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Numerical modeling of the optical response of supported metallic particles
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The present work reports a general method for the calculation of the polarizability of a truncated sphere on
a substrate. A multipole expansion is used, where the multipoles are not necessarily localized in the center of
the sphere but can freely move on the revolution axis. From the weak formulation of the boundary conditions,
an infinite set of linear equations for the multipole coefficients is derived. To obtain this set, the interaction
between the island and the substrate is taken into account by the technique of image multipoles. For numerical
implementation, this set is truncated at an arbitrary multipole order. The accuracy of the method is judged
through the stability of the truncated sphere polarizability and the fulfillment of the boundary conditions, which
are demonstrated to be satisfied in large regions of the parameter space. This method brings an improvement
with respect to the Bedeaux case@M. M. Wind, J. Vlieger, and D. Bedeaux, Physica A141, 33 ~1987!; M. M.
Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux,ibid 143, 164~1987!# where the multipoles are located in the
center of the sphere.
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I. INTRODUCTION

The in situ characterization of the growth mode of a th
film in vacuum conditions is a long pending question. I
deed, a doubt is always shed on theex situobservations of
deposits, often performed by electron microscopy, wh
may not be representative of the studied systems during
growth. Several diffraction techniques are suited to exam
the structure of the growing films. For those many tec
niques probing surfaces by means of charged species, su
low-energy electron diffraction and reflection high-ener
electron diffraction, the charge buildup prevents a straig
forward interpretation of the results in the case of insulat
substrates. Only electromagnetic probe or neutral atom
fraction can analyze most systems in a nondisturbing w
However, neutral atoms are only sensitive to the topm
layer of a substrate while, despite its impressive succes
the field of surface science, the grazing x-ray-diffracti
technique1 is limited in its application because it implies th
use of high intensity synchrotron-radiation sources. Univ
sally used in the field of thin-film growth, near field m
croscopies as atomic force and scanning tunneling
croscopies may imply a perturbation of the growth and
hampered by the tip artefact. Moreover, the rather long t
needed to record an image with these methods often prev
them from being used as real time techniques. These lim
tions likely explain the development of analytical metho
based on optical probes for monitoring the growth of a fi
and determining the thickness of the deposited layers.
deed, UV visible tools fulfill thein situ and nondisturbing
conditions for the examination of deposits during their fo
mation, combined with a simple and versatile use on m
PRB 610163-1829/2000/61~11!/7722~12!/$15.00
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substrates. In particular, optical methods, which have a
the capability of being run in any environment, are wide
spread in semiconductor technology.2

At the thermodynamical equilibrium, a film wetting th
substrate on which it is deposited is expected to grow la
by layer, following a so-called Frank–Van der Merw
growth mode. On the contrary, when a substrate is poo
wetted by the deposited material, three-dimensional clus
are formed in a Volmer-Weber growth mode. In an interm
diate case, the Stransky-Krastanov growth mode, the s
strate is covered by a few wetting monolayers before
adlayer relaxes to give rise to clusters formation. In additi
in many cases, the morphology of deposited films not o
depends on thermodynamics, via the surface and inter
energies, but also on kinetics through energy barriers, di
sion coefficients, and intensities of the impinging fluxes.
temperatures and fluxes such that the supersaturation is
high, growth of thin films can give rise to the formation o
clusters whose shapes are very far from those expecte
equilibrium conditions. Therefore, it is often very hard
distinguish between the different growth modes at the ea
est stages of the formation of a film. The knowledge of t
cluster mean diameter, aspect ratio, and density during d
sition would contribute a breakthrough in the understand
of the growth. In this context, surface differential reflectivi
has been proved to be a powerful tool for the determinat
of the shape ratio3–5 and of the size of the metallic clusters,6,7

even within the monolayer range. However, a quantitat
analysis of the optical spectra is still at its beginning.7

Since the pioneering work of Maxwell Garnett8 at the turn
of the century, there has been large scientific interest in
optical properties of metallic clusters.9 Their optical behav-
7722 ©2000 The American Physical Society
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iors are driven to a large extent by the Mie excitations10

which can be viewed as surface-plasmon polaritons. If,
isolated clusters with simple shapes, such as spheres or s
roids in vacuum, the exact solution of the Maxwell equati
is known, the difficulty of a reliable description of the optic
properties of particles dramatically increases for interact
particles of complex shapes, either in a matrix or on a s
face. Even though the Maxwell Garnett effective-mediu
theory and other such theories11 have been quite successf
in tackling these questions, an accurate description of
macroscopic optical properties of the particles, as absorp
and reflection, requires a more sophisticated approach
the mean-field theory to find the renormalized polarizabi
that governs the far-field behavior. Moreover, for clust
deposited on a surface, a quantitative description of the
tical properties of the thin film is not only hampered by t
interactions between aggregates but also by the mutual in
actions between the latter and the substrate.12,13

The cluster-substrate and cluster-cluster interactions
be modeled at the dipolar order as in the theory that has b
developed by Yamaguchi, Yoshida, and Kinbara.14,15 The
limitations of such an approach, which does not allow fo
quantitative description of the size and shape ratio of
clusters of a deposit,5 prompted Bedeaux and Vlieger16 to
propose a theory, hereafter referred to as the Bede
Vlieger model, to account for the optical behavior of
granular thin film separating two bulk media. This was do
by introducing some auxiliary fields named excess fields
enabled one to describe the macroscopic optical effect of
film, with no need of a detailed description of the spat
variations of these quantities as one moves away fr
boundary layer.16 The optical properties of the film is esse
tially related to four surface susceptibilities,16 which are
nothing more than the total integrated excess field. Th
surface susceptibilities, which are linked to the island po
izabilities for a discontinuous film, govern the Fresnel opti
coefficients.17–20The modeling of the dipoles arising in clus
ters under the light excitation relies on the assumption
the mean size of clusters is small compared to the wa
length of the light. Under these conditions, retardation
fects, which are related to the finiteness of the speed of li
can be neglected around and inside the islands. Hence, i
electrostatic limit, the Maxwell equations for nonmagne
materials and the Laplace equation for the electric poten
describe the same physics and are thus equivalent. Sim
ideas had been put forward earlier by Kretschmann,21 but
using a somewhat different formalism.

