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Abstract

We consider a �nancial market where the asset price follows a fractional Brownian motion.
A family of investment strategies are introduced, and we quantify pro�t possibilities for both
persistent and anti-persistent markets. It is demonstrated that pro�t opportunities exists as long
as the Hurst exponent H di2ers from 1

2 , and that the pro�t increases with |H − 1
2 |. Furthermore,

one systematically �nds that the pro�t pro�le is not symmetric about H = 1
2 . Larger pro�ts can

be generated in persistent markets than in anti-persistent markets that corresponds to the same
|H − 1

2 |.
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Financial time series have been studied for a long time. What type of random process
they resemble is still debated, and di2erent suggestions have been made. In 1900, the
French mathematician Bachelier [1] suggested that asset prices might be described by
what today is known as a random walk [2]. Such a walk is a random process where
the increments are uncorrelated. However, today we know this is not the whole story.
There are examples of �nancial time series that exhibits correlations [3–8]. In particular,
both correlations [6–8] and recently also anti-correlations [7,9] have been reported for
various types of �nancial time series.
Correlated markets are at odds with an e>cient market, as it may allow for arbitrage

opportunities. This should be the case both for short-term correlations, as well as
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long-term scale invariant Fuctuations (where transaction costs can be neglected). This
paper address the amount of arbitrage as function of correlations, and thus quantify
the degree of non-equilibrium and possible pro�ts, for di2erent employed strategies, a
given long-time (positive or negative) correlation corresponds to. For a record of real
markets with signi�cant correlations, please consult [7,10,11] (and references therein).
The price model that we are going to consider is a fractional Brownian motion, i.e.,

a self-a>ne process [2]. Such a process is characterized by an exponent, H , termed
the Hurst exponent [12], where typically 0¡H ¡ 1.
Let p(t) denote the price of an asset at time t. The asset could be a stock, a currency

or some commodity. That p(t) is self-a>ne means that Fuctuations on di2erent time
scales can be rescaled, so that the behaviour of p(t) is statistical equivalent to the
behaviour of �−Hp(�t) where � is any positive number. For H = 1

2 we have the
uncorrelated random walk of Bachelier.
Since it will be useful later, let t = 0 be the present time, and let us consider the

correlation function between future and past price increments Hp(t)=p(t)−p(0) and
Hp(−t):

CH (t) =
〈−Hp(−t)Hp(t)〉

〈[Hp(t)]2〉 ; (1a)

where 〈· · ·〉= 1=N
∑N

1 : : : denotes the (arithmetic) average over all considered invest-
ment situations for �xed H (and investment strategy), and thus 〈Hp(t)2〉=〈Hp(−t)2〉.
A remarkable feature of a fractional Brownian motion is that the correlation function,
Eq. (1a), is time independent and only depends on the Hurst exponent H [2]

CH (t) = 22H−1 − 1 : (1b)

Thus, an ordinary Brownian motion with H = 1
2 have CH=1=2(t) = 0, whereas any

larger (smaller) H implies correlation (anti-correlation), i.e., if H ¿ 1
2 then CH ¿ 0

and thus the sign of the past price di2erence −Hp(−t) =p(0)−p(−t) is most likely
to be maintained for Hp(t). Therefore, for H ¿ 1

2 the stochastic process is most likely
to keep the trend of the past. Similarly, if H ¡ 1

2 the sign of the price di2erence is
most likely to change at each subsequent time interval. Furthermore, the probability of
change is independent of the length of the considered time interval. Hence, a process
with H ¿ 1

2 is denoted a persistent fractional Brownian motion, while a process with
H ¡ 1

2 is referred to as anti-persistent. In the �nancial literature the latter case (H ¡ 1
2 )

is often referred to as a mean-reverting process.
To study pro�t opportunities in a fractional Brownian market, we need to de�ne a

strategy for when to (and not to) make an investment. In accordance with the notion
of persistence and anti-persistence, we use a strategy that is based on the price history:
Assume that we have an investment horizon T , meaning that after purchasing an asset
at time t = 0 the investor sticks to his investment until time t = T at which point the
asset is sold. We will evaluate strategies, assuming that there is only one option to buy
or not to buy at the beginning of each interval. If we do not buy, nothing happens.
If, however, one buys, one is bound to sell at the end of the interval. Buying or not
buying at the next interval, is considered a separate independent event.
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The choice of strategy, 
�, is motivated by Eqs. (1a). For an investment horizon T
we make a choice at t = 0 based on the asset price at t = −T : If the market is per-
sistent (H ¿ 1

2 ), one invests at t = 0 only if the price went up from t = −T to 0,
i.e., if −Hp(−T ) = p(0) − p(−T )¿ 0. Similarly, if the market is anti-persistent
(H ¡ 1

2 ) one invests at time t = 0 only if −Hp(−T )¡ 0, i.e., if the price over the
chosen horizon T (in the past) has decreased. The above strategy (obtained by setting
�=0 in the formulae below) can be expressed in terms of the amount invested at time
t = 0

I�(Hp(−T )) = �(−(H − 1
2 )Hp(−T ))

|Hp(−T )|�
〈|Hp(−T )|�〉 ; (2)

where �(x)=1 for x¿ 0, and �(x)=0 for x¡ 0. We will later return to other choices
for the parameter �. In Eq. (2) the �-function signi�es to invest (�= 1), or not-invest
(�=0), while the last term de�nes the investment size for a particular past. If we always
invest the same amount independent of the past, we have � = 0 so that the last term
of Eq. (2) is constant (and equal to one). If �¿ 0 the size of the investment depends
on the past change of p(t). For example if �=1 the amount we invest is proportional
to Hp(−T ) whereas higher � values focus transactions on fewer big investments.
To measure the utility of a strategy I�(Hp(−T )) we note that the pro�t for an

investment, occurring only when �= 1 in Eq. (2), is

W�(T ) =
|Hp(−T )|�
〈|Hp(−T )|�〉Hp(T ) : (3)

