
PHYSICAL REVIEW E 94, 022311 (2016)

Time-scale effects on the gain-loss asymmetry in stock indices
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The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return
levels that are over 2%, and it is the result of the non-Pearson-type autocorrelations in the index. These non-
Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite
time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations.
Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed.
It is also found that this characteristic time scale has decreased with the appearance of program trading in the
stock market transactions. Connections with the leverage effect are also established.
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I. INTRODUCTION

Physicists and economists have been analyzing complex
financial time series with forward statistics (see below) for
many years [1–3]. Inverse statistics has been introduced
recently as an alternative way of describing the phenomena
of turbulence [4] and adapted to finance by Simonsen et al.
[5] for analyzing stock market time series. This approach is
motivated by the fact that dynamics of turbulent fluids is similar
to the behavior of stock markets: after longer resting periods
abrupt bursts can appear intermittently [2,6]. Although the
intermittency between resting periods and burst was modeled
with success also by stochastic volatility models [7], and such
models were also appropriate to approach several other stylized
facts, such as fat tails and the leverage effect [8–10], the use of
inverse statistics allows for a further understanding of various
single stocks and market indices, as well as foreign exchange
data and even artificial markets [5,11–20]. The method of
inverse statistics revealed an intriguing gain-loss asymmetry
[21], which generated a lot of discussion concerning its
origin and the time scale of the autocorrelations in the index,
responsible for this effect [14,22–26]. Here we address the
time scale problem by introducing a shuffled window method
on the stock index. Our results offer new data that could be
useful for a better understanding of the gain-loss asymmetry
and suggest also some connections with the leverage effect
[26,27].

II. THE METHOD OF INVERSE STATISTICS

The stock index with the longest history is the Dow Jones
Industrial Average (DJIA), therefore most of the statistical
studies deals with this time series. For our study we use
primarily the daily closure prices of the DJIA index from 1
October 1928 to 1 February 2011. This corresponds to more
than 80 years of data, and more than 20 000 trading days.
We emphasize, however, that the results presented for DJIA
are quite general since they are confirmed also for the case of
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the S&P500 and NASDAQ100 indices (see the Supplemental
Material [28]).

The performance of stocks and markets over a certain time
history is traditionally measured by the distribution of the
r�t (t) logarithmic return [5], which gives us the generated
return over a certain time period �t . For individual stocks and
market indices it is defined as the logarithmic price change
over a fixed time interval, �t :

r�t (t) = s(t + �t) − s(t) = ln
S(t + �t)

S(t)
, (1)

where s(t) = ln[S(t)] denotes the logarithmic index [S(t)
denotes the value of the index or the price of a stock].

The standard deviation of r1(t) daily log returns is called
(daily) volatility. For the DJIA index, the historical daily
volatility of the log returns is about σ = 0.011; i.e., σ ≈ 1%
[29].

Empirical results show that the distribution of logarithmic
returns can be approximated by a Gaussian distribution
(typically for larger �t), although there are important dif-
ferences, such as the presence of fat tails [1,2,5,30] (most
pronounced for shorter �t). The fat tails correspond to a
much larger probability for large price changes than what is
to be expected from Gaussian statistics, an assumption made
in the mainstream theoretical finance [1,2,21]. Similar results
have been found using forward statistics for the study of fully
developed turbulence in fluids. As a consequence, in several
works these two seemingly completely different phenomena
were discussed in parallel [1,2,6,11].

For a deeper understanding of the fluctuation processes,
Simonsen et al. have investigated in Ref. [5] the inverse
question: what is the typical waiting time to generate a
fluctuation of a given size in the price? To answer this question,
we have to determine for an index or a stock the distribution of
τρ time intervals needed to obtain a predefined return level
ρ. Practically, if given a fixed logarithmic return target ρ

(proposed by the investor) for a stock or an index, as well as
a fixed investment date (when the investor buys some assets),
by the inverse statistics the time span is estimated for which
the log return of the stock or index reaches for the first time
the desired level ρ. This is also called the first passage time
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FIG. 1. (a) The investment horizon distributions of the original
DJIA index. (b) The inverse statistics for the shuffled version of the
index (is symmetric). The superimposed curves with the same color
correspond to different permutations. The return level considered for
the inverse statistics is five times larger than the daily volatility of
returns: ρ = 5σ ≈ 5%.

