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Fast algorithm for generating long self-affine profiles

Ingve Simonsel?* and Alex Hanseh®"
Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, California 92697
2Department of Physics, Theoretical Physics Group, The Norwegian University of Science and Technology,
N-7491 Trondheim, Norway
SInternational Centre for Condensed Matter Physics, University of Beastaixa Postal 04513, 7091970 Braslia, Brazil
(Received 7 November 2001; published 1 March 2002

We introduce a fast algorithm for generating long self-affine profiles. The algorithm, which is based on the
fast wavelet transform, is faster than the conventional Fourier filtering algorithm. In addition to increased
performance for large systems, the algorithm, named the wavelet filtering algostimori gives rise to
profiles for which the long-range correlation extends throughout the entire system independently of the length
scale.
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With the advent of the computer as a serious researcfast Fourier transform, self-affine surfaces in real space, with
tool, there has been a revolution in the quantitative descripthe desirable correlations, are generated.
tion of processes and structures that earlier were deemed too It has previously been show,9] that the Fourier filter-
complex. Two of the key concepts used for this descriptioring algorithm has the disadvantage that the self-affine corre-
are the fractal and its close relative, the self-affine structuréations in the limit of large systems only exists over a frac-
[1]. In the early 1980s, much effort was spent in identifyingtion of the total system size. This is due to aliasing effects.
and describing various physical systems having fractal ofOr large enough systems this fraction might be well below
self-affine structure. As time went by, focus slowly shifted 170 (Se€ Fig. 1 for an explicit exampleOne might overcome

from pure description to asking why such structures would€ @Pove problem by, e.g., temporarily generating a much

appear? This led to the development of the science of con{a’9€r surface than actually needed, and by using only a

plex growth phenomena. Now, many aspects of these a%maélaiirgctn;n Ort)?cehm;asl St'ﬁg' ;E:f 'jie?ol’i\'rﬁ\ée;ﬁé)t r?]gr?]:)yr
well understood. However, there are still hosts of interestinq_lpp g app ’ P y

but unanswered questions lingering on—see, e.g., Ref

[2—4] for recent reviews. More recently, focus has again be'(Fourier-spac)a‘filter function is modified by the introduction

gun FO shift somewhat, and one sees work dealing with the, large momentum cutoff through the use of a modified
physical consequences of the presence of fractal or selgggel function in the Fourier transform of the power spec-
affine structures. A concrete example of these three levels gf . They show that this large momentum cutoff, while
development may be found in the study of fracture surfaces.

In the early 1980s, Mandelbret al. [5] characterized frac- 10
ture surfaces as self-affine, in the early 1990s attempts were
made to understand why fracture surfaces are self-dfihe
Recently, phenomena such as two-phase flow in fracture
joints have been studidd].

In order to study the physical consequences of the pres-
ence of self-affine surfaces, algorithms generating these must
be found. There are already several in existence, see, e.g.,
Feder[1]. However, subtle phenomena require generation of
huge surfaces. Two aspects of the algorithms then become
important: (i) How self-affine are the surfaces that are gen-
erated? andii) how fast is the algorithm? , , )

The most popular algorithm used today is the Fourier fil- 10 10° 10* 10°
tering algorithm (FFA). This algorithm, which has a fast Ax
implementation thanks to the fast Fourier transform, consists -~ | socond-order structure functi@fAx) obtained from
of generating in the Fourier domain, uncorrelated GaUSSiaBnesinéleisample of length = 22°= 33 554 432. The profiles, with
random numbers, which are filtered by a decaying power—lavkgrescriloed Hurst exponei=0.3, were generated by WF:A and
filter of exponent—ZH—l, WhereH is the Hurst exp_onent FFA, respectively. The solid lines correspond $6Ax)~Ax2".

(to be defined below By taking advantage of the inverse one gbserves that the scaling regime of the wavelet generated sur-
face is longer then the one generated by the Fourier method. In
particular, the result for the Fourier generated surface exemplifies

*Email address: Ingve.Simonsen@phys.ntnu.no the claim of Ref[10] that the scaling regime of FFA generaiedg
TEmail address: Alex.Hansen@phys.ntnu.no surfaces can be as low as 0.1-1 %.

eeded easily become too large. Another way of getting
Zround this problem is due to Maks al. [10]. Here the
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oo | ' | | S(AX)~(Ax)2", 3
0.03 | and
P(q)~q 2"1. 4
oot | (@)~q 4
g Below we will make use of these two scaling relations.
-0.01 The wavelet transforrfil1-13 of a functionh(x) is de-
fined as
-0.03 | .
W[h](a,b)zj’ dx h(x) 5 y(X), (5)
-0.05 - - - - o
0 1000 2000 3000 4000
x where i, ,(X) is related to the wavelaf(x) by
FIG. 2. A self-affine profileh(x) of lengthN=4096 and Hurst 1 b
exponentH =0.6 generated by the wavelet filtering algorithm. The Yap(X)= ——= i X (6)
wavelet used in order to generate the profile was the D12 & \/5 a

