the growth mode of a thin spread in semiconductor technolagy.

film in vacuum conditions is a long pending question. In- At the thermodynamical equilibrium, a film wetting the
deed, a doubt is always shed on #ve situobservations of substrate on which it is deposited is expected to grow layer
deposits, often performed by electron microscopy, whichby layer, following a so-called Frank—Van der Merwe
may not be representative of the studied systems during thegrowth mode. On the contrary, when a substrate is poorly
growth. Several diffraction techniques are suited to examinevetted by the deposited material, three-dimensional clusters
the structure of the growing films. For those many tech-are formed in a Volmer-Weber growth mode. In an interme-
niques probing surfaces by means of charged species, suchdiate case, the Stransky-Krastanov growth mode, the sub-
low-energy electron diffraction and reflection high-energystrate is covered by a few wetting monolayers before the
electron diffraction, the charge buildup prevents a straightadlayer relaxes to give rise to clusters formation. In addition,
forward interpretation of the results in the case of insulatingn many cases, the morphology of deposited films not only
substrates. Only electromagnetic probe or neutral atom difdepends on thermodynamics, via the surface and interface
fraction can analyze most systems in a nondisturbing wayenergies, but also on kinetics through energy barriers, diffu-
However, neutral atoms are only sensitive to the topmossion coefficients, and intensities of the impinging fluxes. At
layer of a substrate while, despite its impressive success iemperatures and fluxes such that the supersaturation is very
the field of surface science, the grazing x-ray-diffractionhigh, growth of thin films can give rise to the formation of
techniqué is limited in its application because it implies the clusters whose shapes are very far from those expected in
use of high intensity synchrotron-radiation sources. Univerequilibrium conditions. Therefore, it is often very hard to
sally used in the field of thin-film growth, near field mi- distinguish between the different growth modes at the earli-
croscopies as atomic force and scanning tunneling miest stages of the formation of a film. The knowledge of the
croscopies may imply a perturbation of the growth and arecluster mean diameter, aspect ratio, and density during depo-
hampered by the tip artefact. Moreover, the rather long timesition would contribute a breakthrough in the understanding
needed to record an image with these methods often prevent$ the growth. In this context, surface differential reflectivity
them from being used as real time techniques. These limitdhas been proved to be a powerful tool for the determination
tions likely explain the development of analytical methodsof the shape ratit’®and of the size of the metallic clustét,
based on optical probes for monitoring the growth of a filmeven within the monolayer range. However, a quantitative
and determining the thickness of the deposited layers. Inanalysis of the optical spectra is still at its beginning.
deed, UV visible tools fulfill thein situ and nondisturbing Since the pioneering work of Maxwell Garrfesit the turn
conditions for the examination of deposits during their for-of the century, there has been large scientific interest in the
mation, combined with a simple and versatile use on mosbptical properties of metallic clustetsTheir optical behav-
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iors are driven to a large extent by the Mie excitatidhs, disk-shaped clusters with an aspect ratio higher than 2,
which can be viewed as surface-plasmon polaritons. If, fowhich implies a representation of the clusters by truncated
isolated clusters with simple shapes, such as spheres or spiepheres with centers below the surface of the substrtie,
roids in vacuum, the exact solution of the Maxwell equationnumerical computation turns out to be unstable. Beyond the
is known, the difficulty of a reliable description of the optical necessity of a general model that could be applied to any
properties of particles dramatically increases for interacting@se, there appears a need for clear criteria to establish the
particles of complex shapes, either in a matrix or on a surconsistency of the calculation. In the next section, the ex-
face. Even though the Maxwell Garnett effective-medium@mPple of the optical response of a thin silver film deposited
theory and other such theortéshave been quite successful " & magnesium oxide substrate allows us to describe in
in tackling these questions, an accurate description of th8'0re detail the position of the problem.
macroscopic optical properties of the particles, as absorption
and reflection, requires a more sophisticated approach than || p|FFERENTIAL REFLECTIVITY ON Ag  /MgO(100)
the mean-field theory to find the renormalized polarizability FILMS
that governs the far-field behavior. Moreover, for clusters
deposited on a surface, a quantitative description of the op- In & previous paper, it has been reported that UV visible
tical properties of the thin film is not only hampered by thedifferential reflectance data recorded during the deposit of a
interactions between aggregates but also by the mutual integilver film on a MgQ100) substrate in vacuum lead to esti-
actions between the latter and the substtaté. mates of the size, aspect ratio, and density of the cluster film,
The cluster-substrate and cluster-cluster interactions cawhich were in excellent agreement with the values derived
be modeled at the dipolar order as in the theory that has bedfPm an ex situscanning electron microscopy study of the
developed by Yamaguchi, Yoshida, and KinbH% The same samplé.
limitations of such an approach, which does not allow for a
guantitative description of the size and shape ratio of the
clusters of a deposit,prompted Bedeaux and Vliedérto
propose a theory, hereafter referred to as the Bedeaux- A silver film of average thickness 2 nm was deposited on
Vlieger model, to account for the optical behavior of aa single-crystal Mg@.00) held atT =300 °C under ultrahigh
granular thin film separating two bulk media. This was donevacuum conditions by Knudsen evaporation. During evapo-
by introducing some auxiliary fields named excess fields thatation, p-polarized light(i.e., with the electric field in the
enabled one to describe the macroscopic optical effect of thelane of incidencgin the UV visible energy range 1-5 eV is
film, with no need of a detailed description of the spatialimpinged at an incident angle ¢f=45°. The reflected light
variations of these quantities as one moves away fronis recorded in the specular direction. The specular reflectivity
boundary layet® The optical properties of the film is essen- R(w) can be obtained as function of the frequencyf the
tially related to four surface susceptibiliti€s which are incident light. The recorded relevant quantity is the differen-
nothing more than the total integrated excess field. Thes#al reflection coefficient, which is defined as
surface susceptibilities, which are linked to the island polar-
izabilities for a discontinuous film, govern the Fresnel optical _
coefficientst’~2°The modeling of the dipoles arising in clus- AR(w) _ R(@)~ Re(w) ,
ters under the light excitation relies on the assumption that R(w) Re(w)
the mean size of clusters is small compared to the wave-
length of the light. Under these conditions, retardation efwhereRg(w) is the Fresnel reflectivity of the bare substrate.
fects, which are related to the finiteness of the speed of lightViore detailed descriptions of the experimental setup and
can be neglected around and inside the islands. Hence, in thechnique used have already been published.
electrostatic limit, the Maxwell equations for nonmagnetic An ex situimage of the silver film has been collected by
materials and the Laplace equation for the electric potentiaineans of a field electron gun—scanning electron microscope
describe the same physics and are thus equivalent. SimildFEG-SEM shown in Fig. 1a). As can be seen from this
ideas had been put forward earlier by Kretschm@nbut  image, the deposit consists of small islands of a linear size of
using a somewhat different formalism. around 10 nm distributed over the surface of the substrate.
This method has been applied to truncated spheres on3uch a Volmer-Weber growth mode is expected for the Ag/
substrate by Wind and co-worké®s>The Laplace equation MgO system since noble metals poorly wet wideband-gap
is solved by means of a multipole expansion technfifue, oxide surface$®
which consists of placing multipoles at the center of the The experimental differential reflectivity spectra at the
sphere. The interaction with the substrate is taken into acend of growth is plotted in Fig.(b) as function of the photon
count by introducing image multipoles located at the imageenergyE=%w for an incident angle of 45°. The two pro-
point of the multipoles with respect to the surface. The po-ounced resonances seen in this graph are excited by the two
larizability of the individual islands is then renormalized by components of the-polarized electric field. The low- and
taking into account the interactions with the neighboring is-high-energy peaks are related to longitudinal and transversal
lands in a self-consistent approximatibhThis relatively — plasma oscillations inside the clusters, respectiVefheir
simple model works quite nicely under many positions in energy are mainly governed by the aspect ratio
circumstanceés®?°and may reproduce the main experimen-of the islands, which is given by the ratio of height over
tal optical features to a large exteisee Sec. Il beloy lateral size, the electromagnetic coupling of the film with the
However, while trying to fit optical data corresponding to substrate, and the interactions between partfties.