through the level ρ [5,31]. In a mathematical formulation this
is equivalent to

τρ(t) = inf{�t ≥ 0 | r�t (t) ≥ ρ}, if ρ > 0, (2)

or

τρ(t) = inf{�t ≥ 0 | r�t (t) ≤ ρ}, if ρ < 0. (3)

The waiting time τρ(t) is the momentary investment horizon
for the proposed ρ log-return value [5], indicating the time
interval an investor has to wait if the investment was made
at time t , and he/she wants to achieve a ρ log-return value
at time t + τρ . In the literature, its time-averaged value is
the investment horizon. The normalized histogram of the
first passage times for many t starting times gives the p(τρ)
probability distribution of the momentary investment horizons.
The method described above is called the method of inverse
statistics. The distribution of the momentary investment hori-
zons for the DJIA index in case of |ρ| = 5σ (i.e., ≈ 5% return)
is depicted in Fig. 1(a). The maximum of the distribution
function determines the most probable waiting time for that log
return (τ ∗

ρ ), or in other words the optimal investment horizon
for that stock or index. The distribution of the first passage
times gives also information about the stochasticity of the
underlying asset price [4,32,33].

A simple Brownian motion approximation for the log prices
[5] would yield for the first passage time distribution,

p(τρ) = |ρ|√
4πDτ 3

ρ

exp [−ρ2/4Dτρ], (4)

with D a generalized diffusion constant. Since the first moment
diverges, we determine the most probable first passage time:

τ ∗
ρ = 1

6D
ρ2 ∝ ργ , (5)

which should scale with an exponent γ = 2. From this simple
model, one also gets that the tail (τρ � τ ∗

ρ ) of the distribution

scales as

p(τρ) ∝ τ−α
ρ , (6)

with α = 3/2. Results for the DJIA [5] confirms this later
scaling; however, for γ it yields a smaller exponent than the
value expected for a Brownian motion. This is a clear sign
that the daily volatilities are not independent variables, or in
another formulation one can state that some sort of timelike
correlations are present in the dynamics of the index. Please
note also from Eq. (4) that the distribution is symmetric relative
to the sign of ρ, a result that is not confirmed by the data (see
the next section).

III. GAIN-LOSS ASYMMETRY

In constructing the inverse statistics of the DJIA index
also for the negative return levels (i.e., ρ = −5%), it was
found [14,21] that the distribution of investment horizons
is similar in shape to the one for positive levels. However,
there is one important difference: for negative return levels the
maximum of the probability distribution is shifted to the left,
generating about a �τ ∗

ρ ≈ 13 trading days difference in the
optimal investment horizons. In Fig. 1(a) this asymmetry of the
inverse statistics is presented for ρ = +5σ and ρ = −5σ log
returns. It was found that the asymmetry of inverse statistics is
present for all the established stock indices, thus stock markets
present a universal feature, called the gain-loss asymmetry
[21]. Contrary to indices, stock prices show a smaller degree of
asymmetry [22–24]. The asymmetry of the inverse statistics of
stock markets is still a central problem of applied mathematics,
econophysics, and economics [19,26,34,35].

Minimal models have been proposed for explaining this
intriguing fact. The fear-factor model [14,22] explains gain-
loss asymmetry by a synchronization-like concept: stronger
stock-stock correlations during dropping markets than during
market raises [24]. Recently the idea of fear factor model
was generalized by allowing longer time periods than one
trading day for stock-stock correlations [19,34]. By conducting
a series of statistical investigations on the DJIA index and its
constituting stocks, Balogh et al. [24] have demonstrated that
indeed there is a stronger stock-stock correlation during peri-
ods of falling markets. This empirical result gives confidence
both in the fear factor hypothesis [14,22] and the generalized
asymmetric synchronous market model [19].

