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We study the optical response of clusters of metallic nano-
spheres in the electrostatic approximation, using a spherical
harmonic representation of the electric field. Field enhancement
and near field interactions between the spheres are investigated
numerically. Symmetry properties of certain clusters give rise
to highly localized maxima of the electric field, denoted “‘hot
spots.” From numerical experiments performed at optical

1 Introduction At least since the time of the Romans,
the pronounced optical effects of metallic nanoparticles has
been taken advantage of for producing vibrant color effects
in, e.g., glass [1]. However, it was first many years later that
this phenomenon was fully understood. By the rigorous
electromagnetic scattering theory for a spherical particle
developed by Mie [2] more than a hundred years ago, it was
fully realized that the highly frequency dependent optical
response of subwavelength metallic particles is caused by the
so-called plasmon resonances [3-5]. These resonances can
be excited by incoming light under the right conditions, e.g.,
evanescent fields impinging on a surface.

Since Mie’s seminal work, uncountable experimental,
theoretical and numerical electromagnetic studies have been
performed on systems consisting of nanoparticles. Today,
such systems find applications in numerous branches of
technology and science, such as detecting adsorption of
biological substances on surfaces, optical antennae, and
surface enhanced Raman scattering (SERS) experiments.

A new wave of interest in the optical properties of
subwavelength metallic particles came with the discovery of
the SERS phenomenon more than 30 years ago [6]. In these
studies it was reported that the Raman signal from a given
type of molecules was enhanced by about six orders of
magnitude when the molecules were adsorbed on the
surfaces of small metal particles or on rough metal surfaces.
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frequencies of the incident light, it is found that various
geometrical configurations exhibit interesting phenomena; in
particular, that hot spots move spatially around as a function of
the frequency of the incident light. We present simulation
results for the simplest nanoparticle cluster known to
exhibit these interesting phenomena, namely, a regular
octahedron.
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Such levels of enhancements are today commonly attributed
to the excitation of localized surface plasmon resonances in
the metal.

More recently, Raman enhancements' as high as 14
orders of magnitude have been reported in the literature for
clusters of particles [7]. Moreover, it is so far reported for
certain cluster geometries that enhancements of 9—11 orders
of magnitude can be attributed to surface plasmon exci-
tations in the cluster. This is orders of magnitude more than
what is possible to achieve with a single particle [8].

In the past, experimentalists have traditionally used
colloidal nanoparticles for field enhancement studies.
However, with the advent of various technologies for
creating nanoscopic structures, this has changed, since it
now has become practically feasible to manipulate objects on
the nanoscale with confidence. This has opened for the
possibility of engineering clusters of well-defined geometry
and/or particle shapes to be used for large field enhancement
studies. These fascinating possibilities have initiated a lot of
theoretical and numerical studies into the properties of
more complex clusters of nanoparticles [8—12], various
particle shapes [13—15] as well as supported nanoparticles
[5, 15-18].

' The Raman cross-section scales as the 4th power of the local electric field.
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It is worth noting that the field is not enhanced uniformly
within a cluster. Instead one has regions of field enhance-
ment, so-called “hot spots,” where the local field enhance-
ment is particularly high. In the past, “simpler” cluster
geometries have been considered, typically linear geome-
tries like dimers and nanoparticle chains [8§—12] for which the
location of the hot spots can be inferred from theory.
However, for more complicated two- or three-dimensional
structures, the hot spot locations are not known in advance.

This paper is devoted to the study of clusters of spherical
nanoparticles, where we report results for a 3D “double
pyramid” geometry (octahedron). The locations of the hot
spots for this geometry are presented for optical frequencies.
The main result of the paper is that the locations of the hot
spots are frequency dependent: observed hot spots move
around spatially in a priori unpredictable ways, as the
frequency of the incident light changes. To the best of our
knowledge, such results have not been reported previously.

2 Geometry The physical system we consider in this
work consists of N = 6 dielectric spheres of radii R;
(i=1,2,...,6) and dielectric functions ¢;(w) surrounded
by a medium characterized by a (non-absorbing) dielectric
function &y (w). The spheres are arranged in an octahedron
geometry with its center located at the origin of a coordinate
system (x, y, z). Four of the sphere centers are situated in the
yz-plane at positions (0, +=¢, £¢) and (0, £¢, F¢) where £ isa
length scale to be specified. The remaining two spheres are
located on the x-axis at x = -+/2¢. The full geometry of the
cluster of spherical particles we are concerned with is
depicted in Fig. 1. This particular geometry is discussed
because it is the simplest geometry known to exhibit
spectrally dependent hot-spot locations.