This method has been applied to truncated spheres
substrate by Wind and co-workers.22,23The Laplace equation
is solved by means of a multipole expansion techniqu24

which consists of placing multipoles at the center of t
sphere. The interaction with the substrate is taken into
count by introducing image multipoles located at the ima
point of the multipoles with respect to the surface. The p
larizability of the individual islands is then renormalized b
taking into account the interactions with the neighboring
lands in a self-consistent approximation.19 This relatively
simple model works quite nicely under man
circumstances7,20,25and may reproduce the main experime
tal optical features to a large extent~see Sec. II below!.

However, while trying to fit optical data corresponding
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disk-shaped clusters with an aspect ratio higher than
which implies a representation of the clusters by trunca
spheres with centers below the surface of the substrate,5 the
numerical computation turns out to be unstable. Beyond
necessity of a general model that could be applied to
case, there appears a need for clear criteria to establish
consistency of the calculation. In the next section, the
ample of the optical response of a thin silver film deposi
on a magnesium oxide substrate allows us to describe
more detail the position of the problem.

II. DIFFERENTIAL REFLECTIVITY ON Ag ÕMgO„100…
FILMS

In a previous paper, it has been reported that UV visi
differential reflectance data recorded during the deposit o
silver film on a MgO~100! substrate in vacuum lead to est
mates of the size, aspect ratio, and density of the cluster fi
which were in excellent agreement with the values deriv
from an ex situscanning electron microscopy study of th
same sample.7

A. Experimental setup and results

A silver film of average thickness 2 nm was deposited
a single-crystal MgO~100! held atT5300 °C under ultrahigh
vacuum conditions by Knudsen evaporation. During eva
ration, p-polarized light ~i.e., with the electric field in the
plane of incidence! in the UV visible energy range 1–5 eV i
impinged at an incident angle ofu0545°. The reflected light
is recorded in the specular direction. The specular reflecti
R(v) can be obtained as function of the frequencyv of the
incident light. The recorded relevant quantity is the differe
tial reflection coefficient, which is defined as

DR~v!

R~v!
5

R~v!2RF~v!

RF~v!
, ~2.1!

whereRF(v) is the Fresnel reflectivity of the bare substra
More detailed descriptions of the experimental setup a
technique used have already been published.4,7

An ex situimage of the silver film has been collected b
means of a field electron gun–scanning electron microsc
~FEG-SEM! shown in Fig. 1~a!. As can be seen from this
image, the deposit consists of small islands of a linear siz
around 10 nm distributed over the surface of the substr
Such a Volmer-Weber growth mode is expected for the A
MgO system since noble metals poorly wet wideband-g
oxide surfaces.26

The experimental differential reflectivity spectra at t
end of growth is plotted in Fig. 1~b! as function of the photon
energyE5\v for an incident angle of 45°. The two pro
nounced resonances seen in this graph are excited by the
components of thep-polarized electric field. The low- and
high-energy peaks are related to longitudinal and transve
plasma oscillations inside the clusters, respectively.9 Their
positions in energy are mainly governed by the aspect r
of the islands, which is given by the ratio of height ov
lateral size, the electromagnetic coupling of the film with t
substrate, and the interactions between particles.4–6
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B. Limits of the simulation

The solid curve in Fig. 1~b! represents a simulation resu
obtained by means of the model7 derived from the method o
Wind and co-workers.22,23 Within the framework of this
theory, deposited islands are modeled by a set of iden
truncated spheres that are placed on a regular square arr
simplify the calculation since it has earlier been shown th
for low cluster coverages, the optical response of a reg
array of clusters with, for example, a square or triangu
lattice marginally differs from that of randomly distribute
aggregates.27 Moreover, for such a low cluster densit
higher-order interactions between islands are expected t
negligible.27 The values for the dielectric functions are tak
from the literature28 with, in the case of silver, a correction t
account for the finite size of the clusters,23,9 which reduces
the electron mean free path. The island polarizability
evaluated in the quasistatic approximation, the use of wh

FIG. 1. Experimental data for a 2-nm-thick silver deposit on
magnesium oxide MgO~100! substrate:~a! A FEG-SEM image of
the film. The horizontal bar indicated in the figure corresponds
200 nm;~b! the experimental differential reflectivity spectrum o
tained at an incident angle of 45°~circular symbols!. A simulation
result, using the method of Refs. 22 and 23, is indicated by a s
line and demonstrates good agreement with the experimental
In the simulation, the truncated spherical particles, of radiusR
56.8 nm, were placed on a regular grid of lattice constant 19.6
and the truncation parameter~see text! wast r50.11~corresponding
to an aspect ratio of 1.80!. Note that the main spectral features a
the numerical values of both the low- and high-energy resonan
are well predicted by the theoretical model.
al
y to
t,
ar
r

be

s
h

is justified by the experimental energy range~1–5 eV, i.e.,
wavelength in the range 200–1200 nm!, by a multipolar de-
velopment of the potential that is truncated at an orderM for
numerical reasons. This polarizability is then renormaliz
by the interisland coupling, which is accounted for only
dipolar order. The model spectrum is chosen by means
trial and error method, the main emphasis being put on try
to reproduce the location of the low- and high-energy re
nances and their intensity.

The theoretical result shown in Fig. 1~b! corresponds to
islands represented by spheres of radiusR56.8 nm with the
center of the sphere located at 0.11R above the substrate
The islands are placed on a square lattice with an interisl
distance~lattice constant! of 19.6 nm that corresponds to
cluster density of 2.631011 cm22. These values nicely com
pare to those obtained by scanning electron microscopy@Fig.
1~a!#, a cluster radius of 8.261.5 nm, and a cluster densit
of 1.960.531011 cm229. The silver coverage that can b
derived from the optics compares within a few percent w
that obtained from the SEM image. Such quantitative agr
ment is impressive, in particular, in view of the relative sim
plicity of the model on which the simulation is based.