Additional explanation for the gain-loss asymmetry is
given by a simple one-factor model [25], the Frustration
Governed Market model [26], or the use of stochastic volatility
models [19] (like EGARCH [36]). The problem has also
been investigated in a thesis at the Swiss Federal Institute of
Technology in Zürich [37] under the guidance of Prof. Didier
Sornette. Very recently [35] an interesting analogy between
the variations of stock indices and the dynamics of a one-
dimensional spring-block model placed on a running conveyor
belt was discussed. This simple mechanical system shows a
similar gain-loss asymmetry in the inverse statistics and also
presents the leverage effect. Although these works suggest the
possibility that the gain-loss asymmetry and leverage effect
might have the same origin based on the collective dynamics
of the stocks, there is still a need for proving that the relevant
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time scales of the underlying processes are the same for both
effects.

IV. THE SHUFFLED TIME-WINDOW METHOD

Classical methods based on Pearson correlations are inef-
fective to prove the existence of autocorrelations in the index, a
result that is in agreement with the efficient market hypothesis
[39]. Lack of such first-order correlations do not exclude,
however, the fact that the daily returns and volatilities are
not independent random variables. Such dependency can be
viewed as higher order, or non-Pearson-type correlations.

Here, by analyzing the timelike variation of the stock index,
we are using a statistical method that is suitable for giving
further evidence for the presence of higher-order and non-
Pearson-type autocorrelations in the index and to determine
their characteristic time scale. The fact that daily volatilities
are not independent variables are the reason for such non-
Pearson-type correlations. Stochastic volatility models [38]
could account thus for their existence; however, our aim here
is not to model them. More specifically, our aim is to look for
some special transformations applied to the time series of the
index, which will result in the disappearance of the gain-loss
asymmetry.

The problem is not as simple as it looks, since we are
searching for a transformation, which does not modify the
distribution of daily returns of the considered index. Some
methods that have been considered so far have altered the
volatility of the daily returns. Using the wavelet transformation
it has been suggested that the asymmetry appears on time
scales longer than two months (between 64 and 128 trading
days) [34]. This study concluded that by filtering out from
the given time series fluctuations of periods longer than 64
days the inverse statistics of the index becomes symmetric
again. It needs to be mentioned, however, that in the method
applied in Ref. [34] the values of daily returns are altered
significantly, and as a result of this the distribution of returns
and the volatility are also changed. One can seriously question,
therefore, the significance of this method. We have checked
that using, instead of the wavelet transform, the well-known
Fourier transform, similar results are obtained. Similarly with
the wavelet transformation, the distribution of daily returns is
again altered.

Recently, a new idea was introduced to investigate the effect
of correlations on this asymmetry [19]. Considering the time
series of daily returns and shuffling it randomly (permuting
the elements one by one), the temporal dependence structure,
thus correlations and connections of events (dependencies of
the daily volatilities), can be destroyed; however, the values
of daily returns are kept unchanged. Therefore, this method
changes only the causality of events, but leaves all the other
statistical information unchanged. An artificial index can be
constructed from the time series generated in this manner, and
the distributions of investment horizons can be investigated
without altering the original information. It was shown that
the inverse statistics of this shuffled index becomes symmetric
again (in the sense that the gain-loss asymmetry disappears)
[19]. Results in such sense are presented in Fig. 1(b). Since
the shuffled index already produces a first-passage time
distribution with a pronounced maximum (symmetric in ρ),

it can be concluded that the existence of optimal investment
horizons depend only on the distribution of daily returns,
while the asymmetry is the combined consequence of the
relative positions (the order in time) of these returns and
their distribution. Generalized correlations routed in the fact
that the daily volatilities are not independent increments are
thus responsible for the gain-loss asymmetry. The source
of this might be multiple, and we do not intend to study
this problem here. It could be attributed for example to the
cross-correlations, spanning several days, between the stocks
forming the index. As a result, the fear-factor model [14,22]
still shows asymmetry after shuffling the returns; however,
this asymmetry disappears in the generalized asymmetric
synchronous market model [19], where the falling stock prices
stay synchronized for multiple days.

