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Empirical evidence is given for a significant difference in the collective trend of the share prices during the
stock index rising and falling periods. Data on the Dow Jones Industrial Average and its stock components are
studied between 1991 and 2008. Pearson-type correlations are computed between the stocks and averaged over
stock pairs and time. The results indicate a general trend: whenever the stock index is falling the stock prices
are changing in a more correlated manner than in case the stock index is ascending. A thorough statistical
analysis of the data shows that the observed difference is significant, suggesting a constant fear factor among
stockholders.
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I. INTRODUCTION

The world is once again experiencing a major financial-
economic crisis, the worst since the crash of October 1929
that initiated the great depression of the 1930s. Many citi-
zens are concerned for obvious reasons; we are facing global
recession; banks and financial institutions go bankrupt; com-
panies struggle to get credit and many are forced to reduce
their workforce or even go out of business. Interest rates are
increasing while private savings invested in the stock market
evaporate. Large parts of our contemporary societies are
deeply affected by the new financial reality.

The current financial crisis is one particular dramatic ex-
ample of collective effects in stock markets �1–4�; during
crises nearly all stocks drop in value simultaneously. Fortu-
nately, such extreme situations are relatively rare. What is
less known, however, is that during more normal “noncriti-
cal” periods, collective effects do still represent characteris-
tics of stock markets that in particular influence their short
time behavior. One such effect will be addressed in this pub-
lication, where our aim is to present empirical evidence for
an asymmetry in stock-stock correlations conditioned by the
size and direction of market moves. In particular, we will
present empirical results showing that when the Dow Jones
Industrial Average �DJIA� index �“the market”� is dropping,
then there exists a significantly stronger stock-stock correla-
tion than during times of a rising market. Our results indicate
that such enhanced �conditional� stock-stock correlations are
not only relevant during times of dramatic market crashes,
but instead represents features of markets during more “nor-
mal” periods.

There is certainly the aspect of market microstructure
whenever we examine the collective behavior of stock mar-
ket participants. Ever since the stock market crash of 1987,
programmed trading has many times been cited as a possible
factor behind the acceleration of downward movements dur-
ing a market crash. Certainly the advancement of these algo-
rithmic trading platforms contributes to increasing correla-
tion between stock movements but we believe that these
algorithms produce symmetric correlations and cannot ac-
count for the asymmetry documented in the present paper.

II. INVERSE STATISTICS

Distribution of returns is traditionally used as one of the
proxies for the performance of stocks and markets over a
certain time history �1–3�. In the economics, finance, and
econometrics literature the problem of market sentiment and
investor confidence is usually addressed by the use of vari-
ous indicators. These indicators are either derived from ob-
jective market data �5�, or obtained by conducting
questionnaire-based surveys among professional and indi-
vidual investors �6�. In the present study we consider thus the
first approach, since we believe that the market data �prices
and returns� are more objective proxies than questionnaire-
inferred data.

The basic quantity of interest is the logarithmic return,
defined as the �natural� logarithm of the relative price change
over a fixed time interval �t, i.e.,

r�t�t� = ln� p�t + �t�
p�t�

� , �1�

where p�t� denotes the asset price at time t �1–3�. In addition
to this basic quantity, it is also desirable to have available a*ingve.simonsen@phys.ntnu.no; http://web.phys.ntnu.no/~ingves
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time-dependent proxy where the asset performance is gauged
over a nonconstant time interval. One such approach is the
so-called inverse statistics approach �7–10� recently intro-
duced and adapted to finance from the study of turbulence
�11,12�. The main idea underlying this method is to not fix
the time interval �or window�, �t in Eq. �1�, but instead to
turn the question around and ask for what is the �shortest�
waiting time, ��, needed to reach a given �fixed� return level,
�, for the first time when the initial investment was made at
time t �see Ref. �7� for details�,

� � r��
�t� . �2�

Hence, the inverse statistics approach concerns itself with the
study of the distribution of waiting times �13� that in the
following will be denoted by p����.