The best fit between the optical spectrum and the mo
has been found7 for an aspect ratio~diameter to height! of
1.8 @Fig. 1~b!#. Numerical results are shown in Fig. 2 as
function of the multipole order within this particular geom
etry. A good convergence is obtained upon increasing
multipole order. The same is observed for any case in wh
the aspect ratio of the deposited cluster is lower than 2~i.e.,
when the center of the sphere is above the surface of
substrate!. However, when performing the calculation fo
truncated spheres with centers below the surface of the
strate, the numerical code does not converge any longer
example is given in Fig. 3 where the model is applied to
cluster geometry similar to that used in Fig. 2 except for
aspect ratio, which is now set at a value of 2.2. Upon inclu
ing higher and higher multipole orders in the simulations,
position of the low-energy resonance is wandering a
shows no trend of convergence. At this stage, two ca

o

id
ta.

,

es

FIG. 2. Simulated differential reflectivity curvesDR(v)/R(v)
as a function of energyE5\v for different numbers of multipoles
included in the simulation. Clusters are defined by the same num
cal parameters as in Fig. 1.
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PRB 61 7725NUMERICAL MODELING OF THE OPTICAL RESPONSE . . .
ought to be considered. When the center of the spher
beyond the mid distance between the surface of the subs
and the bottom of the sphere, the divergence of the calc
tion happens for mathematical reasons since the image p
is outside the physical domain or, in other words, outside
sphere. In a different way, when the image point is within
sphere, solutions might exist. The lack of convergence lik
arises from the conditioning of the matrix. Indeed, the pro
lem cannot be solved by increasing the number of multipo
since, at some stage, the machine accuracy is overflowe
both cases, a suggestion to find out favorable configurat
in which the numerical calculation could be performed mo
successfully is to move the expansion center. This point
be examined in Sec. III.

Nevertheless, neither the convergence of the model it
nor that of the model with the experimental data can guar
tee the correctness of the solution. These are only indi
proofs. In the model, potentials are expressed as a functio
expansion coefficients up to theM th order, although the op
tical response, which is derived from the dipole polarizabil
of the deposited clusters, only relies on the first-order exp
sion coefficients. Therefore, the convergence of the ca
lated optical response is necessary but not sufficient to v
date the expressions of the potentials. At variance,
boundary conditions depend on all the expansion coefficie
until the highest order, so that a definite evidence of
consistency of the model would be gained by their fulfi
ment. The question will be addressed in Sec. IV where
above Ag/MgO case will be used to test the accuracy of
model.

III. A MODEL FOR EVALUATING ISLAND
POLARIZABILITIES

The cluster geometry used in the present paper, whic
derived from that used by Bedeaux and co-worker is

FIG. 3. Simulated differential reflectivity by the Bedeau
Vlieger truncated spherical model for the same island paramete
in Fig. 1 but for a negative truncation ratiot r520.11 ~aspect ratio
of 2.25!. The various curves correspond to different choices for
multipole order as indicated in the legend of the figure. Note tha
the region around the low-energy resonance no convergence s
to be reached by increasing the number of multipoles include
the calculation. The inset shows the details of the differential refl
tivity curves around the low-energy resonance.
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picted in Fig. 4. It consists of a substrate~medium 2! local-
ized in vacuum~medium 1! and covered with clusters~me-
dium 3! whose size is assumed to be small with respec
the wavelength of the incident light. The islands are mode
by truncated spheres of radiusR. The vacuum-substrate in
terface is located atz5D, with 2R,D,R. The plane that
passes through the center of the sphere is defined byz50.
The dimensionless truncation parametert r ,

t r5
D

R
~21,t r,1!, ~3.1!

describes the degree of truncation. For technical reas
which would become apparent below, the part of the sphe
lying below the interface is introduced as a distinct mediu
~medium 4!. This latter medium will finally be attributed
properties identical to the substrate~medium 2!. A main
spherical coordinate system,S, is defined such that the origin
of the radial coordinater coincides with the center of the
sphere~Fig. 4!. The polar and azimuthal angles areu andf,
respectively. The positivez axis, which is also the axis o
revolution of the system, is pointing downwards into the su
strate. The impinging light of wavelengthl scatters at the
surface at an incidence angleu0. To calculate the island
polarizability, the polarization of the islands by the incide
light is modeled by using a multipolar expansion and
introducing the image multipoles with respect to t
substrate.22 The center of the potential expansion is chos
along thez axis at a positionmR in the main coordinate
systemS, with

as

e
n
ms

in
-

FIG. 4. The cross section of the geometry considered in
present work. HeremR indicates thez coordinate of the location of

the multipoles, whilem̄R is the same quantity but for the imag
multipoles. Note that the multipoles and thus also the image mu
poles are always located on thez axis, which is the axis of revolu-
tion. The position of the substrate is parallel to thexy plane, and it
is located atz5D, whereD is a ~signed! real constant. The dielec
tric functions of the various regions are those indicated in the fig
by « i(v), with i 51, . . . ,4.
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21,m,1. ~3.2!

The image multipole position becomesm̄R, where

m̄52t r2m. ~3.3!

It is convenient to introduce two other coordinate system
Sm andSm̄ , whose origins are located at the multipole a
multipole image centers, respectively. The azimuthal an
of the plane of incidence of the light is defined asf0. It is
taken equal to zero in all the numerical calculations, wh
are performed herein.

A. Multipole expansions of the potential

If the linear dimension of the island is small compared
the wavelength of the incident light, retardation effects
and around the island can safely be neglected. If the isl
material is assumed to be nonmagnetic, then the incid
magnetic field will be unaffected. Hence the main field is t
electric fieldE(r ), which is related to the potentialc(r ) in
the usual wayE(r )52“c(r ). When retardation effects ca
be neglected or, in other words, when the size of the islan
supposed to be much smaller than the wavelength, this
tential must only satisfy the Laplace equation

“

2c~r !50. ~3.4!

The appropriate boundary conditions for this potential co
from the continuity of the potential itself and of the norm
components of the displacement field,

c I~r s!5c II ~r s!, ~3.5a!

« I~v!]nc I~r s!5« II ~v!]nc II ~r s!. ~3.5b!

Here« i(v) is the frequency dependent dielectric function
mediumi, r s is assumed to be any point on the interface, a
]n denotes its normal derivative. These conditions should
fulfilled for any two media having a common interface.

To solve Eq.~3.4!, with the boundary conditions@Eqs.
~3.5!#, it is convenient to use25 a multipole expansion for the
potentials. In medium 1, the potential then takes the form

c1~r !5c0~r !1(
l ,m

lÞ0

Almr m
2 l 21Ylm~um ,fm!