The window shuffling method can, however, be easily
generalized, and it seems suitable for detecting higher-order
autocorrelations in the index and to measure their relevant
time scales. In order to achieve this, we split the time series
of daily returns into equally long time intervals consisting of
T trading days, called here time windows. Then, we shuffle
randomly these time windows without modifying the content
inside any of them. By considering the permutations of these
time windows instead of the permutations of the daily returns,
we leave unmodified those events which have happened inside
the time windows, but we break the correlation between
those events that are separated by more than T trading
days. However, we should mention here that a part of the
autocorrelations with a characteristic time scale smaller than
T are also destroyed. More precisely Tc/T part of the
autocorrelations with characteristic time length Tc (Tc < T )
are affected. Therefore, one would expect not a sharp but rather
a smooth decay of the autocorrelations as one decreases T .

As an example, if we split the original time series of the
daily returns into intervals of T = 500 trading days, we get
41 time windows. In Fig. 2(a) we have marked two such time
windows. Reshuffling randomly the order of all the windows,
we get the time series rs

1(t) from Fig. 2(b), where we have
marked the new positions of the two selected time windows.

-0.2
-0.1

0
0.1
0.2

r1(t)

(a) original returns

-0.2
-0.1

0
0.1
0.2

0 5000 10000 15000 20000

t[trading days]

r1(t)s

(b) shuffled returns

FIG. 2. (a) The original time series of daily returns. (b) The
time series of the randomly permuted daily returns considering time
windows of T = 500 trading days. We illustrate the original and new
positions of two selected time windows.
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FIG. 3. (a) The investment horizon distributions of the original
DJIA index. (b) The inverse statistics for the shuffled version of the
index using time windows of T = 25 trading days. The superimposed
curves with the same color correspond to different permutations. The
return levels considered for the inverse statistics are five times larger
than the volatility of returns: |ρ| = 5σ ≈ 5%.

From Fig. 1 we learned that for T = 1, the gain-loss
asymmetry disappears. Considering now time windows of
T = 25 trading days and the same |ρ| = 5σ return level, we
observe that the gain-loss asymmetry is almost as pronounced
as in the original time series (Fig. 3). Therefore, one can
conclude that the autocorrelations causing the asymmetry for
the |ρ| = 5σ return level manifest themselves on a time scale
shorter than T = 25 trading days. The same results can be
found in the case of the SNP500 and the NASDAQ100 index
(see the Supplemental Material [28]).

In order to get a better understanding of the relevant
time scales of the non-Pearson-type autocorrelations, and the
difference of the index dynamics relative to a simple Brownian
dynamics, we compute several quantities for a wide range of
return levels (ρ) and time-window lengths (T ).

As Fig. 1 suggests, the r1(t) time series of the daily returns is
organized in such a way that the τ ∗

±|ρ| positions of the maxima
for positive and negative return levels are shifted to the right
and left, respectively, with respect to the τ ∗

ρ (1) maximum of
the fully shuffled index (T = 1). As a result of the window
shuffling these differences are decreased until they disappear
as the T size of the time-window is gradually decreased [see
Fig. 4(a)]. The positions of the maxima (τ ∗

|ρ|(T ),τ ∗
−|ρ|(T )) are

determined as the most probable first passage time, i.e., τ ∗
ρ (T ),

for which

p[τ ∗
ρ (T )] > p[τρ(T )], ∀ τρ(T ) 	= τ ∗

ρ (T ). (7)

Note that the T → ∞ limit gives the optimal investment
horizon, thus we can use the notation τ ∗

ρ (∞) = τ ∗
ρ . One can

define a parameter, characterizing the degree of dissimilarity
of the index shuffled with a T time window and a fully shuffled
index,

w±(T ,1) = �τ ∗
±|ρ|(T ,1)

�τ ∗
±|ρ|(∞,1)

, (8)
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FIG. 4. (a) Positions of the τ ∗
|ρ|(T ) (dashed green) and τ ∗

−|ρ|(T )
(solid red) maxima after shuffling with T time window for |ρ| = 5σ

logarithmic return level, in comparison to the fully shuffled case,
τ ∗
ρ (1) = 14 days (solid black, horizontal). The dotted black and grey

horizontal lines are corresponding to τ ∗
|ρ| = 24 and τ ∗

−|ρ| = 11 days,
respectively, and are shown to guide the eyes. The inset shows the
w±(T ,1) dissimilarity parameters. (b) The corresponding asymmetry
level w(T ) for different np permutations, using �τ ∗

ρ (∞) = 13 days.
The dashed vertical line denotes the T = 25 shuffle window size; see
also Fig. 3.

where we have introduced the notation:

�τ ∗
±|ρ|(T ,1) = τ ∗

±|ρ|(T ) − τ ∗
ρ (1). (9)

From Fig. 4 we learn that the shuffled window method
affects the position of both maxima τ ∗

±|ρ|(T ) relative to τ ∗
ρ (1).