Recently, this method of analysis has been applied to the
study of various single stocks and market indices, both from
mature and emerging markets, as well as to foreign exchange
data and even artificial markets �7–10,14–21�. The waiting
time histograms possess well-defined and pronounced
��-dependent� maxima �7� �Fig. 1�a�� followed by tails that
have been claimed to have a power-law decay p�������

−�

�7–10,13�. Although it is not the purpose of the present paper
to prove or disprove this statement, our results suggest an
exponent ��3 /2 �Fig. 1�b��, a value that is a consequence
of the uncorrelated increments of the underlying asset price
process �13�. However, to rigorously prove the power-law

assumption, a detailed analysis would be necessary, and it
can be done, for instance, by following the method proposed
in Ref. �22�.

Studies of single stocks, for given �moderate� positive and
negative levels of returns, �	�	, have revealed, almost sym-
metric waiting time distributions �Fig. 2� �15,21,23�. Unex-
pectedly, however, stock index data seem not to share this
feature. They do instead give raise to asymmetric waiting
time distributions �Fig. 1�a�� for return levels 	�	 for which
the corresponding single stock distributions were symmetric
�15,23�. This asymmetry is expressed by negative return lev-
els being reached sooner than those corresponding to posi-
tive levels �of the same magnitude of ��. This effect was
termed the gain-loss asymmetry �7� and has later been ob-
served for many major stock indices �7,8,18,19,24,25�. It is
here important to note that the gain-loss asymmetry is not a
consequence of the generally long-term positive trend �or
drift� of the data since this was removed by considering an
average with a suitable window size on the prices. The long-
term positive trend will affect long waiting times and would
induce shorter waiting times for the positive return levels.
However, empirically one finds that the waiting times of in-
dices are shortest for negative return levels—the opposite of
what is to be expected from the long term trend effect. In
passing we note that recently it has been found that also
single stocks may show some degree of gain-loss asymmetry
when the level of return, 	�	, is getting sufficiently large
�21,26�. However, it still remains true that for not too large
return levels, e.g., 	�	=0.05, the waiting time distributions for

FIG. 1. �Color online� Inverse statistics results for logarithmic return levels of �= �5% for the DJIA index �data between 1991 and
2008�. The figures show the gain-loss asymmetry; open green triangles represents ��0, while filled red circles refer to ��0. On the
log-linear scale �a� the asymmetry is more evident, while on log-log scale �b� the power-law nature of the tail of the distribution is
observable. The dashed line indicates the slope −3 /2.

FIG. 2. �Color online� Same as
Fig. 1, but now for the DJIA
stocks: �a� General Motors and �b�
McDonald’s Corp. Notice that
gain-loss asymmetry is not ob-
served in this case.
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single stocks are symmetric to a good approximation �21�.
The presence of a gain-loss asymmetry in an index may

seem like a paradox since the value of a stock index is es-
sentially the �weighted� average of the individual constitut-
ing stocks. Even so, one does observe an asymmetric waiting
time distribution for the index comprised of �more-or-less�
symmetric single stocks. How can this be rationalized? Re-
cently, a minimal �toy� model—termed the fear factor
model—was constructed for the purpose of explaining this
apparent paradox �23�. The key ingredient of this model is
the so-called collective fear factor, a concept similar to syn-
chronization �27�. At certain times, controlled by a “fear fac-
tor,” the stocks of the model all move downward, while at
other times they move independently of each other. This is
done in a way that the price processes of the single stocks are
�over a long time period� guaranteed to produce symmetric
waiting time distributions �and uncorrelated price incre-
ments�. The fear-factor model, that qualitatively reproduces
well empirical findings, introduces collective downward
movements among the constituting stocks. The model syn-
chronizes downward stock moves, or in other words, it has
stronger stock-stock correlations during dropping markets
than during market raises. This means that the fear factor of
the stockholders is stronger than their optimism factor on
average. This is consistent with the findings of Kahneman
and Tversky �28�, reported in the economics literature, that
demonstrate that the utility loss of negative returns is larger
than the utility gain for positive returns in the case of most
investors.