1(
l ,m

lÞ0

Alm
R r m̄

2 l 21
Ylm~um̄ ,fm̄!. ~3.6!

The spherical coordinates (r m ,um ,fm) and (r m̄ ,um̄ ,fm̄) are
referring to the coordinate systemsSm and Sm̄ , which are
centered at the pointsm andm̄, respectively~Fig. 4!. Them
summation will be understood to range fromm52 l to l.
The spherical harmonicsYlm(u,f) are normalized according
to the convention29

Ylm~u,f!5A2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!~21!meimf,

~3.7!

where Pl
m(cosu) are the associated Legendre polynomi

defined as29
s,

le
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e
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e

f
d
e

s

Pl
m~x!5

~12x2!m/2

2l l !

dl 1m

dxl 1m
~x221! l , x5cosu,

~3.8!

for m>0, while for m,0,

Pl
m~x!5~21!m

~ l 1m!!

~ l 2m!!
Pl

2m~x!. ~3.9!

In Eq. ~3.6!, c0(r ) stands for the potential corresponding
the incident fieldE0, which, provided clusters are sma
compared to the wavelength of the light, can be appro
mated by a homogeneous field

E05E0~sinu0cosf0 ,sinu0sinf0 ,cosu0!. ~3.10!

The potentialc0(r ) related to this incident field then take
the following form:

c0~r !52rE0~cosu cosu01sinu cosf sinu0cosf0

1sinu sinf sinu0sinf0!

52rE0A2p

3
$A2 cosu0Y10~u,f!

2sinu0@e2 if0Y11~u,f!2eif0Y121~u,f!#%,

~3.11!

with E05uE0u. The spherical coordinates (r ,u,f) are de-
fined with respect to the coordinate systemS whose origin is
at the center of the sphere.

For the potential inside the substrate, the solution of
Laplace equation is chosen as

c2~r !5a02rE0A2p

3
$A2a1cosu0Y10~u,f!

2sinu0@a2e2 if0Y11~u,f!2a3eif0Y121~u,f!#%

1(
l ,m

lÞ0

Alm
T r m

2 l 21Ylm~um ,fm!, ~3.12!

whereai are constants to be determined. Note that the te
inside the curly brackets are a linear combination of
terms involved in the expression~3.10! of the potential
c0(r ). For the potential inside the cluster, medium 3 and
the following expansions are defined as

c3~r !5b01(
l ,m

lÞ0

Blmr m
l Ylm~um ,fm!

1(
l ,m

lÞ0

Bl ,m
R r m̄

l
Ylm~um̄ ,fm̄!, ~3.13a!

c4~r !5b081(
l ,m

lÞ0

Blm
T r m

l Ylm~um ,fm!, ~3.13b!

whereb0 andb08 are constants to be determined.
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B. Determination of the expansion coefficients
via boundary conditions

The various unknown expansion coefficients,ai , Alm ,
Blm , etc., are now calculated in terms of the known para
eters of the model by imposing the boundary conditions
the considered geometry. Since a formulation with ima
multipoles is used, the boundary conditions atz5D are eas-
ily satisfied. Their fulfillment leads to the following rela
tions:

a05E0dS «1

«2
21D cosu0 , ~3.14a!

a15
«1

«2
, ~3.14b!

a25a351, ~3.14c!

Alm
R 5~21! l 1m

«12«2

«11«2
Alm , ~3.14d!

Alm
T 5

2«1

«11«2
Alm . ~3.14e!

The continuity at the same boundary (z5D), but now inside
the sphere, gives

b05b08 , ~3.15a!

Blm
R 5~21! l 1m

«32«4

«31«4
Blm , ~3.15b!

Blm
T 5

2«3

«31«4
Blm . ~3.15c!

An explicit expression for the constantb0 is given in Eq.
~A12! of the Appendix. These results are obtained by tak
advantage of both the orthogonality of the spherical harm
ics and the fact that on the surface of the substrate (z5D),
as a consequence of the symmetry of the location of
multipoles and image multipoles, the following relatio
hold: r m5r m̄ , um5p2um̄ , andfm5fm̄ . Note that the re-
lations ~3.14!, ~3.15! are independent of the location of th
multipoles, so that they are similar to those obtained
Wind, Vlieger, and Bedeux22 under the assumption that th
multipoles are located at the center of the sphere. Fina
there are only two independent classes of expansion co
cients, namelyAlm andBlm .

These coefficients can be derived from the relations
express the fulfillment of the boundary conditions at the s
face of the sphere, wherer 5R. By multiplying all the terms
of those relations by the complex-conjugate spherical h
monic @Ylm(u,f)#* and by integrating the resulting expre
sions over the surface of the sphere, where one again t
advantage the orthogonality of the spherical harmonics,
following ~infinite! set of equations is obtained:

(
l 851

`

@Cll 8
m R2 l 822Al 8m1Dll 8

m Rl 821Bl 8m#5Hl
m ,

~3.16a!
-
n
e

g
-

e

y

y,
ffi-

at
r-

r-

es
e

(
l 851

`

@Fll 8
m R2 l 822Al 8m1Gll 8

m Rl 821Bl 8m#5Jl
m ,

~3.16b!

wherel 51,2, . . . , andm50,1. The various matrix element
of the above linear system can all be found in the Append
where their detailed derivation also is presented. The ab
linear system has only a nontrivial solution whenm50 and
m561 @cf. Eqs.~A4!#. These values are associated with t
components of the uniform incident fieldE0, which are or-
thogonal and parallel to the substrate, respectively. An a
tional simplification can be made by showing that the eq
tions corresponding tom521 andm51, respectively, are
equivalent.

To allow for a numerical solution of the infinite linea
system~3.16!, an upper cutoffM in l and l 8 has to be intro-
duced. The integrals that define the system of equations~A5!
are computed by Gauss-Legendre numerical integration.
lutions of the linear system lead to values of the expans
coefficientsAlm and Blm , which in turn can be directly re-
lated to the~dipole! polarizability of the island. These can b
shown to be given by23

a'5
2p«1A10

Ap

3
E0cosu0

, ~3.17a!

a i52
4p«1A11

A2p

3
E0sinu0exp~2 if0!

. ~3.17b!