A. Experimental setup and results

(2.9
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FIG. 2. Simulated differential reflectivity curveSR(w)/R(w)
as a function of energif =% w for different numbers of multipoles
included in the simulation. Clusters are defined by the same numeri-
cal parameters as in Fig. 1.

ARR

is justified by the experimental energy rande-5 eV, i.e.,
wavelength in the range 200—1200 nroy a multipolar de-
velopment of the potential that is truncated at an ofddor
numerical reasons. This polarizability is then renormalized
by the interisland coupling, which is accounted for only at
dipolar order. The model spectrum is chosen by means of a
1 2 3 4 trial and error method, the main emphasis being put on trying

() E@EY) to reproduce the location of the low- and high-energy reso-
FIG. 1. Experimental data for a 2-nm-thick silver deposit on anances and their intensity.
ragneson o1 1400 bttt A FEG SEM mage o 111 CTELCL 1l shoun 1t comesponds 1o
the film. The horizontal bar indicated in the figure corresponds to
200 nm;(b) the experimental differential reflectivity spectrum ob- centgr of the sphere located at (Rl}ibpve the SupStrafte'
tained at an incident angle of 4%gircular symbols A simulation T.he islands are placed on a square lattice with an interisland
result, using the method of Refs. 22 and 23, is indicated by a solidliStance(lattice Constar)tf)f 15_)'26 nm that corresponds to a
line and demonstrates good agreement with the experimental datgluSter density of 2.8 10t cm 2, These values nicely com-
In the simulation, the truncated spherical particles, of radus Pare to those obtained by scanning electron micros¢sigy
=6.8 nm, were placed on a regular grid of lattice constant 19.6 nm1()], & cluster radius of 8:21.5 nm, and a cluster density
and the truncation parametésee textwast, =0.11(corresponding  Of 1.9+0.5x 10" cm™2°. The silver coverage that can be
to an aspect ratio of 1.80Note that the main spectral features and derived from the optics compares within a few percent with
the numerical values of both the low- and high-energy resonancethat obtained from the SEM image. Such quantitative agree-
are well predicted by the theoretical model. ment is impressive, in particular, in view of the relative sim-
plicity of the model on which the simulation is based.