Recently, the idea of the fear-factor model �23� was re-
considered and generalized by Siven et al. �25� by allowing
for longer time periods of stock comovement �correlations�.
These authors also find that the gain-loss asymmetry is a
long time scale phenomena �25�, and that it is related to
some correlation properties present in the time series �21�. It
was also proposed that the gain-loss asymmetry is in close
relationship with the asymmetric volatility models �exponen-
tial generalised autoregressive conditional heteroskedastic-
ity� used by econometricians �29�.

Furthermore, also additional explanations for the gain-
loss asymmetry have been proposed in the literature. Those
include the leverage effect �2,30–32�, and regime switching
models �26�. Bouchaud et al. �30� emphasize different be-
haviors at the level of individual stocks and at the market
index level �the weak and strong leverage effect�, difference
attributed to a certain “panic effect.” This model uses a re-
tarded volatility specification, which breaks down at the in-
dex level, because according to the authors, “a specific risk
aversion phenomenon seems to be responsible for the en-
hanced observed negative correlation between volatility and
returns.” Ciliberti et al. �33� further developed this model by

examining the implications of volatility leverage for option
trading strategies and also identifying a relationship between
the magnitude of the leverage effect and the size �market
capitalization� of stocks. So far, it is fair to say that the origin
of the gain-loss asymmetry is still �partly� debated in the
literature. A recent article by Lisa Borland �34� demonstrates,
among other things, the stronger stock cross-correlations in
times of “panic.” This paper examines the relationship be-
tween the second �variance or volatility� and fourth moments
�kurtosis� of the distribution of returns. An interesting finding
is that there is an inverse relationship between volatility
�variance� and kurtosis, a finding explained by the conjecture
that in times of panic, although volatility is higher than in
normal times, it is more uniform, affecting simultaneously all
stocks. However, the author uses a correlation measure,
which we find less informative, since it uses only the number
of stocks rising and falling and not how much they change.
We believe that in order to obtain a truly reliable correlation
measure, one has to include effects of the magnitude of price
changes, and this can be attained through statistical measures
such as the Pearson correlation coefficient.

The key idea of the fear factor model �21,23� is the en-
hanced stock-stock correlations during periods of falling
market. Up to now this idea has not been supported by em-
pirical data. In this work, we conduct such a delicate statis-
tical analysis, and we are able to show, based on empirical
data, that indeed there exist a stronger stock-stock correla-
tions during falling, as compared to rising, market.

III. CONDITIONAL MARKET COMPONENT
CORRELATION FUNCTION

Let r�t
x �t� denote the logarithmic return of stock x �from

the index under study� between time t and t+�t �the time
unit in the DJIA data is �t=1 trading day�. In order to fa-
cilitate the coming discussion, we introduce the following
notation for a mathematical average taken over a set A
= 
A�t��t=t1

t2 :

�A�t�
t=t1,t2
= �
A�t��t=t1

t2 
 =

�
t=t1

t2

A�t�

	A	
, �3�

where 	A	 denotes the cardinality of the set, i.e., the number
of elements in A. If no explicit limits are given for the av-
erage �like in �
A�t��t
= �A�t�
t�, all possible values will be
assumed for t. In terms of this notation, a Pearson-type cor-
relation can then be computed between each stock pair �x ,y�
resulting in the following �equal time� stock-stock correla-
tion function,

S�x,y��t,	t,�t� =
�r�t

x �t��r�t
y �t��
t�=t,t+	t − �r�t

x �t��
t�=t,t+	t�r�t
y �t��
t�=t,t+	t


�t
x �t;	t�
�t

y �t;	t�
, �4�
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where 
�t
� �t ;	t� signifies the volatility of stock � ��=x ,y� at

time t �and time window 	t�, and is defined as


�t
� �t;	t� = ���r�t

� �t���2
t�=t,t+	t − �r�t
� �t��
t�=t,t+	t

2 . �5�

Note that S�x,y��t ,	t ,�t� contains two time scales; 	t is the
time window over which the average in Eq. �4� is calculated,
while �t is the time interval used to define returns �cf. Eq.
�1��.