Herea' anda i are the dipole polarizabilities perpendicul
and parallel to the interface of the substrate, respectiv
Due to the presence of the substrate, these are in gen
quite different. In the present work, the parameter of inter
is the differential optical reflectivityDR(v)/R(v) defined in
Sec. II. This quantity is evaluated by modified Fresnel f
mulas for reflection where the above given polarizabilit
appear through the surface susceptibilities.16

The present section was aimed at introducing a gen
method for the calculation of the polarizability of truncate
spheres supported by a substrate. The model of Wind
co-workers22,23 is just a special case of this approach w
m50 ~see the Appendix for details!, at least fort r>0. In-
deed, to obtain the solution for the case in which the cen
of the sphere is located below the substrate (t r,0), these
authors22,23 apply to the (t r.0) case a coordinate transfo
mation method with a permutation of the dielectric constan
This implies that different potential expansions are used
the two cases, while, in the present work, the expansion
use do not depend on the location of the multipoles w
respect to the surface. Criteria are now needed to know h
reliable these models are, with special attention being pai
cases corresponding to negative values of the truncation
t r .
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IV. FULFILLMENT OF THE BOUNDARY CONDITIONS

In Sec. II and in the already published work,7 the method
has only been judged on the basis of the convergence o
differential reflectivity curvesDR(v)/R(v). Indeed, in the
model used herein, the reflectivity only relies on the lowe
order expansion coefficientA10 and A11 @cf. Eqs. ~3.17!#.
Therefore, the occurrence of a convergence of the reflecti
curves upon, say, increasing the multipole orderM, does not
provide any proof of the reliability of the potentials sinc
these depend on all the expansion coefficients up to the
off order. The potentials given by the expansions~3.6!,
~3.12!, and~3.13!, can in principle be calculated in any poin
of space provided the multipole coefficients,Alm and Blm ,
are known. Since the multipole expansions are indeed s
tions of Eqs.~3.4! and ~3.5! at anyM, it is only the fulfill-
ment of the boundary conditions at the interface between
various media that has to be checked. It has to be stre
that this fulfillment is a more severe test for the calculat
than just considering the convergence of the differential
flectivity curves. It is not only the self-consistency of th
numerical implementation but that of the method itself tha
controlled. Such a study thus provides a powerful and rig
ous tool for justifying the quality of previous and prese
numerical simulations based on a multipole expansion.

The calculation including the multipoles and their imag
the boundary conditions at the cluster-substrate interface
obeyed by construction. Thus, the only boundary conditi
to be checked are at the surface of the sphere. To mea
the error in these, two error functions are defined,

Ec~r s!5
c1~r s!2c2~r s!

maxrs
c0~r s!

, ~4.1a!

E]nc~r s!5
«1]nc1~r s!2«2]nc2~r s!

maxrs
@«]nc0~r s!#

. ~4.1b!

The subscripts1 (2) correspond to quantity just outsid
~inside! the surface of the sphere. The maximum value of
incidence potentialc0 at the surface of the sphere, and t
corresponding quantity for the normal derivative, are used
normalization factors. The impact of the parameters of
model, location of the multipole center, photon energy, a
multipole order on the accuracy of the numerical calculatio
is examined in the following by considering the values tak
by the error functions in various representations of
above-mentioned Ag/MgO deposit.

A. Location of the expansion center

In the model put forward in the present paper, the mu
pole expansion point can move along the symmetryz axis,
instead of being at the center of the sphere as in the Bede
Vlieger model. In Fig. 5, an attempt is made to determine
optimal positionm for a given truncation ratio and value o
M520 at an energy ofE54.5 eV. The mean spatial abso
lute error in the boundary conditionŝuEc(r s)u& and
^uE]nc(r s)u&, which are defined in Eq.~4.1!, are shown in
Fig. 5 as function of the truncation ratio. It can be observ
that the value ofm, which leads to the minimum error, de
pends on the truncation ratio. Fort r>0, the Bedeaux-
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Vlieger limit, where m50, provides the minimum erro
whereas, fort r<0, an improvement is obtained by movin
the expansion point inside the physical domain or, in ot
words, by using negativem values. However, for negative
truncation ratios, the matrix system becomes dramatic
more and more ill conditioned; a fact that may be due
intervention of an increasing power of distance between

surface of the sphere and the expansion pointsm and m̄.
In principle, the infinite expansion of potentials on whic

the method is based should lead to a unique numerical va
wherever the location of the expansion center is. In the c
of numerical calculations, where the expansion is trunca
at an orderM, it is not too surprising to find, for a given
value of M, a ~weak! dependency of the error functions o
the position of the expansion point, as already stresse
Fig. 5. A search for an optimal position of the expansi
center can be performed for each value of the truncation r
~Fig. 6!. For t r>0 ~see also Fig. 5!, it is the center of the
sphere (m50). For t r<0, it appears that the best choice
to place them point close to the substrate so thatm5t r , that
is to say to superimpose the center of expansion and its
age. Roughly speaking, fort r<0, between one and two or

FIG. 5. The mean errors as defined in the text,^uEc(r s)u& and
^uE]nc(r s)u&, in the boundary conditions of~a! the potential and~b!

its normal derivative, as function oft r for different m values. The
model clusters are defined with the same parameters as in the
MgO~100! case~Fig. 1!, with E54.5 eV andM520.
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ders of magnitude in the error function can be earned by
present method with respect to the Bedeaux-Vlieger mo
in which m50.

B. Boundary conditions at the resonance energy

When the energy of the incident light is close to a re
nance of the system, i.e., in our case, close to either
low-energy resonance around 2.5 eV or the high-ene
resonance at 3.7 eV, the boundary conditions are even ha
to satisfy. This is seen from Fig. 7 where the~spatial! mean
of the absolute error in the boundary conditions,^uEc(r s)u&
and^uE]nc(r s)u&, are shown as function of energyE5\v for

truncation ratiot r50.1 andt r520.1. The dips that can b
observed around the low-energy resonance atE52.5 eV are
believed to come from numerical artefacts. These figu
highlight the sizable effect of the dielectric function on t
quality of the simulation, since the energy rangeE52 eV to
E53.7 eV, where the resonances are peaking, concent
on the highest values of the error functions. This is, howev
probably not so surprising in view of the fact that the syst
is close to singular at a resonance point. As the trunca
ratio is reduced, the overall error seems to be increased
it is still the regions around the resonances that are assoc
with the largest errors. Roughly speaking, the errors in
boundary conditions are raised by an energy indepen
factor as the truncation ratio is reduced~Fig. 7!.