In addition to the coordinate system, S, centered at the
center of the octahedron, we also introduce N = 6 coordinate
systems, S;, with spherical coordinates (r;, 6;, ¢;) and with
their origins located at the center of sphere i, related to S by
pure translation.

Figure 1 The regular octahedron nanosphere cluster with four
spheres in the yz plane and two spheres on the x axis. Ey is uniform
and oriented along the z axis.
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For the purpose of this work, we will assume that all
spheres are identical, and therefore share the same radius,
R; = R. The material of all spheres is chosen to be silver and
the experimental data for the dielectric function
¢i(w) = ¢(w) is taken from the SOPRA database [19]. The
incident electric field is set to Eg = ZE(, and we choose the
length scale £ to be £ = 1.1R.

3 Theory It will be assumed that the size of the cluster
of spheres is much smaller than the wavelength, i.e.,
21/2¢ < x.Hence, the whole system under study is therefore
much smaller than the wavelength of the incident radiation.
Under this assumption, one can work within the so-called
quasi-static approximation, for which all retardation effects
can be neglected. In this case, it is well known that the
Maxwell’s equations are consistent with solving the Laplace
equation,

V2y(r) =0, (1

satisfied by the scalar potential, v (r), given appropriate
boundary conditions [20, 21]. Once the potential is known,
the related electric field is obtained from E(r) = —Vy(r).
The boundary conditions to be satisfied by the potential at
any interface separating media of different dielectric
properties follow from the corresponding boundary con-
ditions for the electric field. This translates into the
requirement that the potential ¥ (r) itself and its normal
derivative (9, =7n - V) times the dielectric function of the
medium where the potential is being calculated, &(w)d, v (r),
should both be continuous over any interface separating two
adjacent media.

In a spherical geometry, a general solution to the Laplace
equation is known in terms of the so-called multipole
expansion. It consists of a series expansion in terms of
positive (r') and negative Y powers of the distance, r,
from the origin of the coordinate system times the spherical
harmonics, Y]"(0,¢), which take care of the angular
dependence of the potential [5, 20, 21]. In order to keep the
potential finite everywhere, expansion coefficients for terms
like 7~/~! must be put to zero for the domain containing the
origin of the coordinate system. For the same reason, terms
containing positive powers of r are not allowed in domains
extending to infinity, i.e., outside the spheres.

For our cluster of spherical particles, the procedure is
now to expand the potential in the local systems S; of
spherical coordinates (r;, 6;, ¢;) and having its origin at the
center of sphere j as follows (with the shorthand

Do =20 Zin;l)I

) (ri\ —1=1ym .
lzm%i(@ Y'(6;, ), ifr;>R,

¥ () = .
a S B Y70,9),
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In the embedding medium, and therefore outside all spheres,
the (total) potential can be written in the form

N
Y(r) = —r-Eo+ Y _ (ry). @)
Jj=1

Here the first term stems from the incident field, which for
simplicity has here been taken to be constant and uniform,
while the second term is the contributions to the potential
from the individual spheres. To facilitate the matching of
boundary conditions on the spherical interface, we express
r-Ey in terms of ¥? and Yi! P]’

