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Fast algorithm for generating long self-affine profiles
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We introduce a fast algorithm for generating long self-affine profiles. The algorithm, which is based on the
fast wavelet transform, is faster than the conventional Fourier filtering algorithm. In addition to increased
performance for large systems, the algorithm, named the wavelet filtering algorithm,a priori gives rise to
profiles for which the long-range correlation extends throughout the entire system independently of the length
scale.
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With the advent of the computer as a serious resea
tool, there has been a revolution in the quantitative desc
tion of processes and structures that earlier were deeme
complex. Two of the key concepts used for this descript
are the fractal and its close relative, the self-affine struct
@1#. In the early 1980s, much effort was spent in identifyi
and describing various physical systems having fracta
self-affine structure. As time went by, focus slowly shift
from pure description to asking why such structures wo
appear? This led to the development of the science of c
plex growth phenomena. Now, many aspects of these
well understood. However, there are still hosts of interest
but unanswered questions lingering on—see, e.g., R
@2–4# for recent reviews. More recently, focus has again
gun to shift somewhat, and one sees work dealing with
physical consequences of the presence of fractal or s
affine structures. A concrete example of these three leve
development may be found in the study of fracture surfac
In the early 1980s, Mandelbrotet al. @5# characterized frac-
ture surfaces as self-affine, in the early 1990s attempts w
made to understand why fracture surfaces are self-affine@6#.
Recently, phenomena such as two-phase flow in frac
joints have been studied@7#.

In order to study the physical consequences of the p
ence of self-affine surfaces, algorithms generating these m
be found. There are already several in existence, see,
Feder@1#. However, subtle phenomena require generation
huge surfaces. Two aspects of the algorithms then bec
important:~i! How self-affine are the surfaces that are ge
erated? and~ii ! how fast is the algorithm?

The most popular algorithm used today is the Fourier
tering algorithm ~FFA!. This algorithm, which has a fas
implementation thanks to the fast Fourier transform, cons
of generating in the Fourier domain, uncorrelated Gauss
random numbers, which are filtered by a decaying power-
filter of exponent22H21, whereH is the Hurst exponen
~to be defined below!. By taking advantage of the invers
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fast Fourier transform, self-affine surfaces in real space, w
the desirable correlations, are generated.

It has previously been shown@8,9# that the Fourier filter-
ing algorithm has the disadvantage that the self-affine co
lations in the limit of large systems only exists over a fra
tion of the total system size. This is due to aliasing effec
For large enough systems this fraction might be well bel
1% ~see Fig. 1 for an explicit example!. One might overcome
the above problem by, e.g., temporarily generating a m
larger surface than actually needed, and by using onl
small fraction of the total size. This is, however, not a ve
appealing approach, as the computer time and mem
needed easily become too large. Another way of gett
around this problem is due to Makseet al. @10#. Here the
~Fourier-space! filter function is modified by the introduction
of a large momentum cutoff through the use of a modifi
Bessel function in the Fourier transform of the power sp
trum. They show that this large momentum cutoff, wh

FIG. 1. Second-order structure functionS(Dx) obtained from
onesingle sample of lengthN5225533 554 432. The profiles, with
prescribed Hurst exponentH50.3, were generated by WFA an
FFA, respectively. The solid lines correspond toS(Dx);Dx2H.
One observes that the scaling regime of the wavelet generated
face is longer then the one generated by the Fourier method
particular, the result for the Fourier generated surface exempl
the claim of Ref.@10# that the scaling regime of FFA generatedlong
surfaces can be as low as 0.1–1 %.
©2002 The American Physical Society01-1
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irrelevant for the large scale behavior in real space, is es
tial in order to suppress the aliasing effect and thereby
taining surfaces with the desired scaling properties over
entire system size.

In this paper we suggest an alternative filtering algorit
based on wavelets, whicha priori, and without modifica-
tions, gives rise to self-affine correlations that extend~up to
finite size effects! over the entire system independently of
size~Fig. 1!. This algorithm is also computationally cheap
than the traditional~or modified! Fourier filtering algorithm.

For the present discussion we limit ourselves
(111)-dimensional surfaces, which we will callprofiles.A
~statistically! self-affine profileh(x) is by definition a struc-
ture that remains~statistically! invariant under the following
scaling relation:

x→lx, ~1a!

h→lHh. ~1b!

Herel is a real number andH, known as the roughness o
Hurst exponent, characterizes this invariance. This expo
is usually in the range from zero to 1. WhenH51/2, the
profile is not correlated. An example of such a profile is t
Brownian motion in one dimension. In this case, we interp
time asx andh(x) as the position of the Brownian particle
time x. When H.1/2 the profile is persistent, while whe
H,1/2 it is antipersistent. We show in Fig. 2 an example
a self-affine profile generated by the algorithm to be p
sented in this paper.