The best fit between the optical spectrum and the model

The solid curve in Fig. (b) represents a simulation result has been fourldfor an aspect ratigdiameter to heightof
obtained by means of the modelerived from the method of 1.8 [Fig. 1(b)]. Numerical results are shown in Fig. 2 as a
Wind and co-workeré>2® Within the framework of this function of the multipole order within this particular geom-
theory, deposited islands are modeled by a set of identicaitry. A good convergence is obtained upon increasing the
truncated spheres that are placed on a regular square arrayniltipole order. The same is observed for any case in which
simplify the calculation since it has earlier been shown thatthe aspect ratio of the deposited cluster is lower th&ne2,
for low cluster coverages, the optical response of a regulawhen the center of the sphere is above the surface of the
array of clusters with, for example, a square or triangulaisubstrate However, when performing the calculation for
lattice marginally differs from that of randomly distributed truncated spheres with centers below the surface of the sub-
aggregate$’ Moreover, for such a low cluster density, strate, the numerical code does not converge any longer. An
higher-order interactions between islands are expected to lexample is given in Fig. 3 where the model is applied to a
negligible?” The values for the dielectric functions are taken cluster geometry similar to that used in Fig. 2 except for the
from the literaturé with, in the case of silver, a correction to aspect ratio, which is now set at a value of 2.2. Upon includ-
account for the finite size of the clustérs) which reduces ing higher and higher multipole orders in the simulations, the
the electron mean free path. The island polarizability isposition of the low-energy resonance is wandering and
evaluated in the quasistatic approximation, the use of whiclshows no trend of convergence. At this stage, two cases

B. Limits of the simulation
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FIG. 3. Simulated differential reflectivity by the Bedeaux-
Vlieger truncated spherical model for the same island parameters as
in Fig. 1 but for a negative truncation ratip= —0.11 (aspect ratio
of 2.25. The various curves correspond to different choices for the
multipole order as indicated in the legend of the figure. Note that in z
the region around the low-energy resonance no convergence seems FIG. 4. The cross section of the geometry considered in the

to be reached by increasing the number of multipoles included iny esent work. Herg:R indicates the coordinate of the location of
the calculation. The inset shows the details of the differential reflec- —

tivity curves around the low-eneray resonance the multipoles, whileuR is the same quantity but for the image
y oy ' multipoles. Note that the multipoles and thus also the image multi-

ht to b idered. When th t f th h oles are always located on thexis, which is the axis of revolu-
qu doh € Cgrés' ere 'b en (;’; cen ]?r 0 f E SP gre fon. The position of the substrate is parallel to #heplane, and it
eyond the mid distance between the surface of the su Str""igalocated az=D, whereD is a(signed real constant. The dielec-

a_md the bottom of the sphe_re, the diverg_ence of t_he Calcu'ﬁfic functions of the various regions are those indicated in the figure
tion happens for mathematical reasons since the image poig, ; (), withi=1, ... 4.

is outside the physical domain or, in other words, outside the

sphere. In a qifferen.t way, yvhen the image point is within the icted in Fig. 4. It consists of a substrataedium 2 local-
sphere, solutions might exist. The lack of convergence likely_ o in vacuum(medium 1 and covered with clustergne-

arises from the conditioning of the matrix. Indeed, the _prob—dium 3 whose size is assumed to be small with respect to
lem cannot be solved by increasing the number of multipoleg,e \yayelength of the incident light. The islands are modeled
since, at some stage, the machine accuracy is overflowed. |, v ncated spheres of radif&s The vacuum-substrate in-
both cases, a suggestion to find out favorable conﬂgurauon[%rface is located at=D, with —R<D<R. The plane that

in which the numerlcal calculation cpuld be performed. MOr€nasses through the center of the sphere is definezi-ty.
successfully is to move the expansion center. This point wil he dimensionless truncation parameter

be examined in Sec. Ill.

Nevertheless, neither the convergence of the model itself
nor that of the model with the ex_perimental data can guaran- tr=E (—1<t,<1), (3.2
tee the correctness of the solution. These are only indirect R
proofs. In the model, potentials are expressed as a function of
expansion coefficients up to tith order, although the op- describes the degree of truncation. For technical reasons
tical response, which is derived from the dipole polarizability Which would become apparent below, the part of the spheres
of the deposited clusters, only relies on the first-order expanying below the interface is introduced as a distinct medium
sion coefficients. Therefore, the convergence of the calcudmedium 4. This latter medium will finally be attributed
lated optical response is necessary but not sufficient to valiProperties identical to the substratmedium 2. A main
date the expressions of the potentials. At variance, thépherical coordinate systeifi, is defined such that the origin
boundary conditions depend on all the expansion coefficient8f the radial coordinate coincides with the center of the
until the highest order, so that a definite evidence of thesphere(Fig. 4). The polar and azimuthal angles arend ¢,
consistency of the model would be gained by their fulfill- respectively. The positive axis, which is also the axis of
ment. The question will be addressed in Sec. IV where théevolution of the system, is pointing downwards into the sub-

above Ag/MgO case will be used to test the accuracy of thétrate. The impinging light of wavelength scatters at the
model. surface at an incidence anglg. To calculate the island

polarizability, the polarization of the islands by the incident
Il A MODEL FOR EVALUATING ISLAND !lght is modeled by using a 'multlpola'r expansion and by
POLARIZABILITIES introducing the image multipoles with respect to the
substraté? The center of the potential expansion is chosen
The cluster geometry used in the present paper, which ialong thez axis at a positionuR in the main coordinate
derived from that used by Bedeaux and co-worker is desystemS, with

