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An accurate and efficient numerical simulation approach to electromagnetic wave scattering from two-

dimensional, randomly rough, penetrable surfaces is presented. The use of the Müller equations and an

impedance boundary condition for a two-dimensional rough surface yields a pair of coupled two-

dimensional integral equations for the sources on the surface in terms of which the scattered field is

expressed through the Franz formulas. By this approach, we calculate the full angular intensity

distribution of the scattered field that is due to a finite incident beam of p-polarized light. We specifically

check the energy conservation (unitarity) of our simulations. Only after a detailed numerical treatment of

both diagonal and close-to-diagonal matrix elements is the unitarity condition found to be well satisfied

for the nonabsorbing case (U> 0:995), a result that testifies to the accuracy of our approach.
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The scattering of electromagnetic waves from two-
dimensional randomly rough penetrable surfaces has
been studied theoretically for more than five decades.
The methods used in these studies in recent years, where
attention has been directed toward multiple-scattering
phenomena, have been either analytical in nature or com-
putational. Chief among the former methods has been the
small-amplitude perturbation theory [1–3], while sev-
eral different computational methods have been used in
solving the scattering problem. In the earliest calculation
of this type [4] the system of coupled inhomogeneous
integral equations for the tangential components of the
total electric and magnetic fields on the rough surface
obtained from scattering theory, was converted into a
system of inhomogeneous matrix equations by the use of
the method of moments [5], which was then solved by
Neumann-Liouville iteration [6]. This is a formally exact
approach but one that is computationally (and memory)
intensive.

In subsequent work on this problem approximate solu-
tions of the exact integral equations have been sought. In
the sparse-matrix flat-surface iterative approach [7,8] the
matrix elements for two close points on the surface are
treated exactly, while those connecting two widely sepa-
rated points are treated approximately, in an iterative solu-
tion of the matrix equations.

Soriano and Saillard [9] have combined the sparse-
matrix flat-surface iterative approach with an impedance
approximation [10] to calculate copolarized and cross-
polarized bistatic scattering coefficients of aluminum ran-
domly rough surfaces for comparison with results obtained
from perfectly conducting surfaces.

An approach that combines the fast multipole method
[11] and the sparse-matrix flat-surface iterative approach
has been developed by Jandhyala et al. [12].

Despite these advances, the calculation of the scattering
of electromagnetic waves from two-dimensional, pene-
trable, randomly rough surfaces, remains a computation-
ally intensive problem, in need of further improvements in
the methods used to solve it.
In this Letter we use the Franz formulas of electromag-

netic scattering theory [13,14] to obtain expressions for the
amplitude of the electromagnetic field scattered from a
two-dimensional, rough, metallic, or dielectric surface in
terms of the tangential components of the total electric and
magnetic fields on the surface. The independent elements
of these tangential field components satisfy a system of
four coupled inhomogeneous two-dimensional integral
equations—the Müller equations [15,16]—derived from
Franz formulas. This system of four integral equations is
reduced to a system of two integral equations by the use of
an impedance boundary condition at a two-dimensional
rough metallic surface [17], and its solution is used to
calculate the mean differential reflection coefficient.
The approach to the scattering of an electromagnetic

field from a rough metallic or dielectric surface outlined
here is similar to the approach of Soriano and Saillard [5]
in its use of an impedance boundary condition to reduce the
number of coupled integral equations that have to be
solved from four to two. However, there are still important
differences between these two approaches. The first is that
we do not use the sparse-matrix flat-surface iterative ap-
proach: the matrix elements connecting any two points on
the surface are calculated accurately. Moreover, those con-
necting two nearby points are calculated more accurately
than in the work of Soriano and Saillard. The second is that
we calculate the full angular intensity distribution of the
scattered field, which allows us to check the unitarity
(energy conservation) of the scattered field (for the non-
absorbing case). This enabled the identification of critical
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aspects of the numerical implementation that, if not
handled properly, could lead to erroneous results and/or a
significant drop in accuracy. This important point seems to
have been overlooked in previous publications. The third is
that although the occurrence of hypersingular kernels is
avoided in both approaches by the use of the Müller
equations [15,16], some differences are found between
our resulting matrix elements and those of Soriano and
Saillard that appear to affect the unitarity of the scattered
field [18]. Moreover, contrary to what was reported in
Ref. [9], we find that matrix element terms containing
the Green’s function of the metal also have to be taken
into account for some off-diagonal elements in order to
produce accurate results. The fourth is that we do not use
the beam decomposition method [19] for the incident beam
in which a wide beam is represented by a weighted sum of
shifted narrow beams. Instead we use a single wide inci-
dent beam.