From the scaling relation~1!, one can often, with rela
tively ease, derive scaling relations for related quantities
this paper we will later explicitly need the scaling relatio
for the second-order structure function

S~Dx!5^uh~Dx1x!2h~x!u2&x , ~2!

where^•&x represents the average over the position varia
x, and the power spectrumP(q), defined as the Fourie
transform of the height-height correlation function, withq
being the momentum variable. They scale as@1,3#

FIG. 2. A self-affine profileh(x) of lengthN54096 and Hurst
exponentH50.6 generated by the wavelet filtering algorithm. T
wavelet used in order to generate the profile was the D
Daubechies wavelet.
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S~Dx!;~Dx!2H, ~3!

and

P~q!;q22H21. ~4!

Below we will make use of these two scaling relations.
The wavelet transform@11–13# of a functionh(x) is de-

fined as

W @h#~a,b!5E
2`

`

dx h~x!ca,b* ~x!, ~5!

whereca,b(x) is related to the waveletc(x) by

ca,b~x!5
1

Aa
cS x2b

a D . ~6!

In these expressionsa andb denote the scaling and locatio
parameters, respectively.

Recently, the wavelet transform has been used to ana
self-affine profiles@14,15#. In Ref. @15# the authors intro-
duced what they called the average wavelet coefficient fu
tion, defined asW@h#(a)5^uW @h#(a,b)u&b , where^•&b de-
notes the average over all the location parametersb
corresponding to one and the same scalea. For a self-affine
function h(x), this quantity should scale as@15#

W@h#~a!;aH11/2. ~7!

In much the same way as the Fourier filtering algorithm
used for generating self-affine profiles via the fast Four
transform, a wavelet based filtering technique can be ba
on Eq. ~7! in combination with the fast wavelet transform
The output of the fast wavelet transform@11–13# is a vector
organized as a collection of various levels or hierarchies
of different lengths where each levell is associated with a
corresponding scaleal . The two first components of this
vector, also known as levell 50, are associated to the sca
ing function. All the other components are ‘‘true’’ wavele
coefficients, such that at levell , corresponding to scaleal

522l ~measured in unit of the profile length!, there are
Nl 52l coefficients. These coefficients~using our conven-
tion! are arranged such that the coefficients of the high
level are found at the end of the vector, and the levels
crease monotonically towards the top of the vector, cor
sponding to the levell 50.

Hence, the wavelet based algorithm, which we will
referring to as thewavelet filtering algorithm~WFA!, con-
sists of the following three steps.

~1! Generate in the wavelet-domain normalized uncor
lated Gaussian numbers$h i%, with i 51,2, . . . ,N whereN is
the number of discrete pointsxi that together withhi
5h(xi) constitute the self-affine profile.N is assumed, due
to the use of the fast wavelet transform, to be a power o

~2! Filter these random numbers according to

wi5~al ( i )!
H11/2

h i

^uhu& l ( i )
, i 51,2, . . . ,N

2
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BRIEF REPORTS PHYSICAL REVIEW E 65 037701
to obtain the wavelet coefficients$wi%. Here al ( i )522l ( i )

represents the scale, at levell ( i ), wherel ( i ) is defined as
the level corresponding to the location indexi of the vector
wi ~or h i). In the above expression the average^uhu& l ( i ) is
understood to be taken over all indicesi corresponding to the
one and the same levell ( i ).

~3! Perform the inverse fast wavelet transform on$wi%,
with the ~compactly supported! wavelet of your choice, to
obtain the~real-space! self-affine profile of predefined Hurs
exponentH.

With the wavelet filtering algorithm, good quality sel
affine surfaces with predefined Hurst exponent can be g
erated. In Fig. 2 we show an example of a self-affine surf
of Hurst exponentH50.6 and lengthN54096 generated by
the algorithm just outlined. It is worth noting that the abo
three steps can be modified in order to deal with surface
higher dimensions@16#. In this case the speed of the surfa
generating algorithm becomes very important.

One of the prominent features of the wavelet transform
that the basis functions, the wavelets, are localized in b
space and frequency. This has as a consequence, amon
ers, that there is no aliasing, or it is at least heavily s
pressed as compared with the Fourier transform. This imp
that the wavelet filtering algorithm should automatically r
sult in surfaces that have the desired correlations over
entire length of the profile, and not just a small fraction of
Hence, independent of the system size, the WFA is cap
of generating profiles with well-defined long-range corre
tions. We will below demonstrate the validity of this claim

Before turning to the numerical studies of the WFA, w
add some remarks regarding the computational efficienc
this algorithm. The most time-consuming part of the WFA
the inverse wavelet transform. To a good approximation
least for larger system sizes, this time determines the ove
computational time of the entire algorithm. The fast wave
transform needsO(cN) operations, wherec is a positive real