=
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—1<pup<l. (3.2 (1—x2)m2 gl+m
_ . N _ PM(x)= : — (x>-1)!, x=cos#,
The image multipole position becoma®R, where 2100 dx ™ a8
p=2 g 33 for m=0, while form<0,
It is convenient to introduce two other coordinate systems,
S, andS,, whose origins are located at the multipole and " m(I +m)t
multipole image centers, respectively. The azimuthal angle PI(x)=(-1) (I—m)! P (%), (3.9

of the plane of incidence of the light is defined ég. It is
taken equal to zero in all the numerical calculations, WhICh|n Eq. (3.6), (/lo(r) stands for the potentia| Corresponding to

are performed herein. the incident fieldE,, which, provided clusters are small
compared to the wavelength of the light, can be approxi-
A. Multipole expansions of the potential mated by a homogeneous field

If the linear dimension of the island is small compared to ) ) .
the wavelength of the incident light, retardation effects in Eo=Eq(Sin 6,C08¢o,SiNfSin ¢bg,c0S6p).  (3.10
and around the island can safely be neglected. If the islan
material is assumed to be nonmagnetic, then the incideq
magnetic field will be unaffected. Hence the main field is the
electric fieldE(r), which is related to the potentiak(r) in
the usual wayE(r)= — V ¢(r). When retardation effects can

he potentialiy(r) related to this incident field then takes
e following form:

Po(r)=—rEq(cosh coshy+ sin 6 cose sin 6,c0Sohy

be neglected or, in other words, when the size of the island is +5in 0 sin ¢ Sin B,Sin ¢)
supposed to be much smaller than the wavelength, this po-
tential must only satisfy the Laplace equation 2
=—rEo\/ 5 {V2 costoY1q( 6, ¢)
V2y(r)=0. (3.9
H —1 |
The appropriate boundary conditions for this potential come —sinfo[e'%0Y14(0,¢)— €' %Y1 _1(6, )1},

from the continuity of the potential itself and of the normal (3.11

components of the displacement field, ) _ )
with Eq=|Ey|. The spherical coordinates,@, ) are de-

(ro)=on(ry), (3.58 fined with respect to the coordinate syst&mhose origin is
at the center of the sphere.
gl(w)dnh(ro) =g (w)dnih (rs). (3.5b For the potential inside the substrate, the solution of the

. ) ) i Laplace equation is chosen as
Heree;(w) is the frequency dependent dielectric function of

mediumi, rg is assumed to be any point on the interface, and

d, denotes its normal derivative. These conditions should be y,(r)=a,—rE /Z—W{\/EalcosaoYlo(ﬁ,cﬁ)
fulfilled for any two media having a common interface. 3

To solve EQ.(3.4), with the boundary conditionfEgs. o ~idg A Ao
(3.5)], it is convenient to u$8 a multipole expansion for the sinfg[aze 'Y 11(0,¢) —aze' oY, _1(6,¢)]1}
potentials. In medium 1, the potential then takes the form 10 -
o 2 A im0 ,), (312

Ya(D=o(N+ 2 Al " Yim(6,,6,.)
fm e e wherea; are constants to be determined. Note that the terms

140 inside the curly brackets are a linear combination of the
i AR (ZI71y 0= ). 36 terms involved in th_e gxpressmf&l@ of the_potentlal
;n " in( 0 &) 36 Yo(r). For the potential inside the cluster, medium 3 and 4,

the following expansions are defined as
The spherical coordinates (,6,,,¢,) and (,,0,,¢,) are g &p

referring to the coordinate_systerﬁl; and S, which are 140
centered at the poinig and u, respectively(Fig. 4. Them ¢3(f)=bo+z B|mf|,LY|m(9,u¢M)
summation will be understood to range fram=—1 to I. l,m
The spherical harmonicg,( 6, ¢) are normalized according 140
to the conventiof? +;n BﬁmYI;Ylm( 6 2. (3.133
2+ (I-m)! __ . ’
= _ ¢
Ylm(01¢)_ A (|+m)| |:)I (COS&)( 1)me|m ’ 1#0 |
(3.7 Ya(D) =0+ 2 Blur, Yim(0,,4,),  (3.138

where P|"(cos#) are the associated Legendre polynomials
defined a¥’ whereby andbg are constants to be determined.
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B. Determination of the expansion coefficients o
via boundary conditions > [FIR72A,,+ G\ R !B ]=J",

The various unknown expansion coefficiengs, Ay, =t (3.16h

B, etc., are now calculated in terms of the known param-
eters of the model by imposing the boundary conditions on _ _
the considered geometry. Since a formulation with imagevherel=1,2, ..., andn=0,1. The various matrix elements

multipoles is used, the boundary conditiongatD are eas- ©Of the above linear system can all be found in the Appendix,
ily satisfied. Their fulfillment leads to the following rela- Where their detailed derivation also is presented. The above

tions: linear system has only a nontrivial solution whea=0 and
m= =1 [cf. Egs.(A4)]. These values are associated with the

g1 components of the uniform incident fiel,, which are or-
aoond(8—2—1>cosao, (8148 {hogonal and parallel to the substrate, respectively. An addi-
tional simplification can be made by showing that the equa-
&1 tions corresponding tmm=—1 andm=1, respectively, are
a1=8—2, (3.14b equivalent.