Daubechies wavelet.
In these expressiorsandb denote the scaling and location

irrelevant for the large scale behavior in real space, is esseparameters, respectively.
tial in order to suppress the aliasing effect and thereby ob- Recently, the wavelet transform has been used to analyze
taining surfaces with the desired scaling properties over theelf-affine profiles[14,15. In Ref. [15] the authors intro-
entire system size. duced what they called the average wavelet coefficient func-

In this paper we suggest an alternative filtering algorithmtion, defined asW[h](a)=(|W[h](a,b)|),, where(-), de-
based on wavelets, whica priori, and without modifica- notes the average over all the location parameters
tions, gives rise to self-affine correlations that extémp to  corresponding to one and the same sealEor a self-affine
finite size effectsover the entire system independently of its function h(x), this quantity should scale §$5]
size(Fig. 1). This algorithm is also computationally cheaper

than the traditionalor modified Fourier filtering algorithm. W[h](a)~a" 2, (7)
For the present discussion we limit ourselves to o ) .
(1+1)-dimensional surfaces, which we will cadtofiles.A In much the same way as the Fourier filtering algorithm is

(statistically self-affine profileh(x) is by definition a struc- used for generating self-affine profiles via the fast Fourier
ture that remaingstatistically invariant under the following transform, a wavelet based filtering technique can be based

scaling relation: on Eq.(7) in combination with the fast wavelet transform.
The output of the fast wavelet transfofhil—13 is a vector
X—\X, (18  organized as a collection of various levels or hierarchies all
of different lengths where each levélis associated with a
h—xHh. (1b) corresponding scala, . The two first components of this

. vector, also known as level=0, are associated to the scal-
Here\ is a real number andi, known as the roughness or jhg function. All the other components are “true” wavelet
Hurst exponent, characterizes this invariance. This exponeRbefficients, such that at level, corresponding to scake,
is usually in the range from zero to 1. Whéf=1/2, the  _ 5~/ (neasured in unit of the profile lengththere are
profile is not correlated. An example of such a profile is theN/=2/ coefficients. These coefficientssing our conven-
Brownian motion in one dimension. In this case, we interpretio) are arranged such that the coefficients of the highest
time asx andh(x) as the position of the Brownian particle at |gye| are found at the end of the vector, and the levels de-

time x. WhenH>1/2 the profile is persistent, while when ¢rease monotonically towards the top of the vector, corre-
H<1/2 it is antipersistent. We show in Fig. 2 an example Ofsponding to the levet'=0.

a self-affine profile generated by the algorithm to be pre- Hence, the wavelet based algorithm, which we will be

sented in this paper. , _ referring to as thevavelet filtering algorithm(WFA), con-
From the scaling relatioril), one can often, with rela- gists of the following three steps.

tively ease, derive scaling relations for related quantities. In (1) Generate in the wavelet-domain normalized uncorre-
this paper we will later explicitly need the scaling relation |5teq Gaussian numbefs;}, withi=1,2, . .. N whereN is
for the second-order structure function the number of discrete pointg; that together withh;
_ =h(x;) constitute the self-affine profild\ is assumed, due
S(Ax)={|h(Ax+x)—h(x)|?)y, 2 i

(8%)=([h(Ax+X)=h(X) %) @ to the use of the fast wavelet transform, to be a power of 2.
where(- ), represents the average over the position variable (2) Filter these random numbers according to
X, and the power spectrur®(q), defined as the Fourier
transform of the height-height correlation function, wih Wi:(a/(i))HJrl/ZL, i=1,2,...N
being the momentum variable. They scald AS] ' q 77|>/(i)
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FIG. 4. Average power spectrui(q) obtained by averaging
over N,=50 sampledfor given H) of the self-affine profileh(x)
generated by WFA. All profiles were of lengttN=2%
=33554 432. The Hurst exponents used wg@mem bottom to top
H=0.8, 0.6, 0.4, and 0.2, as indicated in the figure. The dashed
ines are the best regression fits corresponding, respectively, to
tﬂurst exponentsfrom bottom to top H=0.80+0.01, 0.61-0.01,
0.41+0.01, and 0.2 0.01.

FIG. 3. Average second-order structure funct®A x) obtained
by averaging oveN,,=50 samplegfor givenH) of the self-affine
profile h(x) generated by WFA. All profiles were of length
=225=33 554 432. The Hurst exponents used wémem bottom to
top) H=0.8, 0.6, 0.4, and 0.2, as indicated in the figure. The dashe
lines are the best regression fits corresponding, respectively,
Hurst exponentg¢from bottom to top H=0.80+0.01, 0.6G-0.01,
0.41+0.01, and 0.220.02.

to obtain the wavelet coefficientsv;}. Herea,;,=2""®  number whose value depends on the wavelet (%81 7.
represents the scale, at levé(i), where/ (i) is defined as Thus, the number of operations needed for generating a sur-
the level corresponding to the location indieaf the vector face by WFA islinear in the number of points belonging to
w; (or %;). In the above expression the aVerE@JﬂD/(i) is the profile. In comparison, the Fourier filtering algorithm,
understood to be taken over all indidesorresponding to the Whose speed is mainly controlled by the fast Fourier trans-
one and the same level(i). form, needD(N log, N) operations to generate a profile. For
(3) Perform the inverse fast wavelet transform {om}, large system sizes the difference in execution time between
with the (compactly supportedwavelet of your choice, to WFA and the Fourier filtering algorithm may become signifi-

obtain the(real-spacgself-affine profile of predefined Hurst cant.
exponentH. In order to test numerically the predictions made above,