The coefficients A%z and B/(;]n appearing in the expansions
for y; are all unknown, but they are determined by imposing
the appropriate boundary conditions for the potential on the
surface of each of the N = 6 spheres. However, one problem
arises when one wants to do this: Eq. (2) involves coordinates
from N + 1 different systems, and {j}jN: |, but they are all
related to each other via the position vectors of the centers of
the various spheres. Here the so-called translation addition
theorem for spherical harmonics comes to our rescue [5].
What this theorem says is that under certain conditions (that
are satisfied here) the various terms of the multipole
expansion given in terms of one coordinate system, say,
r’l’lY{"(Qj,qu) can be expressed, with known expansion
coefficients, as a linear combination of Yl’,”’(e,v,qsi) from
another coordinate system (i # j) with /' <[ and, as usual,
|m'| <I' (see Ref. [5] for details). This implies that all the
potentials going into satisfying the boundary conditions at
the surface of a given sphere can, for instance, be expressed
in terms of the coordinates associated with that sphere alone.
Taking into account all the boundary conditions on the
surface of the spheres and using the orthogonality of the
spherical harmonics, a set of linear equations can be derived
for the expansion coefficients AI(Z and Bl(fn Moreover, it can
be shown that the B;Z coefficients, related to the potentials
inside the sphere, can be eliminated from the linear system of
equations thereby leaving only A 1,72- Furthermore, it follows
from the continuity of &9, that Ayy = 0. In practice the
multipole expansion given above has to be truncated at, say,
! < L in order to give a finite size for the resulting linear
system to be solved. Then the total number of unknown
coefficients to be solved for is N(L + 1)* — 1. After having
determined the expansion coefficients, one can calculate
¥ (r) at any given point in space, and, subsequently, E(r), by
numerical differentiation (using a finite difference approxi-
mation). We stress that this approach takes all particle—
particle interactions into account.

4 Results We have performed numerical simulations
for a nanooctahedron cluster consisting of N = 6 silver
particles (Section 2) for photon energies in the range from
2.0eVto4.5eV. The simulations were done under the quasi-
static approximation, where the potential is expressed as a
multipole expansion with L =20 (Section 3). We have
especially investigated how the locations of regions of high
field enhancements, so-called ‘“hot spots,” depend on
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Figure 2 (onlinecolorat: www.pss-b.com)Frequency dependence
of the expansion coefficients Ao for the top sphere in Fig. 1. Solid and
dashed lines show the real and imaginary parts of the coefficient,
respectively. It is noted that all even multipole coefficients are
identically zero (also those for/ > 3 that are not shown). The dashed
line represents the single-sphere Mie resonance, and the dotted line
represents the red-shifted Mie resonance for interacting spheres.

frequency. As we shall see, these hot spot regions tend to
move around as we vary the frequency of the incident light.

In Fig. 2, the frequency dependence of the three lowest
order multipole coefficients are presented for the silver
N = 6 nanoparticle cluster under study. Solid and dashed
lines give the real and imaginary parts of the expansion
coefficients, respectively. Our first observation is that all
terms with m = 0 and [ even, in particular [ =2, m = 0,
vanish for all frequencies. We explain this effect following
closely the argument put forward in Ref. [12]: with the given
field orientation, the electrostatic potential has to be
antisymmetric with respect to reflection in the yz plane. As
spherical harmonics gain a factor (—1)""" under reflection
through the xy plane, we expect that all coefficients A, with
[ + m even will be zero, due to this symmetry constraint on
the potential. Our hypothesis has been confirmed by
simulating a regular octahedron cluster with the material of
one sphere changed from silver to gold; this breaks the
symmetry, and thus the selection rule for the /, m multipoles.
In this case, all multipoles contribute (are non-zero), also the
multipoles with [ + m even.

Another eye-catching feature of Fig. 2 is that for photon
energies just above 3.5eV, the real part of the dipole
coefficient, Ao, vanishes, while the octupole term dom-
inates. This indicates that for these intermediate frequencies,
any field enhancement hot spots encircling the sphere in
question will move around due to the different angular
dependence of dipole and octupole terms. This, combined
with the rapid oscillations (with respect to 6, ¢) and the
spatial decay (+~/~!) of the high order multipoles, shows that
these structures exhibit characteristics interesting for
nanoantenna applications: creating a localized near field
response under the influence of an incoming far field, with a
frequency dependent position of the field enhancement.

Figures 3 and 4 show the field enhancement at
hw = 3.5eV in the xz and xy planes, respectively, with the
incident field E, as indicated. In both planes we observe
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Figure 3 (online color at: www.pss-b.com) Normalized field
enhancement |E|*/|Eo|” in the xz plane, for an incident field of
hw = 3.5eV.Thetwoblackcircles indicate the circumference of the
top and bottom spheres in Fig. 1, whose centers reside in the xz plane,
while the four remaining spheres are entirely above or below the xz
plane.

significant field enhancement hot spots at various locations,
tied closely to the surfaces of the spheres. Intuitively, one
expects the maximum field enhancement to occur where the
spheres are closest. Although this holds true for some
frequency ranges, i.e., where the dipole terms in our
expansion dominate, it certainly does not hold true for all
frequencies. For example, at 7iw = 3.50eV, as depicted in
Fig. 3, we notice that the hot spots in the xz plane are located
on the outside of our sphere cluster, near the top and bottom
of the figure.