To allow for a numerical solution of the infinite linear
system(3.16), an upper cutofM in | andl’ has to be intro-

2=33=1, (8140 iced. The integrals that define the system of equatidbs
e e are computed by Gauss-Legendre numerical integration. So-
AR —(_q)l+mZl "2 5 3.14 lutions of the linear system lead to values of the expansion
Im ( ) Im » ( . d .. . . .
&1t e coefficientsA, and B,,,,, which in turn can be directly re-
5 lated to the(dipole) polarizability of the island. These can be
T _ <% shown to be given
A|m——81+82A|m. (3.14¢9
The continuity at the same boundaz~D), but now inside 2me A
the sphere, gives =0 (3.173
a
boz b(,) y (31Sa \/;E()COSQO
E3— €&
BR =(-1)*m=>"2p, (3.15h
eztey
47781A11
a)=— . (3.17b
BL=—2 g 3.15 2T i
M= e ate, M (3.150 ?Eosmaoexp(—l%)

An explicit expression for the constaht, is given in Eq.

(A12) of the Appendix. These results are obtained by takingoe , ang « are the dipole polarizabilities perpendicular

advantage of both the orthogonality of the spherical harmonz,y harajlel to the interface of the substrate, respectively.
ics and the fact that on the surface of the substratel),

; Due to the presence of the substrate, these are in general
as a consequence of the symmetry of the location of the, e different. In the present work, the parameter of interest
multipoles and image multipoles, the following relations is yhe gifferential optical reflectivith R(w)/R(w) defined in

hold:r,=r,, 0,=m—0,, and¢,=¢,. Note that the re- goc | This quantity is evaluated by modified Fresnel for-
lations (3.14), (3.19 are independent of the location of the a5 for reflection where the above given polarizabilities

multipoles, so that they are similar to those obtained byappear through the surface susceptibilifés.

Wind, Vlieger, and Beded under the assumption that the 7o present section was aimed at introducing a general
multipoles are Ioca_ted at the center of the sphere_. F'na”ymethod for the calculation of the polarizability of truncated
there are only two independent classes of expansion Coeffé'pheres supported by a substrate. The model of Wind and

cients, namelyA;, andBjp, . , _ co-workeré®?3is just a special case of this approach with
These coefficients can be derived from the relations thahzo (see the Appendix for detajlsat least fort,=0. In-

express the fulfillment of the boundary conditions at the SUreed, to obtain the solution for the case in which the center

face of the sphere, where=R. By multiplying all the terms ¢ 110 sphere is located below the substrate<Q), these
of those relations by the complex-conjugate spherical har;

. " : _ _ authoré?23 apply to the {,>0) case a coordinate transfor-
mO”'C[YIm(Gvff’)] and by integrating the resulting EXPreS- mation method with a permutation of the dielectric constants.
sions over the surface of the sphere, where one again takggs implies that different potential expansions are used in
advantage the orthogonality of the spherical harmonics, thge o cases, while, in the present work, the expansions in
following (infinite) set of equations is obtained: use do not depend on the location of the multipoles with

o respect to the surface. Criteria are now needed to know how
E [cm R—I’—ZA“ +p™ R"‘lBV J=HM reliable these models are, with special attention being paid to
i me " ’ cases corresponding to negative values of the truncation ratio

(3163 .
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IV. FULFILLMENT OF THE BOUNDARY CONDITIONS

In Sec. Il and in the already published wdrkhe method
has only been judged on the basis of the convergence of the
differential reflectivity curvesAR(w)/R(w). Indeed, in the
model used herein, the reflectivity only relies on the lowest-
order expansion coefficiemd;; and A, [cf. Egs. (3.17)]. A
Therefore, the occurrence of a convergence of the reflectivity %}
curves upon, say, increasing the multipole orfierdoes not
provide any proof of the reliability of the potentials since
these depend on all the expansion coefficients up to the cut-
off order. The potentials given by the expansiofss6),

(3.12, and(3.13), can in principle be calculated in any point

of space provided the multipole coefficients,, and B, 10° L 1 L L L L L
are known. Since the multipole expansions are indeed solu-

tions of Egs.(3.4) and(3.5) at anyM, it is only the fulfill-

ment of the boundary conditions at the interface between the 10°
various media that has to be checked. It has to be stressed
that this fulfillment is a more severe test for the calculation
than just considering the convergence of the differential re-
flectivity curves. It is not only the self-consistency of the
numerical implementation but that of the method itself that is
controlled. Such a study thus provides a powerful and rigor-
ous tool for justifying the quality of previous and present
numerical simulations based on a multipole expansion.

The calculation including the multipoles and their images, 102
the boundary conditions at the cluster-substrate interface, are
obeyed by construction. Thus, the only boundary conditions
to be checked are at the surface of the sphere. To measure
the error in these, two error functions are defined,

08 01 o1 03 05 o7 09
5¢(fs)=w+(r5) lﬂ—(rs), .19 N

maxsz,//o(rs) FIG. 5. The mean errors as defined in the tékf,(rs)|) and
(15 4(rs)]), in the boundary conditions ¢#) the potential andb)
&40ty (rs) —&_dnip_(1y) 41D its normal derivative, as function af for different u values. The
ma)gs[sanl//o(rs)] (4.15 model clusters are defined with the same parameters as in the Ag/
MgO(100 case(Fig. 1), with E=4.5 eV andM = 20.
The subscriptst+ (—) correspond to quantity just outside
(inside the surface of the sphere. The maximum value of the\/lieger limit, where 4=0, provides the minimum error
incidence potentialy, at the surface of the sphere, and thewhereas foré <0 an imp;ovement is obtained by moving
corresponding quantity for the normal derivative, are used a8 e expa,nsio:‘n po’int inside the physical domain or, in other
normalization factors. The impact of the parameters of the . . o
ords, by using negativee values. However, for negative

model, location of the multipole center, photon energy, an " i th tri t b q ticall
multipole order on the accuracy of the numerical calculation runcation ratios, the matrix system becomes dramaticaly
ore and more ill conditioned; a fact that may be due to

is examined in the following by considering the values taken" , ) : X
by the error functions in various representations of thghtervention of an increasing power of distance beENeen the
above-mentioned Ag/MgO deposit. surface of the sphere and the expansion pgintend .