By definition, the stock-stock correlation function,
S�x,y��t ,	t ,�t�, is specific to the asset pair �x ,y�, and does
therefore not represent the market as a whole. However, in
order to obtain a representative level of stock-stock correla-
tion for the market �index�, we propose to average
S�x,y��t ,	t ,�t� over all possible stock pairs �x ,y� contained in
the index. In this way, we are lead to introducing the market
component correlation function,

S0�t,	t,�t� = �S�x,y��t,	t,�t�
�x,y�. �6�

In passing, we note that the average contained in Eq. �6�
potentially should be weighted so that the contribution to the
correlation function S0�t ,	t ,�t� from a stock pair �x ,y� is
weighted with a factor that is proportional to the product of
the weights associated with the two stocks and used to con-
struct the value of the index. Typically this weight corre-
sponds to the capitalization of the company in question.
Since we here, however, are studying the DJIA—for which
all constituting stocks have the same weight in the index �an
atypical situation�—this possibility has not been considered
here and neither has the weight factor been included in the
definition of S0�t ,	t ,�t�.

The market component correlation function, as defined by
Eq. �6�, measures the overall level of stock-stock correlations
of the index �market� under investigation independent of ris-
ing and falling market. However, what we have set out to
study, is if there exists any significant difference between
these two latter cases. To this end, we introduce what we
below will refer to as the conditional market component cor-
relation function, C0�� ,	t ,�t�, that measures the typical
value of the market component correlations S0�t ,	t ,�t�
given that the �logarithmic� return of the index itself, r	t�t� is
above �below� a given return threshold value �. Mathemati-
cally, the conditional market component correlation function
is defined by the following conditional time average:

C0��,	t,�t� = �
C��,t,	t,�t��t
t, �7a�

where a time-dependent conditional market component cor-
relation function set has been introduced as


C��,t,	t,�t��t = �
S0�t,	t,�t�	r	t�t� � ��t if � � 0


S0�t,	t,�t�	r	t�t� � ��t if � � 0
� .

�7b�

A comparison of C0�+	�	 ,	t ,�t� and C0�−	�	 ,	t ,�t�,
should in principle be able to reveal potential difference in
the level of stock-stock correlations during periods of rising
and falling market conditions. If it is found that C0�� ,	t ,�t�
is symmetric with respect to the sign of �, the stock-stock
correlations do not depend �very much� on the direction of

the market. On the other hand, if an asymmetry is observed
in C0��	�	 ,	t ,�t� for a given 	�	, this clearly indicates that
stock-stock correlations are dependent on market direction.
Such results, being interesting in its own right, can practi-
cally be used in risk and portfolio management. Moreover,
they can be used as valuable input for developing more so-
phisticated portfolio theories aiming at designing the optimal
portfolio. The weights of securities in an optimal portfolio as
modeled by Markowitz �35� depend on the correlations and
covariance matrices between the returns of those securities
and these correlations assume a uniform attitude toward risk.
Our results suggest that these correlation matrices should
take into account the asymmetry in the correlations for the
positive and negative returns and, therefore, are consistent
with behavioral portfolio theory �36� that suggests different
attitudes toward risk in different domains for the same inves-
tor.

Given the subtle nature of the correlations that we here
are trying to detect, we will introduce an additional time
average—now to be performed over the time scale 	t that all
previously introduced correlation functions depend. The av-
eraged conditional market component correlation function is
defined as

C��,�t� = �C0��,	t,�t�
	t=	t1,	t2
, �8�

where 	t1 and 	t2�	t1 are time scales over which stock-
stock correlations are relevant �given the type of data being
analyzed�. The average over 	t in Eq. �8� is performed only
with the purpose of improving the statistics. For stock indi-
ces containing a large number of stocks �e.g., SP500 and
NASDAQ�, this average may not be needed. However, for
the DJIA that currently contains only 30 stocks, this average
is of advantage.

The needed formalism is by now introduced, and we are
ready to use it for the empirical analysis. Here we are focus-
ing on the DJIA, as mentioned previously, and the data to be
analyzed were obtained from Yahoo Finance �37�. The data
set consists of daily closing prices of the 30 DJIA stocks as
well as the DJIA index itself. It covers an 18 years period
from May 1991 to September 2008. Note that this period
includes the development of the dot-com bubble in the late
1990s and its subsequent burst in 2000, the 1997 minicrash
�as a consequence of the Asian financial crisis of 1997�, the
collapse of the Long-Term Capital Management �as a conse-
quence of the Russian financial crisis of 1998�, the early
2000s recession as well as the worldwide economic-financial
crisis of 2007–2008.