While Fig. 3 gives a good picture of what happens at one
particular frequency, it is by nature unable to reveal any
spectral dependencies. Figure 5 shows the intensity enhance-
ment on the top black circle in Fig. 3, i.e., on the circle
corresponding to the intersection between the xz plane and
the sphere’s surface. By changing the photon energy of the
incident light from 3.26 eV to 3.50eV, we observe that the
two peaks close to & = m are significantly reduced, while the
side peaks close to 6 = /2 grow in strength. Increasing

o
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Figure 4 (online color at: www.pss-b.com) Field enhancement
|E|*/|Eo|* in the xy plane, at a frequency of fiw = 3.5eV. The
two black circles indicate the circumference of the top and bottom
spheres in Fig. 1. The four remaining spheres are entirely above or
below the xy plane.
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Figure 5 (online colorat: www.pss-b.com) Intensity enhancement
|E|* /|Eo|* on the top black circle (i.e., the intersection between the
surface of the sphere and the xz plane) for three different frequencies.
Note that the peaks in the intensity enhancement do not coincide for
all frequencies. 6 is the angle shown in Fig. 3.

the photon energy up to 3.68eV, the pattern changes
completely, showing only three peaks in the field
enhancement.

Figure 6 shows the field enhancement for a range of
photon energies, revealing in more detail the behavior of the
field enhancement peaks. According to the figure, peaks of
field enhancement appear and disappear in several locations
at different frequencies, indicating that the most important
effect is the appearance and disappearance of hot spots at
static locations.

Figure 7, included for completeness, shows the same as
Fig. 6, but now in the xy plane, with the different 6 values
corresponding to different locations on the top black circle in
Fig. 4. Interestingly, the two hot spots found at low photon
energies vanish for energies of about 3.50eV, while a new,
broad resonance forms across most of the circumference in
the xy plane.

While we in this paper have focused on one specific
cluster of silver nanospheres, namely the regular octahedron,
we have also simulated other cluster geometries. As an
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Figure 6 (online colorat: www.pss-b.com) Intensity enhancement
on the great circle in the xz plane (i.e., the intersection between the
surface of the sphere and the xz plane), for the top sphere in Fig. 1.
The angle, 0, is shown in Fig. 3. It is possible to recognize the four
hot spots of the field from Fig. 3.
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Figure 7 (online color at: www.pss-b.com) Intensity enhancement
on the great circle in the xy plane, for the top sphere in Fig. 1. The
angle, 6, is shown in Fig. 4.

example, we have calculated field enhancement inside a
cluster consisting of spheres placed at the lattice points in a
single FCC unit cell; the same was also done for a single BCC
unit cell. In both cases, we observed wandering hot spots,
indicating that this phenomenon is robust; i.e., it occurs for
many different types of 3D clusters.

To ensure the validity of our numerical calculations, we
investigated the convergence by explicitly verifying that the
boundary conditions at each spherical interface were
fulfilled. Using the truncation rule suggested in Ref. [9],
L =4R/d = 20, the observed errors were found to be less
than 1%, which is satisfactory for a qualitative study.

5 Conclusion and outlook In conclusion, we have
observed the spectral dependence of hot spot locations in
clusters of nanospheres. Working in the quasi-static
approximation, we show that the frequency dependence of
the dielectric function alone is enough to provoke rich
dynamics in the local electric field. The dielectric functions
were taken from experiments, giving confidence in the
possibility of observing such phenomena in real systems.

Interesting future work includes looking at (truncated)
spheres placed on a planar interface, as this is a more
convenient system to investigate experimentally. Using a
similar approach to solve the Laplace equation seems
feasible for such systems. Another possibility is to

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

investigate if frequency dependent hot spots are observed
in spheres coated by another dielectric.
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