The physical system that we consider consists of vac-
uum ["0 ¼ 1] in the region x3 > �ðxkÞ [where xk ¼

ðx1; x2; 0Þ] and a nonmagnetic metal in the region x3 <
�ðxkÞ that is characterized by a complex, frequency-

dependent, dielectric function, "ð!Þ, for which Re"ð!Þ<
0 and Im"ð!Þ> 0. The surface profile function, x3 ¼
�ðxkÞ, is assumed to constitute a zero-mean, Gaussian

random process that is a single-valued function of xk and
is differentiable with respect to x1 and x2 at least twice. It is
defined by h�ðxkÞi ¼ 0 and h�ðxkÞ�ðx0

kÞi ¼ �2Wðjxk �
x0
kjÞ, where � is the root-mean-square roughness, Wð�Þ

denotes the (normalized) correlation function, and the
angular brackets denote an average over the ensemble of
realizations of �ðxkÞ. In this work we will use an isotropic

Gaussian correlation functionWðxÞ ¼ expð�x2=a2Þwith a
the correlation length.
The starting point of our approach is the Franz formulas

of electromagnetic theory (or the dyadic form of Huygens
principle) [13,14]. By applying them to the vacuum re-
gion above the metal surface, and letting the observation
point x approach the surface x3 ¼ �ðxkÞ, two coupled

inhomogeneous integral equations for the tangential com-
ponents of the electric and magnetic fields, JEðxkÞ ¼ n̂�
EðxÞjx3¼�ðxkÞ and JHðxkÞ ¼ n̂�HðxÞjx3¼�ðxkÞ, respec-

tively, are obtained, where n̂ denotes the unit vector nor-
mal to the surface and directed into the vacuum. We
note that from the definitions of JE;HðxkÞ it follows that n̂ �
JE;HðxkÞ ¼ 0, so that JE;HðxkÞ has only two independent

elements. The integral equations for these elements contain
double derivatives of the scalar Green’s function

g0ðx;x0Þ ¼ exp½ik0R�=4�R [k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

"0ð!Þp

!=c, R ¼ jx�
x0j] resulting in nonintegrable hypersingular kernels that
are sources of computational difficulties [9,15,16]. One
way to obtain integrable kernels is to combine in a suit-
able way the two sets of Franz formulas obtained sepa-
rately for the vacuum and metal regions so that the result-
ing integral equations do not contain any hypersingular
terms. The resulting equations are known as the Müller
integral equations [15], and the one satisfied by JHðxkj!Þ
reads

JHðxkj!Þ ¼ JHðxkj!Þinc þ P
Z

d2x0k ½½n̂ðxkÞ � fr� ½Gðxjx0ÞJHðx0
kj!Þ�g��

� ic

!

Z

d2x0k ½½n̂ðxkÞ � fr� r� ½Gðxjx0ÞJEðx0
kj!Þ�g��; (1)

where the equation satisfied by JEðx0
kj!Þ can be ob-

tained from duality [14]. In writing Eq. (1) we have
introduced Gðxkjx0

kÞ ¼ g0ðxkjx0
kÞ � gðxkjx0

kÞ—the dif-

ference between the scalar Green’s functions for
the vacuum (subscript 0) and the metal; ½½Aðxjx0Þ�� ¼
Aðxjx0Þjx3¼�ðxkÞ;x03¼�ðx0