With these data and the formalism presented previously,
the averaged conditional market component correlation func-
tion, C�� ,�t�, can be calculated. It is presented in Fig. 3 for
a range of positive and negative return levels, �	�	, where it
has been assumed that �t=1 day, 	t1=10 day, and 	t2
=35 day. Figure 3 shows a pronounced asymmetry between
positive and negative �index� return levels, �	�	. The stock-
stock correlations, as given by C�� ,�t�, are systematically
stronger whenever the market is dropping ���0� than when
it is rising ���0�. This is found to be the case for the whole
range of considered levels of return 	�	. It also worth noting
that in the limit 	�	→0 there is a substantial difference be-
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tween the conditional market component correlation for the
positive and negative returns: lim	�	→0+�C�−	�	 ,�t�
−C�	�	 ,�t���0.07=7%. For the largest positive levels
shown, it is noted that the statistical quality of the data is
seen to become poor.

Hence, the empirical results of Fig. 3 support the primary
assumption underlying the fear-factor model �23�; stocks are
on average more strongly correlated �or synchronized�
among themselves during falling than rising market condi-
tions.

IV. STATISTICAL ANALYSIS OF THE RESULTS

The effect that we are studying here is rather subtle, and
several averaging procedures had to be considered in order to
identify it. Hence, it is important to have confidence in the
results, and to make sure that they are not artifacts of the
analyzing method. Moreover, one also has to prove that the

obtained difference is a general feature of the stock market
and is not due to one �or a few� special events where, e.g.,
the market crashes. To address these issues, additional analy-
sis is required.

First, we revisited the averaging procedure over stock
pairs used in defining Eq. �6�. The aim was to show that the
difference obtained in the measured correlations between the
stocks for positive and negative levels of index returns was
indeed present for the majority of the stock pairs. For this
purpose, for each pair of stocks �x ,y� of the index, the aver-
age C�x,y��� ,�t�= �C�x,y��� ,	t ,�t�
	t=	t1,	t2

was considered,
where the conditional stock-stock correlation function,
C�x,y��� ,	t ,�t�, is defined from S�x,y��t ,	t ,�t� in a com-
pletely analogous way to how C0�� ,	t ,�t� was obtained
from S0�t ,	t ,�t� in Eq. �7b�.

The distributions of the conditional stock-stock correla-
tion function, C�x,y��� ,�t�, including all possible stock pairs
�x�y� of the DJIA, is presented in Fig. 4 for some represen-
tative levels of index return 	�	=0.03, 0.05, and 0.10. The
results of Fig. 4 indicate that the stock-stock correlations for
a negative index return levels, −	�	, �plotted as red shaded
areas� is for the majority of the stock pairs stronger than the
stock-stock correlations for the corresponding positive level
�plotted as green dashed areas�, and this observation applies
equally for all the index return levels considered. An alterna-
tive way of illustrating this difference is to plot the distribu-
tion of the relative difference ��= �C�x,y��−	�	 ,�t�
−C�x,y��	�	 ,�t�� / 	C�x,y��	�	 ,�t�	 �Fig. 5�. The clear asymmetry
of this distribution with respective to ��=0 is an indication
that the stock-stock correlations for a negative index return
level is in general stronger than the stock-stock correlations
for the corresponding positive level �of the same magnitude�.

The indications obtained from Figs. 4 and 5 that the con-
ditional stock-stock correlations are stronger for negative
than positive index return levels can also be confirmed more
quantitatively by a statistical test. More precisely, we want to
see what is the chance that two random samples from the
same distribution would yield the observed difference in the
mean. A Wilcoxon-type nonparametric z-test �38� was per-
formed and the results of the test are presented in Table I.
The negative value of z suggests that the stock-stock corre-
lations for the negative change in the index are indeed bigger
than those for the positive changes. The value of p is the
probability that finite samples from the same ensemble

FIG. 3. �Color online� The average conditional market compo-
nent correlations, C�� ,�t�, between the stock components for vari-
ous return rates, �, of the DJIA stock index. Open green triangles
correspond the positive return levels ���0�, while filled red circles
signifies negative return levels ���0�. The stronger correlation in
case of negative returns is readily observable from Fig. 3. In ob-
taining these results, it was assumed that 	t1=10 day, 	t2

=35 day, and �t=1 day. For values of 	�	 larger than about 0.15,
the statistics became poor. This was in particular the case for posi-
tive values of �.