We also learn from the inset that w+(T ,1) and w−(T ,1) have
a similar trend:

w−(T ,1) ≈ w+(T ,1). (10)

Analogously, one can also define a parameter measuring the
degree of the asymmetry in the original time series of the stock
index as the relative time difference of optimal investment
horizons for positive and negative returns:

w(T ) = �τ ∗
ρ (T )

�τ ∗
ρ (∞)

, (11)

with

�τ ∗
ρ (T ) = τ ∗

|ρ|(T ) − τ ∗
−|ρ|(T ). (12)

From Eq. (10) it results that the three parameters defined above
are equivalent:

w(T ) ≈ w−(T ,1) ≈ w+(T ,1). (13)
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In the following we will use the w(T ) parameter as a measure
of asymmetry for convenience.

In order to improve the statistics, the results are averaged
for np different permutations. Furthermore, for each different
permutation the partitioning is also redone, by choosing the
first day randomly from the original time series in the interval
{1,T }. In this manner, we can avoid the generation of the same
partitioning of the daily returns in time windows of length
T . Consequently, the log returns corresponding to large stock
market crashes will appear at different positions in the time
windows for different permutations. By increasing the number
np of permutations, the curves get smoother. Results showing
this trend are presented for |ρ| = 5σ return level on Fig. 4(b).
We observe that for np = 1000 the fluctuations are reasonably
low.

In the following this value will be used for all the statistics.
In order to be consistent, we perform always the same number
of permutations, and the τ ∗

±|ρ| values for the original index
are computed by taking a large window-size, T∞ = 1000:
�τ ∗

ρ (1000) → �τ ∗
ρ (∞), since τ ∗

±|ρ|(1000) → τ ∗
±|ρ|.

A possibility to improve the accuracy of the results for w(T )
would be by determining the value of τ ∗

±|ρ|(T ) maxima from a
proper fit for the p(τρ) distribution. In order to proceed in such
a manner, one first has to find a proper fitting form and then
perform the presumably nonlinear fit. Such a sophisticated
method is beyond the scope of the present study. Here we aim
to give only a rough estimate for the characteristic time scale
of the non-Pearson-type correlations that are responsible for
the gain-loss asymmetry.

V. CHARACTERISTIC TIME SCALES

First, the averaged positions of the maxima in the inverse
statistics, τ ∗

ρ , are studied for different return levels, ρ. We
consider again both the case of the original index and the index
shuffled with T = 1 time window. The results are plotted in
Fig. 5.

The results suggest some interesting conclusions. For
the original index, we find that the gain-loss asymmetry is
observable only for return rates over 2σ , and it is increasing
with increasing ρ values. For T = 1 we kill all type of
autocorrelations in the index, and as one would naturally
expect, the gain-loss asymmetry disappears for all return rates.
The exponent γ+ = 1.8 for the τ ∗

|ρ|(ρ) scaling [Eq. (5)] is much
closer to the prediction of the simple Brownian dynamics
(γ = 2), in comparison with the original index where one
gets γ+ = 1.53 for ρ > 0 and γ− = 1.33 for ρ < 0. This
enables us to conclude that the index shuffled with T = 1
gives a dynamics that is much closer to a simple Brownian
motion than the original one, but statistically still remain
differences from the predictions of such a simple model.
We believe the value of γ < 2 for the shuffled index is
a consequence of the empirical return distribution having
fatter tails than the Gaussian distribution, a behavior that
has also been demonstrated for synthetic time series (see the
Appendix). From Fig. 5(c) we can conclude that the nature of
the asymmetry depends strongly on the ρ return level: for small
return values ρ ∈ [3σ,7σ ] the dissimilarity is stronger for
positive values, while for larger return levels the dissimilarity
becomes more accentuated for negative returns.
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FIG. 5. The scaling of the τ ∗
ρ optimal investment horizons for