In principle, the infinite expansion of potentials on which
the method is based should lead to a unique numerical value,
wherever the location of the expansion center is. In the case

In the model put forward in the present paper, the multi-of humerical calculations, where the expansion is truncated
pole expansion point can move along the symmetekis,  at an orderM, it is not too surprising to find, for a given
instead of being at the center of the sphere as in the Bedeawya|ue of M, a (weak dependency of the error functions on
Vlieger model. In Fig. 5, an attempt is made to determine thehe position of the expansion point, as already stressed in
optimal positionu for a given truncation ratio and value of Fig. 5 A search for an optimal position of the expansion
M =20 at an energy oE=4.5 eV. The mean spatial abso- center can be performed for each value of the truncation ratio
lute error in the boundary conditiong|E,(rs)[) and  (Fig. 6). Fort,=0 (see also Fig. § it is the center of the
(1€ 4(rs)), which are defined in Eq4.1), are shown in  sphere =0). Fort,<O0, it appears that the best choice is
Fig. 5 as function of the truncation ratio. It can be observedo place theu point close to the substrate so thatt, , that
that the value ofu, which leads to the minimum error, de- is to say to superimpose the center of expansion and its im-
pends on the truncation ratio. Fdf=0, the Bedeaux- age. Roughly speaking, faf<0, between one and two or-

10

Eauls)=

A. Location of the expansion center
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FIG. 6. Fulfillment of the boundary conditions as functionwof
for an energyE=4.5 eV, a multipole ordeM =20, and two given
values oft,, 0.1, and—0.1. Error functions orfa) the potential and
(b) the normal derivative.

FIG. 7. The mean error in the boundary conditions as a function
of energy for two values of,=0.1 andt,=—0.1, in the case de-
fined by u=0 andM =20, for (a) the potential andb) the normal
derivative.

ders of magnitude in the error function can be earned by the

present method with respect to the Bedeaux-Vlieger model ) ) ) ) ]
in which ©=0. By increasing the number of multipoles included in the

calculation M the fulfilment of the boundary conditions
- should be improved since the size of the function basis in-
B. Boundary conditions at the resonance energy creases. Figure 8 shows the e”d'&p(rs)b and<|5an¢(rs)|>

When the energy of the incident light is close to a reso-as function ofM for the energye=4.5 eV andu=0 for two
nance of the system, i.e., in our case, close to either thguncation ratios,=0.1 andt,= —0.1. These figures are rep-
low-energy resonance around 2.5 eV or the high-energyesentative of the cases whepe=0. Fort,=0, the error
resonance at 3.7 eV, the boundary conditions are even hardgecreases upon increasiy which corresponds to the ex-
to satisfy. This is seen from Fig. 7 where tfspatia) mean pected behavior. However, for<0, the error is not seen to
of the absolute error in the boundary conditiofis,(rs)|) decrease upon increasiiy In this case, the error functions
and(|5€n¢,(rs)|>, are shown as function of ener§y=7%w for  are quite sensitive to the value pf This is illustrated in Fig.

truncation ratiot,=0.1 andt,=—0.1. The dips that can be 9 where the error functions are given farvalues of 0 and
observed around the low-energy resonancé-ag.5 eV are —0.1. It is observed that moving the expansion point away
believed to come from numerical artefacts. These figure§om the center of the sphere may dramatically improve the
highlight the sizable effect of the dielectric function on the overall error made in the simulation. Finally, it can be noted
quality of the simulation, since the energy rariie2 eV to  that, in all cases, a higher limit iM is imposed by the
E=3.7 eV, where the resonances are peaking, concentrat¥gnishing of the matrix conditioning.

on the highest values of the error functions. This is, however,
probably not so surprising in view of the fact that the system
is close to singular at a resonance point. As the truncation
ratio is reduced, the overall error seems to be increased, but The evolutions of the potentiak and of its normal de-

it is still the regions around the resonances that are associateatative £ d,¢ along the surface of the sphere, in the plane of
with the largest errors. Roughly speaking, the errors in théncidence of the lighfFigs. 1qa) and 1@b)] and in a plane
boundary conditions are raised by an energy independemterpendicular to ifFigs. 1@c) and 1@d)], are given as func-
factor as the truncation ratio is reducétg. 7). tion of the polar anglé in Fig. 10 for the case corresponding

C. Multipole order

D. Spatial variations of the error functions
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FIG. 8. The evolution of the error in the boundary conditions as M

a function of the order in the multipole development in the case of
which E=4.5 eV, u=0, for two given values oft,, 0.1, and
—0.1[(a) potential(b) the normal derivative