FIG. 4. �Color online� The distribution, p�C�x,y��, of the correlation function C�x,y��� ,�t� based on all possible stock pairs �x ,y� within the
DJIA stock index �x�y�. Red shaded areas correspond to ��0, while the areas green dashed areas refer to ��0. The distributions are given
for various values of the return level � as indicated in each panel ��t=1 day in all cases�.

PERSISTENT COLLECTIVE TREND IN STOCK MARKETS PHYSICAL REVIEW E 82, 066113 �2010�

066113-5



would yield the hypothesized differences in the mean. The
parameter p is thus a measure of the significance level,
smaller values correspond to higher significance for the ob-
tained differences in the mean. The results presented in Table
I show that the difference in conditional stock-stock correla-
tions is indeed significant.

Second, we wanted to make sure that the observed asym-
metry in C0�� ,	t ,�t�= �
C�� , t ,	t ,�t��t
 �Eq. �7�� was not
caused by a few isolated events—like large market drops—
but instead represented a feature of the market that was
present at �more-or-less� all times. For this purpose, we went
back and studied more carefully the time-dependent condi-
tional market correlation function C�� , t ,	t ,�t� �before the
time average�. More precisely, in order to improve the statis-
tics, the following average was computed
�C�� , t ,	t ,�t�
	t=	t1,	t2

�Ct�� ,�t�. For fixed values of the in-
dex return level 	�	, and the time windows 	t1=10 days,
	t2=35 days, and �t=1 day, we compared the two distribu-
tions p�Ct�+	�	 ,�t�� and p�Ct�−	�	 ,�t��. An asymmetry in
C0�� ,	t ,�t� being caused by a few isolated events in
Ct�� ,�t�, will produce almost identical distributions for the
two cases �	�	 that only differ by some infrequent “outliers”
that are large enough to move the mean. On the other hand,
a more systematic difference in Ct�� ,�t� for +	�	 and
−	�	 will produce distinctly differences between the
p�Ct�+	�	 ,�t�� and p�Ct�−	�	 ,�t�� distributions.

In Fig. 6 we present the empirical distributions
p�Ct�� ,�t�� of the DJIA for some typical positive and nega-

tive values of the index return level. These empirical results
point toward the two distributions p�Ct�+	�	 ,�t�� and
p�Ct�−	�	 ,�t�� being different. To quantitatively show that
they differ significantly, again a nonparametric Wilcoxon sig-
nificance test was performed. However, in order to conduct
this test it is necessary to have the same number of data
points in the histograms for positive and negative index re-
turn values. Since the Ct�� ,��-data did not had this property
we had to ensure this condition. We first identified the set
with the smallest number of elements �usually this was the
set corresponding the negative returns�, and then from the
other set, the same number of elements were randomly se-
lected. Here our assumption was that the random selection
will not alter the normalized distribution. Results obtained by
this procedure for the same values of 	�	 used to produce Fig.
6 are given in Table II. The extremely small values obtained
for p suggest, as pointed out previously, that the difference
between the two distributions, p�Ct�+	�	 ,�t�� and
p�Ct�−	�	 ,�t��, is indeed significant also for this averaging
step.

Third, we address the level of conditional market correla-
tion �C0�� ,	t ,�t�� as a function of the size of the time win-
dow 	t for �	�	 �and �t=1 day� �Fig. 7�. Figure 7 shows
that systematically, and independent of 	t and � �at lest for
the values we have considered�, one finds that the condi-
tional market correlations are higher for negative index re-
turn levels �−	�	� than the corresponding positive levels
�+	�	�; i.e., C0�−	�	 ,	t ,�t��C0�+	�	 ,	t ,�t�. This suggests
that the sign of the difference does not depend on the values

FIG. 5. �Color online� The distribution of the quantity ��= �C�x,y��−	�	 ,�t�−C�x,y��	�	 ,�t�� / 	C�x,y��	�	 ,�t�	 obtained on the basis of the
DJIA stock index for different return levels, �, as indicated in the figures. We recall that in the case of no asymmetry, the distribution, p����,
should be symmetric around ��=0 �vertical dashed lines�.