positive (dashed green curves) and negative (solid red curves) ρ return
levels, using the original DJIA index (a) and the fully shuffled (T = 1)
index (b) on log-log scales. The dotted black and gray lines indicate
the slopes fitted for |ρ| > 3σ return levels. The |ρ| > 3σ limit is
illustrated by the thin vertical line. Scaling exponents are given in
the legend. We also present a comparative plot with an inset showing
the region of small return levels using linear scales on the axis (c):
|ρ| ∈ [σ,8σ ].

Next, we investigate the dependence of the w(T ) asym-
metry parameter as a function of the time-window length
T , for those ρ values where the gain-loss asymmetry is
clearly observable in the original index: (|ρ| ∈ [3σ,7σ ]).
We did not consider return levels larger than 7σ , since in
such a case the statistics becomes poor. Results are plotted
on Fig. 6. We learn from the figure that as the length of
the shuffling time window T is decreasing the amount of
gain-loss asymmetry also decreases. The results plotted on
log-log scale show a detectable cutoff value Tc, from where
the autocorrelations in the index are strongly affected by the
window shuffling method. This suggests the characteristic time
scale of the relevant autocorrelations, which turns out to be
return level dependent. For higher return levels we find longer
characteristic times in the 10–30 days interval. These limits
are suggested by dashed lines in Fig. 6.
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FIG. 6. Asymmetry remaining after shuffling with T time win-
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1000).

Similar results were found for the NASDAQ100 and
S&P500 indices as well, even though the way they are
computed from the component stock values is much different
from the DJIA (see Fig. 11 in the Appendix). All these
results suggest a much-reduced characteristic time scale for
the non-Pearson-type autocorrelations that are responsible for
the gain-loss asymmetry than that reported in Ref. [34].

One could think of many other more sophisticated methods
for determining the Tc characteristic time scale. One possibility
would be to use the assumption that correlations are usually
decaying in an exponential manner, and consequently try
an exponential fit of the type e−T/θ for |1 − w(T )|. In this
approximation θ would yield the Tc characteristic time. As
we illustrate in Fig. 7 such an exponential decay is indeed
a reasonable approximation in the limit of T < 30 days.
Moreover, the fitted θ values (indicated in the figure) are in
agreement with the visual estimates from Fig. 6.

Computer program controlled trading, called program
trading, began in the 1970s and became widely used by the
1980s [40]. The volume of asset transactions handled by
computers did start to increase very rapidly in the early 2000s.
Nowadays this volume has surpassed 40% of the total trading
volume. A reasonable hypothesis is that program trading
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FIG. 7. The asymmetry measure of the DJIA index: |1 − w(T )|
curves on a log-normal scale for different ρ return levels in terms of
the σ volatility. Non-Pearson-type correlations decreasing as e−T/θ

for T < 30 days (T∞ = 1000).

0.01

0.1

1

20 40 60 80 100

T[trading days]

⏐1
-w

(T
)⏐

(b) program trading
human trading

θh=29.13
θp=6.85

0.1

1

1 10 100 1000

T[trading days]

w(T)

(a)

program trading
human trading

FIG. 8. (a) The asymmetry parameter of the DJIA index as a
function of the T time window for human trading periods (1928–
1980) and for program trading (1980–2011). (b) The characteristic
times θh and θp measured from the exponential fits corresponding
to human and program trading, respectively. For both pictures the
volatility of returns is chosen to be five times the daily volatility:
|ρ| = 5σ ≈ 5% and T∞ = 1000.

changes the dynamics and the statistical characteristics of the
stock market, since program trading, in contrast to human
trading, is based on predefined algorithms. To investigate the
effect of program trading on the inverse statistics of the DJIA
index, we have split the index into two parts: from 1928 to
1980 the period of mainly human trading, and from 1980 to
2011 the period where program trading is consistently present.
Computing the asymmetry parameter as a function of T for
|ρ| = 5σ , one gets the results presented in Fig. 8(a). One can
clearly observe from the results of Fig. 8 that the relevant time
scale responsible for the gain-loss asymmetry is significantly
larger for the period 1928–1980 (about 30–80 days) than for the
period 1980–2011 (about 10–20 days). For other return level
values in the interval |ρ| ∈ [3σ,7σ ] the results are qualitatively
similar. The θ values determined from the exponential fit of the
|1 − w(T )| function yields similar results [plot of Fig. 8(b)].
For the program trading period we get θp ≈ 7 days and for the
human trading period θh ≈ 30 days.