FIG. 9. The improvement brought in the convergence of the
boundary conditions by moving the expansion point in the t¢ase
=-0.1, E=4.5 eV as a function of the multipole ordbt.
t0t,=0.1,E=45eV,n=0, andM=16. Also shown are o ginate system instead of being located at the center of
the error functions(|€,(r¢)|) [Figs. 1@a) and 1@c)] and  the sphere. This method allows us to perform the calcula-
(1€5 rs)]) [Figs. 1Ab) and 1@d)] in the bottom panels of tions for cases in which the numerical code is poorly condi-
the graphs. For the same set of parameters, we have altioned when the center of the truncated sphere is below the
found (results not shownthat the errors are slowly varying plane of truncation. Let us stress that this geometry has a
functions of the azimuthal anglé. The regions that give strong importance since it corresponds to clusters whose as-
rise to the largest errors in the boundary conditions are corpect ratio is higher than 2.

centrated around the top of the sphere and, to some extent, at Neither the convergence of the model itself nor the agree-
the interface between the spherical cap and the substrate. Theent between the data and the model can guarantee that the
same trends can be observed in the global view of the boundsolution is correct, since the reflectivity curves only depend
ary conditions, which is presented in Fig. 11 for the sameon the lowest-order expansion coefficients. A way to assess
case. This view consists of a projection in the plane of incithe quality of the numerical calculation to the upper order
dence of(|€,(rs)|) (upper panel and<|5,;n¢(rs)|). The di- has been introduced, which consists of judging the accuracy

rection of the incidence of the light is indicated by an arrow.0f the models on the basis of fulfilment of the appropriate

The error is roughly of the same order of magnitude all ovefPoundary conditions. It is shown that, provided the cluster
the sphere. aspect ratio is not too high, the multipole expansion method

represents a rather accurate tool for the determination of
mean values of the parameters characterizing the deposited
clusters. In all cases however, the values found for the error

A generalized method for the calculation of the polariz-functions allow us to estimate the validity of the model. The
ability of a truncated sphere by means of a multipolar desimulation of the optical reflectivity in the UV visible range
scription has been presented. The proposed approach, whiellows us to determine cluster size, shape ratio, and density
is an extension of earlier published works due to Bedeauxin a rather accurate manner, as illustrated herein by the case
Vlieger, and co-workefd? and which contains this model of a Ag/MgQ(100) deposit. The method offers a promising
as a special case, is based on the possibility for the multipol®ol for the in situ examination of cluster growth on sub-
expansion center to freely move along thaxis of the main  strates.

V. CONCLUSIONS
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FIG. 10. Evolution of the potentidla) and(b)] and its normal
derivative[ (c) and(d)] along the surface of the sphere. The errors in
the boundary conditions of the potential on the surface of the
sphere£,(rs) [(@) and(c)] and of the normal derivative), ,(rs)

[(b) and(d)], are shown as function of the spherical coordirtater
given value of the azimuthal angle The values used for the angle
¢ correspond to the incident plane € 0) [(a) and(b)] and a plane
perpendicular to the incident planeb€ 7/2) [(c) and (d)]. The
energy of the incident light iE=4.5 eV, the truncation ratio i&
=0.1(and x=0), and the number of multipoles i = 16. |
(b) 0.0 4282
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APPENDIX: THE MATRIX ELEMENTS field contains these ‘“quantum numbergtf. Eq. (3.11)].

In this appendix we give the various matrix elements, ancggihrgfgsrzggigts of the systejifigs. AD] are thus given

the form of the right-hand side, appearing in the matrix sys-

tem[Egs. 3.16]. With the particular expansions chosen for

the potentialsy;(r) (i=1,2,3,4)(cf. Sec. ll), and the rela- cm=¢m

tions Egs.(3.14 and (3.19, the boundary conditions at the I I

surface of the substrate, by construction, are automatically 2e

fulfilled. However, we still need to satisfy the remaining +_1{K|n|1,[,u](t,:1)—K,T,[,u](tr)}}, (A23)

boundary conditiongEgs.(3.5)] on the surface of the sphere. g1t ez

By taking these boundary conditions, multiplying by the

complex-conjugate spherical harmopi,( 6, ¢)]*, and in- m mlm

tegrating over all directions, i.e., using the weak formulation Dyr=- guf[Mn Lpl(t)+

of the boundary conditions, one is lead to the following ma-

trix system[cf. Egs.(3.16)]: N 2e3
w g3t ey
> [CR™""2A,,+DR "B, ]=H", (Ala)
1"'=1

— &

1782 o \1empem T
81+82( 1) K||f[/“](tr)

Km[ﬂ](tr)'i_

€37 &4 oz Empy M
83+84( 1) M||I[M](tr)

M [pl(t=1)— Mﬂnr[ﬂ](tr)}}, (A2b)

€1€9 17 &>
orte, L A= Fer o L [ ()

m m
Fir=2a0

2
81+82 €1

[

> [FMR™2An+ G R 1B, ] =3, (Alb) B
21 +(-1) +mL”,[,VL](tr)}}, (A20)
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and

)“‘83

||' §||' N||'[ﬂ](t { ||r[M]

€3 +8
X(t)+ (=) TN L]t} (A2d)

Here the following notation has been introduced:

o 1 Jei+n@ +nI-—mii —m)!
"2 (d+m)! (1" +m)! ’

(A3)

and the integralX, L, M, and N will be defined below.