kÞ; P denotes the Cauchy principle
value of an integral; and JHðxkj!Þinc is defined similarly
to JHðxkj!Þ but for the incident field. Initially the kernel of
Eq. (1) seems to be hypersingular. However, because the
leading term (when R ! 0) of the second derivative of the

scalar Green’s function is independent of medium parame-
ters, the most divergent terms of the kernel cancel, render-
ing it integrable. By adopting the impedance boundary
condition that relates the surface currents JEðxkj!Þ and
JHðxkj!Þ via the (local) impedance tensor (K) [17]:
JEðxkj!Þi ¼ Kijðxkj!ÞJHðxkj!Þj [i, j ¼ 1, 2], the depen-
dence on JEðxkj!Þ can be removed from Eq. (1).
Moreover, the resulting equation can be converted into a
matrix equation for the two independent electric surface
current components, say, JHðxkj!Þi [i ¼ 1, 2], by the use

FIG. 1 (color online). The mean differential reflection coeffi-
cients [21], h@R�p=@�si (p ! �) for a p-polarized incident

beam, whose polar angle of incidence is �0 ¼ 20�, as functions
of the polar scattering angle �s for the (a) in-plane and (b) out-
of-plane scattering. See text for additional parameters.
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of the method of moments [5]. The resulting linear system
is then solved by the biconjugate gradient stabilized (Bi-
CGStab) method [20] and the solution used to calculate the
mean differential reflection coefficient that is averaged
over an ensemble of realizations of the surface profile
function (see Ref. [21] for details).

On the basis of the integral Eq. (1), and with the use of
the impedance boundary condition, we have performed
numerical simulations for a p-polarized incident beam of
wavelength � ¼ 0:6328 �m that is scattered from a
Gaussian randomly rough silver surface. At this wave-
length "ð!Þ ¼ �16:00þ i1:088 [22]. The surface was
characterized by a root-mean-square roughness of � ¼
�=4 and a correlation length a ¼ �=2. In the simulations
it was assumed to cover an area of 16�� 16�, and the
discretization interval was � ¼ �=7 for both the x1 and x2
directions.

Figure 1 presents the mean differential reflection co-
efficients as functions of the polar scattering angle �s for
the in-plane [Fig. 1(a)] and out-of-plane (�s ¼ �90�)
[Fig. 1(b)] scattered light due to a p-polarized Gaussian
beam of width w ¼ 4� incident on the surface at a polar
angle �0 ¼ 20�. For the same parameters, Figs. 2 depict
the full angular intensity distribution of the incident
p-polarized light that is scattered into p- and s-polarized
light (polarization not recorded) [Fig. 2(a)]; p polarization
[Fig. 2(b)]; and s polarization [Fig. 2(c)]. The number of
surface realizations used to obtain these results was N� ¼
5000. The simulations required for every surface realiza-
tion 96 CPU seconds (on a 2.67 GHz Intel i7 CPU) for each
angle of incidence when calculating the scattered field on a
100� 100 grid. The peaks observed in Figs. 1 and 2 at
angular positions �s ¼ ��0 (and�s ¼ �0 þ �) are due to
the enhanced backscattering phenomenon, a multiple-
scattering effect [23]. The energy fraction of the incident
light that is scattered by the surface was 94.7%, compared
to 96.9% as predicted from the Fresnel coefficient of the
corresponding flat interface scattering system. All the light
scattered by the surface was essentially incoherent (dif-
fuse) (about 99.98%).

In order to evaluate the accuracy of the simulations and
to perform a self-consistency check of our approach, we
have performed simulations using the parameters given
above with the exception that the metal was assumed to
be nonabsorbing; i.e., we artificially put Im"ð!Þ � 0.
Under this assumption, the total time-averaged power
fluxes of the incident and scattered fields have to be equal,
or in other word, one should require energy conservation
(or equivalently unitarity of the scattered field), U � 1
where U denotes the fraction of the incident power flux
that is scatted by the rough metal surface. It should be
stressed that energy conservation is only a necessary, but
not sufficient condition to guarantee the correctness of the
simulation results for nonabsorbing systems. It is still,
however, a rather useful and nontrivial condition that can
assist in detecting inaccuracies of the simulation approach