FIG. 6. Fulfillment of the boundary conditions as function ofm
for an energyE54.5 eV, a multipole orderM520, and two given
values oft r , 0.1, and20.1. Error functions on~a! the potential and
~b! the normal derivative.
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C. Multipole order

By increasing the number of multipoles included in t
calculation M the fulfillment of the boundary condition
should be improved since the size of the function basis
creases. Figure 8 shows the errors^uEc(r s)u& and^uE]nc(r s)u&
as function ofM for the energyE54.5 eV andm50 for two
truncation ratiost r50.1 andt r520.1. These figures are rep
resentative of the cases wherem50. For t r>0, the error
decreases upon increasingM, which corresponds to the ex
pected behavior. However, fort r<0, the error is not seen to
decrease upon increasingM. In this case, the error function
are quite sensitive to the value ofm. This is illustrated in Fig.
9 where the error functions are given form values of 0 and
20.1. It is observed that moving the expansion point aw
from the center of the sphere may dramatically improve
overall error made in the simulation. Finally, it can be not
that, in all cases, a higher limit inM is imposed by the
vanishing of the matrix conditioning.

D. Spatial variations of the error functions

The evolutions of the potentialc and of its normal de-
rivative «]nc along the surface of the sphere, in the plane
incidence of the light@Figs. 10~a! and 10~b!# and in a plane
perpendicular to it@Figs. 10~c! and 10~d!#, are given as func-
tion of the polar angleu in Fig. 10 for the case correspondin

FIG. 7. The mean error in the boundary conditions as a func
of energy for two values oft r50.1 andt r520.1, in the case de-
fined bym50 andM520, for ~a! the potential and~b! the normal
derivative.
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to t r50.1, E54.5 eV, m50, andM516. Also shown are
the error functionŝ uEc(r s)u& @Figs. 10~a! and 10~c!# and
^uE]nc(r s)u& @Figs. 10~b! and 10~d!# in the bottom panels o
the graphs. For the same set of parameters, we have
found ~results not shown! that the errors are slowly varyin
functions of the azimuthal anglef. The regions that give
rise to the largest errors in the boundary conditions are c
centrated around the top of the sphere and, to some exte
the interface between the spherical cap and the substrate
same trends can be observed in the global view of the bou
ary conditions, which is presented in Fig. 11 for the sa
case. This view consists of a projection in the plane of in
dence of^uEc(r s)u& ~upper panel! and ^uE]nc(r s)u&. The di-
rection of the incidence of the light is indicated by an arro
The error is roughly of the same order of magnitude all o
the sphere.

V. CONCLUSIONS

A generalized method for the calculation of the polar
ability of a truncated sphere by means of a multipolar
scription has been presented. The proposed approach, w
is an extension of earlier published works due to Bedea
Vlieger, and co-workers22,23 and which contains this mode
as a special case, is based on the possibility for the multip
expansion center to freely move along thez axis of the main

FIG. 8. The evolution of the error in the boundary conditions
a function of the order in the multipole development in the case
which E54.5 eV, m50, for two given values oft r , 0.1, and
20.1 @~a! potential~b! the normal derivative#.
lso
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he
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coordinate system instead of being located at the cente
the sphere. This method allows us to perform the calcu
tions for cases in which the numerical code is poorly con
tioned when the center of the truncated sphere is below
plane of truncation. Let us stress that this geometry ha
strong importance since it corresponds to clusters whose
pect ratio is higher than 2.

Neither the convergence of the model itself nor the agr
ment between the data and the model can guarantee tha
solution is correct, since the reflectivity curves only depe
on the lowest-order expansion coefficients. A way to ass
the quality of the numerical calculation to the upper ord
has been introduced, which consists of judging the accur
of the models on the basis of fulfillment of the appropria
boundary conditions. It is shown that, provided the clus
aspect ratio is not too high, the multipole expansion meth
represents a rather accurate tool for the determination
mean values of the parameters characterizing the depo
clusters. In all cases however, the values found for the e
functions allow us to estimate the validity of the model. T
simulation of the optical reflectivity in the UV visible rang
allows us to determine cluster size, shape ratio, and den
in a rather accurate manner, as illustrated herein by the
of a Ag/MgO~100! deposit. The method offers a promisin
tool for the in situ examination of cluster growth on sub
strates.

s
f FIG. 9. The improvement brought in the convergence of
boundary conditions by moving the expansion point in the cast r

520.1, E54.5 eV as a function of the multipole orderM.
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APPENDIX: THE MATRIX ELEMENTS

In this appendix we give the various matrix elements, a
the form of the right-hand side, appearing in the matrix s
tem @Eqs. 3.16!#. With the particular expansions chosen f
the potentialsc i(r ) ( i 51,2,3,4) ~cf. Sec. III!, and the rela-
tions Eqs.~3.14! and ~3.15!, the boundary conditions at th
surface of the substrate, by construction, are automatic
fulfilled. However, we still need to satisfy the remainin
boundary conditions@Eqs.~3.5!# on the surface of the sphere
By taking these boundary conditions, multiplying by th
complex-conjugate spherical harmonic@Ylm(u,f)#* , and in-
tegrating over all directions, i.e., using the weak formulat
of the boundary conditions, one is lead to the following m
trix system@cf. Eqs.~3.16!#:

(
l 851

`

@Cll 8
m R2 l 822Al 8m1Dll 8

m Rl 821Bl 8m#5Hl
m , ~A1a!

(
l 851

`

@Fll 8
m R2 l 822Al 8m1Gll 8

m Rl 821Bl 8m#5Jl
m . ~A1b!