FIG. 3. Average second-order structure functionS(Dx) obtained
by averaging overNh550 samples~for given H) of the self-affine
profile h(x) generated by WFA. All profiles were of lengthN
5225533 554 432. The Hurst exponents used were~from bottom to
top! H50.8, 0.6, 0.4, and 0.2, as indicated in the figure. The das
lines are the best regression fits corresponding, respectively
Hurst exponents~from bottom to top! H50.8060.01, 0.6060.01,
0.4160.01, and 0.2260.02.
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number whose value depends on the wavelet used@13,17#.
Thus, the number of operations needed for generating a
face by WFA islinear in the number of points belonging t
the profile. In comparison, the Fourier filtering algorithm
whose speed is mainly controlled by the fast Fourier tra
form, needsO(N log2 N) operations to generate a profile. F
large system sizes the difference in execution time betw
WFA and the Fourier filtering algorithm may become signi
cant.

In order to test numerically the predictions made abo
we have chosen to study the second-order structure func
S(Dx) and the power spectrumP(q) of self-affine profiles
generated with the wavelet filtering algorithm. The approp
ate scaling relations for these two quantities are given
Eqs. ~3! and ~4!. They will provide us with information en-
abling us to accurately quantify over which length scales
self-affine correlations exist. The numerical experiments,
which the results will be presented shortly, were perform
as follows: We generated, by WFA, an ensemble of lo
self-affine profiles all with the same Hurst exponentH. For
each profile the structure function and the power spectr
were calculated, and these were averaged over the ense
of profiles.

In Fig. 3 we give the numerical results for the secon
order structure function obtained as described above.
predefined Hurst exponents, used by the surface gener
were from bottom to topH50.8, 0.6, 0.4, and 0.2 as indi
cated in the figure. The length of each profile wasN5225

533 554 432. The number of profiles used in obtaining
averages wasNh550, and the wavelet used was of th
Daubechies-type (D12) @11–13#. The dashed lines are re
gression fits to the numerical data. They corresponds~from
bottom to top! to Hurst exponents ofH50.8060.01, 0.60
60.01, 0.4160.01, and 0.2260.02, all consistent, within the
error bars, with the predefined exponents given above.
easily observes from Fig. 3 that the correlations extend o

d
to

FIG. 4. Average power spectrumP(q) obtained by averaging
over Nh550 samples~for given H) of the self-affine profileh(x)
generated by WFA. All profiles were of lengthN5225

533 554 432. The Hurst exponents used were~from bottom to top!
H50.8, 0.6, 0.4, and 0.2, as indicated in the figure. The das
lines are the best regression fits corresponding, respectively
Hurst exponents~from bottom to top! H50.8060.01, 0.6160.01,
0.4160.01, and 0.2060.01.
1-3



t
a
ie
ha

in
T
ss

th
in

n
th

m
to
is
e

G
ch

f

l
e
hm
or
t

go-

n-
ect,
d
ut-
ins
tem

ay
s
d
m

-

BRIEF REPORTS PHYSICAL REVIEW E 65 037701
all scales except for the largest lagsDx. The reason that the
last few large lags do not fit into this general picture is due
finite size effects. We have also undertaken the above an
sis for different types of wavelets, taken from the Daubech
family, and for various system sizes, finding no results t
are inconsistent with those presented in Fig. 3.

In Fig. 4 we present the average power spectrum obta
using the same surfaces that we used to obtain Fig. 3.
correlations again span most scales. The dashed regre
fits lead to the following exponents~from bottom to top!:
H50.8060.01, 0.6160.01, 0.4160.01, and 0.2060.01,
which again are in excellent agreement with the values of
Hurst exponent used for the generation of the underly
profiles.

Figures 3 and 4 indicate that the self-affine correlatio
span all but the largest scales of the profiles. We stress
this is a generic property of the wavelet filtering algorith
and no modification of the algorithm is needed in order
handle large system sizes in a satisfactory manner. This
consequence of the celebrated property of the wavelets b
localizedboth in space and frequency.

The calculations of this paper were performed on a S
Cray Origin 2000 supercomputer based on the R10000
from SGI. On this machine the average CPU time needed
ur
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generating a profile of the length used above (N5225) was
tWFA545 s andtFFA5125 s for the WFA and the traditiona
~or modified! Fourier filtering algorithm, respectively. Henc
the speedup gained by using the wavelet filtering algorit
over the Fourier filter algorithm is close to a factor 3. F
system sizesN;103, we could not observe any significan
difference between the two algorithms.

In conclusion, we have introduced a fast and simple al
rithm for generating long~or short! self-affine profiles. This
algorithm, named the wavelet filtering algorithm, is demo
strated to overcome the problem related to the aliasing eff
which the traditional Fourier filtering algorithm is trouble
with. Furthermore, the wavelet based filtering technique o
performs its Fourier-domain counterpart by large marg
with respect to computational costs, at least for large sys
sizes.
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