These results may suggest that the introduction of program
trading in the stock market transactions has a detectable
influence on the stock indices, reducing the relevant time scale
of the non-Pearson-type autocorrelations that are responsible
for the gain-loss asymmetry. This is a finding that has been
raised by other authors as well (see Ref. [26,27]). It is
interesting to note here that the daily distributions of the returns
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remain similar for the human and program trading periods (see
Fig. 12 in the Appendix).

VI. DISCUSSION AND CONCLUSIONS

We have learned from the previous analysis that the gain-
loss asymmetry is due to non-Pearson-type autocorrelations in
the index. We also found that the characteristic time scale of
these autocorrelations are dependent on what we finally mea-
sure, but in any case, they are shorter than what was believed
previously. Moreover, it is found that the characteristic time
scale decreased evidently by the the appearance of program
trading. The shuffled window method proved to be appropriate
to detect these fine autocorrelations, which are not visible by
using a simple Pearson correlation coefficient.

Here we speculate on connections with other stylized facts
with similar time scales. A well-known statistical property of
financial time series is the leverage effect, which states that
the volatility of stocks (or index) tends to increase after price
drops [1,26,27,41]. One explanation of this effect is given by
Bouchaud et al. [1]: large daily drops, which increase volatility,
are often followed by rebound days. This could mean that some
price drops are often exaggerated, due to the panic effect, and
reach undervalued levels. Gains are made in the following days
when the asset price readjusts itself to its intrinsic value [37]. It
should be mentioned that stochastic volatility models are also
successful to explain the leverage effect (see, for example,
Refs. [19,25,42]).

Mathematically the statement of the leverage effect can be
quantified by the negative correlation between past returns and
future volatility, and therefore it is measurable by the following
correlation function [26]:

L�t (τ ) = 〈r2
�t (t + τ )r�t (t)〉

〈r2
�t (t)〉2

. (14)

For the DJIA index L�t (τ ) ≈ 0 for τ < 0; however, for
0 < τ < 25 the normalized correlation function is negative
with a minimum at τ = 1 and presents an exponential-type
relaxation [37]. For τ > 25 the correlation relaxes to 0. Note
that the falloff time of L�t (τ ) quantity is about 25 days
[37], which is on similar time scale with the autocorrelations
responsible for the gain-loss asymmetry, presented above.
Though the connection between the gain-loss asymmetry and
the leverage effect has been investigated already, to the best of
our knowledge this similarity has never been pointed out up to
now [1,23,26,37]. We believe that both effects are consequence
of a fear-factor induced by the drop of the index and seemingly
relax on a similar time scale. However, it has to be noted that
presently it is believed that the gain-loss asymmetry may in
principle exist with or without a leverage effect being present.
For instance, within the model considered in Ref. [26] this was
demonstrated explicitly.

In another line, we should note from Fig. 4 that the
�τ ∗

ρ (T ) difference between the two maxima in the inverse
statistics defines a kind of measure for the length of the
autocorrelations. As T → 1 we get �τ ∗

ρ (T ) → 0, suggesting
a monotone relationship between the time scale of the relevant
autocorrelations and the strength of the gain-loss asymmetry.
Moreover, as T → 1 both of the maxima are shifting, τ ∗

|ρ|
shifting to the left and τ ∗

−|ρ| shifting to right (see Figs. 1 and
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r1>0

(a)

β1=−3.02
β2=−3.30

FIG. 9. Normalized probability distributions of the positive and
negative daily returns, r1(t), of the DJIA and the STT index.
(a) Log-log scale, with the dotted gray and black lines indicating two
power-law fits for the tail with exponents β1 and β2, respectively. Both
distributions show a similar fat tail. (b) Log-x2 scale, in comparison
with two Gaussian distribution functions N (0,σ 2

1 ) and N (0,σ 2
2 ),

respectively.