FIG. 10. Evolution of the potential@~a! and ~b!# and its normal
derivative@~c! and~d!# along the surface of the sphere. The errors
the boundary conditions of the potential on the surface of
sphere,Ec(r s) @~a! and ~c!# and of the normal derivativeE]nc(r s)
@~b! and~d!#, are shown as function of the spherical coordinateu for
given value of the azimuthal anglef. The values used for the angl
f correspond to the incident plane (f50) @~a! and~b!# and a plane
perpendicular to the incident plane (f5p/2) @~c! and ~d!#. The
energy of the incident light isE54.5 eV, the truncation ratio ist r

50.1 ~andm50), and the number of multipoles isM516.
s
f

-
r

d
-

lly

-

This linear system can be used to determine the expan
coefficientsAlm and Blm for all allowed values ofl and m:
l 50,61,62, . . . andm50,61,62, . . . ,6m. However, for
orthogonality reasons on integration overf, this system is
reduced tom521,0,1, since only the~uniform! incident
field contains these ‘‘quantum numbers’’@cf. Eq. ~3.11!#.
The matrix elements of the system@Eqs. A1!# are thus given
by the expressions

Cll 8
m

5z l l 8
m FKll 8

m
@m#~ t r !1

«12«2

«11«2
~21! l 81mKll 8

m
@m̄#~ t r !

1
2«1

«11«2
$Kll 8

m
@m#~ t r51!2Kll 8

m
@m#~ t r !%G , ~A2a!

Dll 8
m

52z l l 8
m FMll 8

m
@m#~ t r !1

«32«4

«31«4
~21! l 81mMll 8

m
@m̄#~ t r !

1
2«3

«31«4
$Mll 8

m
@m#~ t r51!2Mll 8

m
@m#~ t r !%G , ~A2b!

Fll 8
m

5z l l 8
m F 2«1«2

«11«2
Lll 8

m
@m#~ t r51!1«1

«12«2

«11«2
$Lll 8

m
@m#~ t r !

1~21! l 81mLll 8
m

@m̄#~ t r !%G , ~A2c!

e

FIG. 11. Global view of the boundary condition errors~a!
^uEc(r s)u& and ~b! ^uE]nc(r s)u& when projected into the plane o
incidence. The parameters used areE54.5 eV, t r50.1, andM
520.
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Gll 8
m

52z l l 8
m F 2«3«4

«31«4
Nll 8

m
@m#~ t r51!1«3

«32«4

«31«4
$Nll 8

m
@m#

3~ t r !1~21! l 81mNll 8
m

@m̄#~ t r !%G . ~A2d!

Here the following notation has been introduced:

z l l 8
m

5
1

2
A~2l 11!~2l 811!~ l 2m!! ~ l 82m!!

~ l 1m!! ~ l 81m!!
, ~A3!

and the integralsK, L, M, and N will be defined below.
Furthermore, the right-hand side of the system@Eqs.~A1!# is
defined as

Hl
m5A4pFb0

R
2E0t r

«12«2

«2
cosu0Gd0ld0m

1A4p

3
E0cosu0d0m

3F«1

«2
d1l1

«12«2

«2
$A3t rz l0

0 Ql0
0 ~ t r !2z l1

0 Ql1
0 ~ t r !%G

2A2p

3
E0sinu0d l1@e2 if0d1m2eif0d21m# ~A4a!

and

Jl
m5A4p

3
E0«1cosu0d0md1l

2A2p

3
E0«2sinu0d1l@e2 if0d1m2eif0d21m#

2A2p

3
@~«12«2!E0sinu0#@e2 if0z1l

1 Ql1
1 ~ t r !d1m

2eif0z l1
21Ql1

21~ t r !d21m#. ~A4b!

The above equations depend on several types of integ
They are defined as

Qll 8
m

~ t r !5E
21

tr
dxPl

m~x!Pl 8
m

~x!, ~A5a!

Kll 8
m

@h#~ t r !5E
21

tr
dxPl

m~x!Pl 8
mS x2h~ t r !

Ax@h#~x,1!
D

3$x@h#~x,1!%2 l 821/2, ~A5b!

Lll 8
m

@h#~ t r !5E
21

tr
dxF Pl

m~x!] r H Pl 8
mS xr2h~ t r !

Ax@h#~x,r !
D

3$x@h#~x,r !%2 l 821/2J GU
r 51

, ~A5c!
ls.

Mll 8
m

@hu#~ t r !5E
21

tr
dxPl

m~x!Pl 8
mS x2h~ t r !

Ax@h#~x,1!
D

3$x@h#~x,1!% l 8/2, ~A5d!

and

Nll 8
m

@h#~ t r !5E
21

tr
dxF Pl

m~x!] r H Pl 8
mS xr2h~ t r !

Ax@h#~x,r !
D

3$x@h#~x,r !% l 8/2J GU
r 51

. ~A5e!

All the above integrals, except theQ integral, have a func-
tional dependency on the functionh(t r), which is used as a
generic case for eitherm(t r) or m̄(t r), i.e., for thez coordi-
nate of the position of the multipoles or image multipoles
the main coordinate systemS with the origin in the center of
the sphere. Moreover, the functional,x@h#(x,r ), appearing
in Eqs.~A5b!–~A5e!, is defined as

x@h#~x,r !5r 222h~ t r !xr1h2~ t r !, x5cosu. ~A6!

This functional gives the distance to a given point from t
location of the multipoles (h5m) or image multipoles (h
5m̄) in terms of the coordinates (r ,u,f) of the main coor-
dinate systemS. Notice thatx@h#(x,r ) is independent of the
azimuthal anglef. This is, of course, a consequence of t
rotational symmetry around thez axis of the considered ge
ometry.

We would like to stress that with Eq.~3.9! and the defi-
nition of z l l 8

m , Eq. ~A3!, the matrix elements constituting th
left-hand side of our linear system@Eqs.~A2!# do not depend
on the actual sign ofm but only its value, i.e.,Cll 8

m
5Cll 8

2m ,
with similar expression for the other~left-hand side! matrix
elements. For the right-hand side matrix elements, it follo
directly from the definitions of these quantities, Eqs.~A4!,
that they vanish identically formÞ0,61 and that they fur-
thermore satisfy the relationsHl

1exp(if0)52Hl
21exp(if0)

andJl
1exp(if0)52Jl

21exp(if0). This is so because the righ
hand side of the linear system stands entirely for the incid
field, which is the same in the present case and the
considered in Ref. 22, and therefore is independent of
location of the multipoles. As a consequence, it follows th
the multipole coefficients fulfill the relations

Al1eif052Al 21e2 if0, ~A7!