FIG. 6. �Color online� The distribution of the correlations Ct�� ,�t���C�� , t ,	t ,�t�
	t=	t1,	t2
for different return levels, �	�	. Here the

green dashed areas correspond to ��0 while red shaded areas are used to indicate ��0. In obtaining these results it was assumed that
	t1=10 day, 	t2=35 day, and �t=1 day.
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considered for 	t1 and 	t2, used in performing the average
over 	t.

Finally, we investigate the time dependence of the differ-
ence between the market component correlation functions
�S0�t ,	t ,�t�� for positive and negative return levels. This
will yield additional information on the observed asymmetry
by visualizing the time periods that contribute with a signifi-
cant difference to correlation calculations. For studying this
effect for a fixed time window 	t we would, in principle,
need a three-dimensional plot, presenting the value of
S0�t ,	t ,�t� as a function of t and the value of the return
r	t�t�. This three-dimensional plot, however, is very noisy; it
is hard to interpret and also to visualize properly, so we
consider instead a simpler two-dimensional representation.
To this end, we first choose characteristic time-scales 	t and
�t, below to be set to 	t=20 day and �t=1 day �other
choices would yield similar results�. For these parameters
one observes that S0�t ,	t ,�t� is always positive. With this in
mind we construct the following quantity:

F�t� = S0�t,	t,�t�
r	t�t�
	r	t�t�	

, �9�

where the factor r	t / 	r	t	 has the effect of attributing a posi-
tive sign for the S0�t ,	t ,�t� correlation in case of r	t�t��0
and a negative sign in case of r	t�t��0. By plotting F�t� as a
function of t for the whole studied period we obtain the
points plotted in Fig. 8�a�. The results are not easily inter-
pretable by a first look, since F�t� has strong fluctuations and
the positive and negative values have similar trend and quite
close values. As a result a more delicate analysis �averaging�
is needed, separating the positive and negative values. A

simple average will not work since the number of positive
and negative F�t� points is different in any time window.
This will bias the average and will not lead to interpretable
results for the difference in the magnitude of the S0 correla-
tion for rising and falling market periods. We have thus for
the positive and negative F�t� values performed a separate
average with a reasonably long moving time window �T
=200 days�. In this way we for each time moment define the
following two quantities:

�F+
�t� = �F�t��	F�t���0
t�=t−T/2,t+T/2, �10a�

and

�F−
�t� = �F�t��	F�t���0
t�=t−T/2,t+T/2. �10b�

The difference between them,

D�t� = �F+
�t� − �F−
�t� , �11�

gives relevant information on the difference in the magnitude
of the correlations for rising and falling market on a time
scale of T=200 days �Fig. 8�b��. An inspection of Fig. 8�b�
reveals that the leading trend is D�t��0 for most periods.

This supports our main conjecture that, correlations be-
tween stock prizes are stronger whenever the market is fall-
ing than in case of rising market. However, Fig. 8�b� also
shows that there are a few periods in the evolution of the
market where the inverse is true. The conjectured results are
true only in a statistical sense and seemingly it holds for the
majority of the studied period. Analyzing the location of the
deep minimums in Fig. 8�b� can also be interesting and
opens perspectives for new studies. Changing the length of
the time windows 	t and T in a reasonable manner will not
qualitatively affect these results.

TABLE I. Results of the Wilcoxon nonparametric z-test for dif-
ference in conditional stock-stock correlations �C�x,y��� ,�t��. The
negative z-values suggest that C�x,y��−	�	 ,�t��C�x,y��	�	 ,�t�. The
value of p is the probability that a finite sample taken from the same
ensemble would yield the hypothesized difference in the mean.