Furthermore, the right-hand side of the sys{éigs.(Al)] is
defined as

€9
coseo 001 %0m
4
+ \/ 5 EoC0S6ygm

51| {\/—t £PQib(t) — EhQR(t)}

27 ~ig i
- ?Eosmeoal[e 05 1m— €6 _1m] (Ada)

and

4
\]|m: ?E0810030050m51|
2m i —ig i
- ?Eoszsmeo&ll[e 001m— €' 700 1]

1/27" ; Ciggrl AL
- ?[(81_82)E05m90][e 07,Qj1(ty) d1m

—e'%07 QN (t) 8- 1l (A4b)
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—(t,) )

" N m m X—
'V|||f[77|:|(tf)_f—ldxp| (X)Pll( x[71(x,1)

X{X[nl(x, D}, (A5d)

and

P(x)d Pm(—r_”(t'))
I B WY P TE %)

X{xl n](xm)}"’z]

&
Nt = [ dx

(A5e)

r=1

All the above integrals, except th@ integral, have a func-
tional dependency on the functiof(t,), which is used as a

generic case for eithei(t,) or u(t,), i.e., for thez coordi-
nate of the position of the multipoles or image multipoles in
the main coordinate systegwith the origin in the center of
the sphere. Moreover, the functionad, »](x,r), appearing

in Egs. (A5b)—(A5e), is defined as

xL71(x,r)=r2=27(t,)xr+ %(t,), x=cosh. (AB)

This functional gives the distance to a given point from the
location of the multipoles f= ) or image multipoles %
=) in terms of the coordinates (#, ¢) of the main coor-
dinate systen®. Notice thaty[ »](x,r) is independent of the
azimuthal anglep. This is, of course, a consequence of the
rotational symmetry around theaxis of the considered ge-
ometry.

We would like to stress that with E¢3.9) and the defi-
nition of gﬂ", , Eq. (A3), the matrix elements constituting the
left-hand side of our linear systef&qgs.(A2)] do not depend
on the actual sign ofn but only its value, i.e.C;,=C, /",
with similar expression for the othéleft-hand sidé matrix
elements. For the right-hand side matrix elements, it follows
directly from the definitions of these quantities, E¢a4),
that they vanish identically fom# 0,=1 and that they fur-
thermore satisfy the relationbl,lexpa¢o)=—Hl’leprqSO)
andJlexpl o) =—J; 'expldy). This is so because the right-
hand side of the linear system stands entirely for the incident

The above equations depend on several types of integralield, which is the same in the present case and the one

They are defined as

tr
Q(t)= jﬁldXPI“(X)PF?(X), (A5a)
m . tr m X—= 77(tr)

K||f[77](tr)_fildxplm(x)P|r X[77](X,1)>
X{x[7l(x,D} "2 (ASh)

m _ & m m[ XI— 77(tr)

L||'[77](tr)—JildX P (X)é’r[ PI’( X[ﬂ](xyf))
x{x[ n](x,r)}"l’zH : (A50)
r=1

considered in Ref. 22, and therefore is independent of the
location of the multipoles. As a consequence, it follows that
the multipole coefficients fulfill the relations

A|1ei Po= —A|_1e_i¢0. (A7)

B, ®0=—B,_ e %o, (A8)

Hence, the independent multipole coefficients are chosen to
those corresponding tm=0,1. All other coefficients either
vanish or can be expressed in terms of these. Furthermore, it
can be shown that if the physical system does not contain
any free charges, then the equations with0 are useless.
Thus the linear systerfEgs. (A1)] will only be of interest
whenl=1,2,3... andm=0,1. The above findings look
like those found in the Bedeaux-Vlieger model.

We may take the “Bedeaux-Vlieger” limit of our results
by placing the multipoles in the center of the sphere, i.e.,
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u(t)=0, (A9)

w(t)=2t,. (A10)

Using the notation of Wind and co-worké?<® the above
introduced integrals then take the form

K[l =Qp (t), MtLal(t)=Qp\(t,),

(Al1a)
KiLLa](t)=S(t), ML l(t)=T(t),
(A11b)
L[]t =—("+1)QL(t,), NN [x](t)=1"Q[(t,),
(A110)
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L Lad(t) =S (6t =1, NI L1 (6) = 8Ty (80 =1
(A11d)

The Qﬂ‘, integral, which is independent of the position of the
multipoles, is the same in both works. The linear system of
Ref. 22, used to determine the multipole expansion coeffi-
cients, can now be obtained from our formul&sys. (A1)]

by taking advantage of the relatiof&gs. (A11)]. In this
limit our formulas for the linear system reduce, as they
should, to those presented by Wind and co-workéfs.

In order to evaluate the potentials in the check of the
boundary conditions, the constabl, appearing in Eq.
(3.133, must be determined. This constant is obtained in the
same way as the above matrix elements, but here only terms
containingYg (6, ¢) will contribute. The result is

R_ (&1 0 A0 €1 0 A0
bo= §E0 8—2—1 €086y 1Qo1(tr) + REgt, 3_2_1 €0Sp[ 1 — 5oQoo(tr)]

1 < . ,E1—€ — 2¢e

+ﬁ|§1 AR 1§8|1[K8.,[M](tr)+(—1)| 8i+8ng|,[,u,](tr)+SlTlsz{Kgl,[,u](l)—Kgl,[ﬂ](tr)}}
. S ! €37 € — 2¢e

v 21 By oR! gg.,[M&,[M](trH(—l)l 82+82M8|/[M](tr)+ 83+14{Mgl,[ﬂ](1)—Mg,,[ﬂ](tr)}}

(A12)
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