Bl1eif052Bl 21e2 if0. ~A8!

Hence, the independent multipole coefficients are chose
those corresponding tom50,1. All other coefficients either
vanish or can be expressed in terms of these. Furthermo
can be shown that if the physical system does not con
any free charges, then the equations withl 50 are useless
Thus the linear system@Eqs. ~A1!# will only be of interest
when l 51,2,3, . . . and m50,1. The above findings look
like those found in the Bedeaux-Vlieger model.22

We may take the ‘‘Bedeaux-Vlieger’’ limit of our result
by placing the multipoles in the center of the sphere, i.e.
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m~ t r !50, ~A9!

m̄~ t r !52t r . ~A10!

Using the notation of Wind and co-workers22,23 the above
introduced integrals then take the form

Kll 8
m

@m#~ t r !5Qll 8
m

~ t r !, Mll 8
m

@m#~ t r !5Qll 8
m

~ t r !,
~A11a!

Kll 8
m

@m̄#~ t r !5Sll 8
m

~ t r !, Mll 8
m

@m̄#~ t r !5Tll 8
m

~ t r !,
~A11b!

Lll 8
m

@m#~ t r !52~ l 811!Qll 8
m

~ t r !, Nll 8
m

@m#~ t r !5 l 8Qll 8
m

~ t r !,
~A11c!
n

c
ia

e-
Lll 8
m

@m̄#~ t r !5] tSll 8
m

~ t,t r !u t51 ,Nll 8
m

@m̄#~ t r !5] tTll 8
m

~ t r !u t51 .
~A11d!

TheQll 8
m integral, which is independent of the position of th

multipoles, is the same in both works. The linear system
Ref. 22, used to determine the multipole expansion coe
cients, can now be obtained from our formulas@Eqs. ~A1!#
by taking advantage of the relations@Eqs. ~A11!#. In this
limit our formulas for the linear system reduce, as th
should, to those presented by Wind and co-workers.22,23

In order to evaluate the potentials in the check of t
boundary conditions, the constantb0, appearing in Eq.
~3.13a!, must be determined. This constant is obtained in
same way as the above matrix elements, but here only te
containingY0,0* (u,f) will contribute. The result is
b05AR

3
E0S «1

«2
21D cosu0z01

0 Q01
0 ~ t r !1RE0t r S «1

«2
21D cosu0@12z00

0 Q00
0 ~ t r !#

1
1

A4p
(

l 851

`

Al 80R2 l 821z0l 8
0 FK0l 8

0
@m#~ t r !1~21! l 8

«12«2

«11«2
K0l 8

0
@m̄#~ t r !1

2«1

«11«2
$K0l 8

0
@m#~1!2K0l 8

0
@m#~ t r !%G

2
1

A4p
(

l 851

`

Bl 80Rl 8z0l 8
0 FM0l 8

0
@m#~ t r !1~21! l 8

«32«4

«31«4
M0l 8

0
@m̄#~ t r !1

2«3

«31«4
$M0l 8

0
@m#~1!2M0l 8

0
@m#~ t r !%G .

~A12!
A

s

*Electronic address: Ingve.Simonsen@phys.ntnu.no
†Electronic address: Remi.Lazzari@sgr.saint-gobain.com
‡Electronic address: Jacques.Jupille@sgr.saint-gobain.com
§Electronic address: Stephane.Roux@sgr.saint-gobain.com
1G. Renaud, Surf. Sci. Rep.32, 1/2 ~1998!.
2D.E. Aspnes and N. Dietz, Appl. Surf. Sci.130-132, 367 ~1998!.
3Y. Borensztein, Physica A207, 293 ~1994!.
4D. Martin, F. Creuzet, J. Jupille, Y. Borensztein, and P. Gaden

Surf. Sci.377-379, 958 ~1997!.
5D. Martin, J. Jupille, and Y. Borensztein, Surf. Sci.402-404, 433

~1998!.
6D. Martin and J. Jupille~unpublished!.
7R. Lazzari, J. Jupille, and Y. Borensztein, Appl. Surf. Sci.142,

451 ~1999!.
8J.C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A203,

385 ~1904!.
9U. Kreibig and M. Vollmer,Optical Properties of Metal Clusters,

Springer Series in Material Science Vol. 25~Springer-Verlag,
Berlin, 1995!.

10G. Mie, Ann. Phys.~Leipzig! 25, 377 ~1908!.
11R. Landauer, inProceedings of the First Conference on the Ele

tromagnetic and Optical Properties of Inhomogeneous Med,
edited by J. C. Garland and D. B. Tanner~AIP, New York,
1978!.

12R.G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villas
n̋or, and W.L. Mocha´n, Phys. Rev. B43, 13 819~1991!.

13R.G. Barrera, G. Monsivais, and L. Mocha´n, Phys. Rev. B38,
e,

-

5371 ~1988!.
14T. Yamaguchi, S. Yoshida, and A. Kinbara, Thin Solid Films18,

63 ~1973!.
15T. Yamaguchi, S. Yoshida, and A. Kinbara, Thin Solid Films21,

173 ~1974!.
16D. Bedeaux and J. Vlieger, Physica A67, 55 ~1973!.
17D. Bedeaux and J. Vlieger, Physica A73, 287 ~1974!.
18J. Vlieger and D. Bedeaux, Physica A82, 221 ~1976!.
19D. Bedeaux and J. Vlieger, Thin Solid Films69, 107 ~1980!.
20J. Vlieger and D. Bedeaux, Thin Solid Films102, 265 ~1983!.
21E. Kretschmann, Z. Phys.227, 412 ~1969!.
22M.M. Wind, J. Vlieger, and D. Bedeaux, Physica A141, 33

~1987!.
23M.M. Wind, P.A. Bobbert, J. Vlieger, and D. Bedeaux, Physica

143, 164 ~1987!.
24J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!.
25M.M. Wind, P.A. Bobbert, and J. Vlieger, Thin Solid Films164,

57 ~1988!.
26F. Didier and J. Jupille, J. Adhes.58, 253 ~1996!.
27M.T. Haarmans and D. Bedeaux, Thin Solid Films224, 117

~1993!.
28E.D. Palik,Handbook of Optical Constants of Solids~Academic

Press, New York, 1985!.
29P. M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!, Pts. 1 and 2.