	�	 z p

0.03 −18.87 2.0
10−79

0.05 −18.16 9.1
10−74

0.10 −10.85 1.8
10−27

TABLE II. Results of the Wilcoxon non-parametric z-test for the
difference in the mean of the distributions p�Ct�+	�	 ,�t�� and
p�Ct�−	�	 ,�t��, presented in Fig. 6.

	�	 z p

0.03 −33.99 1.1
10−79

0.05 −16.62 4.3
10−62

0.10 −8.0 1.0
10−16

FIG. 7. �Color online� Conditional market correlation, C0�� ,	t ,�t�, as a function of the time window 	t �with �t=1 day� for different
values of the return level �	�	. Green open triangles correspond to ��0 while filled red circles refer to ��0.
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V. CONCLUSIONS

In conclusion, we have conducted a set of statistical in-
vestigations on the DJIA and its constituting stocks, which
confirm that during falling markets, the stock-stock correla-
tions are stronger than during rising markets �gain-loss
asymmetry phenomenon�. This has been possible to measure
empirically due to the design of a robust statistical
measure—the conditional market correlation function
�C0�� ,	t ,�t��.

In particular, we have performed statistical tests that show
that the observed asymmetry in the empirical conditional
�market� correlation function is indeed significant, and not an
artifact of the considered averaging procedure since it is
clearly present in each averaging step. This empirical result
gives confidence in the fear-factor hypothesis, which ex-
plains successfully the gain-loss asymmetry observed in the
major stock indices.

From the perspective of finance, we note that a relatively
small segment of the financial literature examines models
which have the potential to describe, explain, and possibly
forecast the phenomena which lead to stock market bubbles
and their subsequent crashes �6�. The more technical and
quantitative approaches either follow the general equilibrium
models of macroeconomics �39� or the game-theoretical
methodology �40�.

The latter approaches try to model mathematically �many
times using toy models� the interactions between agents and
their expectations about each other’s behavior and the market
average. Many times market microstructure plays a signifi-
cant role in these models: the so-called frictions �the differ-
ent taxes and transaction costs, liquidity constraints and other
limits to arbitrage� are the factors that produce market
crashes. The role of portfolio insurance �selling short the
stock index futures �41�� in crashes is also strongly debated.
However, the complex relationship between the microstruc-
ture factors, market sentiment, herding of investors and stock
market crashes is still poorly understood.

In this perspective our results can have important conse-
quences in theoretical and practical aspects of portfolio man-
agement and also in risk management of investment banks,

investment funds, other financial institutions as well as regu-
lators and decision makers concerned with the spillover of
stock market crashes into the real economy. As was pointed
out previously, the standard, mean-variance based portfolio
theory views risks as symmetric measures �variance, covari-
ance, etc.� assuming the stability of these risks as well as
their symmetry in case of positive and negative returns. In-
vestment banks, insurance companies and other financial in-
stitutions widely use risk management software based on the
methodology of VaR �Value at Risk�, a measure of worst-
case scenario losses that is intensively questioned since to-
day’s financial crisis began. VaR models risk in a symmetric
fashion, relying in most cases on past distributions �espe-
cially on the normal distribution�. Overreliance on VaR may
prompt risk managers to do the following mistakes: �i� it
leads to the opening and maintaining of risky and overly
leveraged positions; �ii� it focused on the manageable risks
with probabilities close to the center of the probability dis-
tributions and it lost track of the extreme events from the
tails of the distributions; �iii� utilization of VaR leads to a
false sense of security among risk managers. We believe that
new measures must be considered instead of VaR. These
measures should also take into account the fear factor which
produces bigger systematic risks in cases of stock market
crashes than during market booms. As a follow up, it will be
worthy to study whether a growing distance between the
negative and positive correlations is a sign of diminishing
investor confidence in the periods before a market crash.
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FIG. 8. �Color online� �a� F�t�
=S0�t ,	t ,�t�r	t�t� / 	r	t�t�	 as a function of t for
	t=20 days and �t=1 day. �b� The difference
D�t�= �F+
�t�− �F−
�t� between the stock-stock
correlations for rising and falling market periods
as a function of t assuming a running average of
length T=200 days. We have used green dashed
areas to indicate positive D�t� regions while red
shaded areas are used for the negative ones.
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