as well as potential implementation errors. For the parame-
ters used in the simulations reported in this work, we found
U> 0:995 for ‘‘nonabsorbing’’ silver ["ð!Þ ¼ �16:00], a
result that testifies to the accuracy of our approach.
In order to achieve such good unitarity values, it turned

out that great care had to be exercised when handling the
matrix elements of the integral equation kernel that were
on, or close to, the diagonal. Soriano and Saillard [9] have
previously pointed out one way of handling the diagonal
matrix elements that contain the singularity (at xk ¼ x0

k) of
the Green’s function by separating it into two parts: one for

FIG. 2 (color online). The same as Fig. 1, but now showing the
full angular intensity distribution of the scattered field.
(a) p ! polarization not recorded, (b) p ! p, and (c) p ! s.
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which the integrand is singular but integrable and is
handled analytically, and another that is regular and is
handled numerically. These authors were not able within
their approach to check the energy conservation of their
calculations. We have found, however, that in order to
achieve good results for the energy conservation, also
close-to diagonal matrix elements (in addition to those on
the diagonal) have to be treated accurately even if the off-
diagonal matrix elements are regular everywhere. These
findings somewhat resemble results reported for volume
integral equations where also close-to-diagonal vol-
ume elements had to be handled with higher accuracy
then more distant matrix elements [24]. For instance, the
use of the midpoint method for evaluating all off-diagonal
matrix elements (as in Ref. [9]) and a more accurate
method for the diagonal elements, would, for the surface
parameters assumed here, result in about 16.4% (U ¼
0:834) of the incident energy not being accounted for, a
result that was found to be more-or-less independent of
how accurately one treated the diagonal elements, or if the
surface was rough or flat. Moreover, if in addition to the
diagonal matrix elements, also the nearest-neighbor ele-
ments were treated accurately, the amount of energy that
was not accounted for dropped to 4.9% (U ¼ 0:951). If,
additionally, also next-nearest-neighbor matrix elements
were treated accurately, the unitarity condition started to
becomewell satisfied (U> 0:995), and treating accurately
matrix elements that were even further apart contributed
only insignificantly to the improvement of the unitarity
condition [18]. It should be stressed that without perform-
ing the self-consistency check based on energy conserva-
tion, which requires the full angular distribution of the
scattered light being available to us, it had probably not
been realized that failing to treat close-to-diagonal matrix
elements accurately could cause inaccuracies in the range
of 10%–20% even for flat interfaces. This is one of the
main results of this Letter.

In conclusion, we have presented an accurate and high-
performance simulation approach for the scattering of
electromagnetic waves from two-dimensional penetrable
metallic surfaces based on surface integral techniques. By
this approach, the scattering of a p-polarized finite beam
by a two-dimensional, randomly rough, silver surface was
studied in the optical regime, and it gave rise to the well-
known enhanced backscattering phenomenon. Because of
the calculation of the full angular intensity distribution of
the scattered light, it was possible for us to evaluate the
accuracy of the simulation approach. It was found that
high-quality simulation results required an accurate treat-
ment of both the diagonal and close-to-diagonal matrix
elements. This latter point seems to have been overlooked
in previous studies. In this way, we were able to obtain
results that respect energy conservation (unitarity) for the
equivalent nonabsorbing system, something that testifies to
the accuracy of our approach.

The simulation approach presented in this Letter opens
the door to a direct and detailed comparison of the full

angle-resolved intensity distributions of the scattered light
obtained experimentally and theoretically. Additionally,
the approach provides the tools needed to predict the effect
of surface roughness on the electromagnetic field in the
near and far zone of the surface, and also to tailor surface
structures towards specific applications (engineered sur-
faces). Such issues are of importance in numerous appli-
cations as, for instance, in the photovoltaic industry where
surface roughness in solar cells is known to increase the
efficiency of the cell, but the optimal surface structure, and
the mechanism responsible for the increased efficiency, are
still unknown [25].
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