4). Interestingly we get for �τ ∗
ρ (T ) the same characteristic

time scale (�τ ∗
ρ ∈ [10,30] days) as the one obtained for the

relevant autocorrelation time by the window-shuffling method.

100

101

102

103

 1  10

τρ
*

±|ρ|[σ]

|ρ|
−|ρ|

γ+ =1.78
γ− =1.80

FIG. 10. The scaling of the τ ∗
ρ optimal investment horizons for

positive (dashed green curve) and negative (solid red curve) ρ return
levels, using an artificial index with daily returns having a fat-tailed
Student’s T distribution (STT). Please note the logarithmic scales.
The dotted black and gray lines indicate the slopes fitted for |ρ| > 3σ

return levels, denoted by the thin vertical line. The scaling exponents
are given in the legend.
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 0.1

 1

 1  10  100
T[trading days]

w(T)

DJIA
S&P500

NASDAQ100

FIG. 11. The asymmetry parameter as a function of the T time
window for the DJIA, S&P500, and NASDAQ100 indices. The
volatility of returns are chosen to be five times of the daily volatilities
of the respective indices: |ρ| = 5σ . The curves start to saturate in the
same interval: T ∈ [10,30] trading days, indicated by dashed vertical
lines.

In this view, the relevant time scale of autocorrelations we
were searching for are already suggested by the positions of
the maxima in Figs. 1 and 4.

Finally, the main message from our study is that we revealed
the characteristic time scale on which the daily volatilities are
functionally dependent (time scale of the non-Pearson-type
autocorrelations in the index). Volatility models that aim to
reproduce realistically the dynamics of the index, should take
into account this characteristic time scale and incorporate it in
their assumptions.
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APPENDIX

I. In order to generate a synthetic time series (daily
returns) with fat-tailed distribution and no autocorrelation, we
have used Python’s built-in Student’s T distributed random
number generator. Using ν = 3 shape parameter one can get

10−1

100

101

102

10−210−1

p(
r 1

)

|r1<0|

human
program

10−2 10−1

r1>0

FIG. 12. Normalized probability distributions of daily returns,
r1(t), of the DJIA index for the human and program trading periods.

nondiverging second moments (note that the variance cannot
be smaller than 1, getting actually var = ν/(ν − 2) = 3 in this
case). By generating time series of the same length as our
DJIA data, this would lead to the appearance of extremely
large daily return values, and thus to a practically diverging
index. To avoid this, we have rescaled these random variables,
keeping the distribution normalized. This can be done easily
by using the “scale” parameter of the Python package. With
a “scale = 0.01” parameter the standard deviation of the
generated times series (denoted by STT) is of the order of
the volatility of the DJIA returns, σSTT = 0.018. The STT
time series exhibits a non-Gaussian fat-tail distribution for the
daily returns, similar with the one observed in the DJIA index
[3] (see Fig. 9).

Performing the inverse-statistics analysis on the STT index,
we obtain similar γ < 2 scaling exponents for the τ ∗

ρ optimal
investment horizons for positive and negative ρ return levels
as in the case of the shuffled DJIA index. From Fig. 5 we
conclude 1.75 < γ ≤ 1.8 for the shuffled DJIA index while in
the case of the STT we get 1.78 < γ ≤ 1.8 (Fig. 10).

II. Considering the same type of analysis on the S&P500
and NASDAQ100 indices as well, one can conclude that the
underlying characteristic time scales leading to the gain-loss
asymmetry does not depend on the way the particular index
has been constructed. To show this in Fig. 11 we have
plotted together for all the three indices the w(T ) asymmetry
parameter as a function of the T shuffle window size.

III. Splitting the DJIA time series in two periods, from
1928 to 1980, the period of mainly human trading, and from
1980 to 2011, the period where program trading is consistently
present, we find that the distribution of the daily returns are
not affected. Results in such sense are presented on Fig. 12.
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