With the wavelet filtering algorithm, good quality self- we have chosen to study the second-order structure function
affine surfaces with predefined Hurst exponent can be gerS(Ax) and the power spectrui(q) of self-affine profiles
erated. In Fig. 2 we show an example of a self-affine surfacgenerated with the wavelet filtering algorithm. The appropri-
of Hurst exponenH=0.6 and lengtiN=4096 generated by ate scaling relations for these two quantities are given by
the algorithm just outlined. It is worth noting that the above Egs. (3) and (4). They will provide us with information en-
three steps can be modified in order to deal with surfaces iabling us to accurately quantify over which length scales the
higher dimension§l16]. In this case the speed of the surfaceself-affine correlations exist. The numerical experiments, for
generating algorithm becomes very important. which the results will be presented shortly, were performed

One of the prominent features of the wavelet transform i€as follows: We generated, by WFA, an ensemble of long
that the basis functions, the wavelets, are localized in botiself-affine profiles all with the same Hurst exponéhtFor
space and frequency. This has as a consequence, among o#ach profile the structure function and the power spectrum
ers, that there is no aliasing, or it is at least heavily supwere calculated, and these were averaged over the ensemble
pressed as compared with the Fourier transform. This impliegf profiles.
that the wavelet filtering algorithm should automatically re- In Fig. 3 we give the numerical results for the second-
sult in surfaces that have the desired correlations over therder structure function obtained as described above. The
entire length of the profile, and not just a small fraction of it. predefined Hurst exponents, used by the surface generator,
Hence, independent of the system size, the WFA is capablere from bottom to togH=0.8, 0.6, 0.4, and 0.2 as indi-
of generating profiles with well-defined long-range correla-cated in the figure. The length of each profile Was 22°
tions. We will below demonstrate the validity of this claim. =33554432. The number of profiles used in obtaining the

Before turning to the numerical studies of the WFA, we averages wasN,=50, and the wavelet used was of the
add some remarks regarding the computational efficiency dbaubechies-type§12) [11-13. The dashed lines are re-
this algorithm. The most time-consuming part of the WFA isgression fits to the numerical data. They correspdifidsn
the inverse wavelet transform. To a good approximation, abottom to top to Hurst exponents o =0.80+0.01, 0.60
least for larger system sizes, this time determines the overatt 0.01, 0.410.01, and 0.22 0.02, all consistent, within the
computational time of the entire algorithm. The fast waveleterror bars, with the predefined exponents given above. One
transform need®(cN) operations, where is a positive real  easily observes from Fig. 3 that the correlations extend over
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all scales except for the largest lajy. The reason that the generating a profile of the length used abode=2%°) was
last few large lags do not fit into this general picture is due tat,;a=45 s andgpa=125 s for the WFA and the traditional
finite size effects. We have also undertaken the above analyer modified Fourier filtering algorithm, respectively. Hence
sis for different types of wavelets, taken from the Daubechieshe speedup gained by using the wavelet filtering algorithm
family, and for various system sizes, finding no results thabver the Fourier filter algorithm is close to a factor 3. For
are inconsistent with those presented in Fig. 3. system sizedN~10°, we could not observe any significant
In Fig. 4 we present the average power spectrum obtainedifference between the two algorithms.
using the same surfaces that we used to obtain Fig. 3. The In conclusion, we have introduced a fast and simple algo-
correlations again span most scales. The dashed regressigithm for generating longor shor} self-affine profiles. This
fits lead to the following exponent§rom bottom to top:  algorithm, named the wavelet filtering algorithm, is demon-
H=0.80+0.01, 0.6%*0.01, 0.4%*0.01, and 0.260.01, strated to overcome the problem related to the aliasing effect,
which again are in excellent agreement with the values of thevhich the traditional Fourier filtering algorithm is troubled
Hurst exponent used for the generation of the underlyingvith. Furthermore, the wavelet based filtering technique out-
profiles. performs its Fourier-domain counterpart by large margins
Figures 3 and 4 indicate that the self-affine correlationswith respect to computational costs, at least for large system
span all but the largest scales of the profiles. We stress thaizes.
this is a generic property of the wavelet filtering algorithm,
and no modification of the algorithm is needed in order to
handle large system sizes in a satisfactory manner. This is a I.S. would like to thank the Research Council of Norway
consequence of the celebrated property of the wavelets beirapd Norsk Hydro ASA for financial support. A.H. thanks
localizedboth in space and frequency. H.N. Nazareno and F.A. Oliveira for warm hospitality and
The calculations of this paper were performed on a SGlthe ICCMP for support. This work has received support from
Cray Origin 2000 supercomputer based on the R10000 chithe Research Council of Norwai?rogram for Supercomput-
from SGI. On this machine the average CPU time needed faing) through a grant of computing time.
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