If the price Fuctuations are increased, the potential pro�t (or loss) is bigger. In our
fractional Brownian market the Fuctuations increase with the duration of the investment
horizon. Therefore, the pro�t histograms are expected to broaden when T is increased
(see inset in Fig. 2). In order to compare the performance of the various strategies at
di2erent horizons we examine pro�ts in units of the typically price Fuctuations at the
given investment horizon: �(−T ) =√〈(p(−T )− p(0))2〉˙ TH for a stochastic pro-
cess with Hurst exponent H . Hence, it is natural to consider the probability distribution
of W�(T )=�(−T ).
To obtain the distribution of pro�t we need to generate a market. Fractional Brownian

price processes were generated by the method described in Ref. [2] which ensures
Gaussian increments of the process. For H = 0:4 an example is shown in Fig. 1. We
have also considered versions of the generator described in Ref. [2] which gives rise to
non-Gaussian increments, e.g. power laws, 1 and di2erent generators [13,14], but these
di2erent choices seem not to a2ect the general conclusions drawn in this paper. The
length of the used time series was Tmax = 214 = 16384, equally divided between past
and future. To avoid inFuence from periodic boundaries we only consider horizons T
well below Tmax=2.

1 According to its de�nition, the invested amount varies from transaction to transaction when �¿ 0. Hence,
the pro�t we make by applying di2erent strategies cannot directly be compared. In order to address this, we
will for �¿ 0 by the pro�t distribution P(x) understand the distribution of pro�t per unit (invested) capital.
By doing so the performance of the di2erent strategies can readily be compared.
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Fig. 1. An example of a price time series with Hurst exponent H = 0:4. With the strategy described in the
text, one would for time horizon T = 1000, buy at t = 0 because the price went down in the past and thus
is more likely to increase in the future.
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Fig. 2. The pro�t distribution for an anti-persistent market (H = 0:3) with di2erent investment horizons
T (and �x strategy � = 0). The �gure shows the distribution of W0(T )=�(−T ) while the inset shows the
distribution of W0(T ).

In the inset of Fig. 2 we show, for an anti-persistent market characterized by the
Hurst exponent H =0:3 (and strategy �=0), the pro�t probability distributions for the
investment horizons T = 8; 32; 128; 512. The corresponding distributions for the renor-
malized pro�ts, W0(T )=�(−T ), still with H=0:3, are shown in the main part of Fig. 2.
They demonstrate data collapse for the di2erent investment horizons. This teaches us
that any time scale provides the same pro�t pro�le, if we measure this in units of the
typical price Fuctuations on that time scale (and can neglect transaction costs). This fact
simpli�es our discussion, as we can deal with pro�t in terms of only fractions of the
typical price Fuctuations. The vertical dashed lines in Fig. 2 separate the pro�t-region
(to the right) from the loss-region (to the left). The asymmetry testi�es to a possible
mean pro�t, which we for Hurst exponent H = 0:3 �nd to be 〈W0(T )=�(−T )〉P = 0:35
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Fig. 3. The distributions of W0(T )=�(−T ) for markets with di2erent Hurst exponents H (and investment
strategy � = 0).

where 〈·〉P is used to indicate the mean relative to the distribution P (see Ref. [15]). 2

We �nd similar data collapses for other Hurst exponents between 0 and 1. Furthermore,
in Fig. 3 the collapsed curves, for di2erent H , show that the pro�t distribution exhibits
fatter tails for larger Hurst exponents, while it becomes more narrow for smaller H .
We also observe that only H = 1

2 gives rise to a symmetric distribution, whereas all
other markets allow for pro�t.
The above analysis was done for a �=0 strategy, i.e., many equally sized investments.

If one instead choose to focus the investments, that means to use a �¿ 0 strategy, the
pro�t would be di2erent (see Fig. 4). However, the distributions [15] of W�(T )=�(−T )
(results not shown), for di2erent � and given H , are rather similar. The main di2er-
ence between the di2erent strategies � comes about due to an increased asymmetries
(for H �= 1

2). This asymmetry is quanti�ed by the average pro�t 〈W0(T )=�(−T )〉P . In
Fig. 4 this average pro�t is summarized for a number of markets and a number of dif-
ferent strategies. For any � we observe pro�t possibilities for both H ¡ 1

2 and H ¿ 1
2 .

For small deviations from a perfect Brownian market the pro�t increases linearly with
the absolute value of the distance to H= 1

2 . By examining di2erent � we further observe
that larger � provides us with larger average pro�t. Thus, if the average is our only
concern we should invest only when there has been extreme price changes in recent
past. However, the cost of higher � is a higher probability for big losses (and gains)
simply because the invested capital increases with �. This fact was observed (result

2 In particular, we considered 1=x4 and Lorentzian (Cauchy) distributed increments, where the latter dis-
tribution asymptotically goes like 1=x2. The former distribution was recently observed in economic data by
P. Gopikrishnan.
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Fig. 4. The average pro�t 〈W�(T )=�(−T )〉P vs. Hurst exponent, H , for three di2erent choices of strategy.
The inset shows the same quantity for H = 0:3 and 0:7, but now as a function of the investment strategy �.

not shown) as fatter and fatter tails for the total wealth distribution. Notice, however,
that the probability for big losses per invested dollar is more or less independent of �.
It is interesting to notice that in a recent study conducted by JLanosi [16], and based on

high-frequency BUX index data from the Budapest stock exchange, somewhat similar
conclusions were obtained. This author considered the distribution of yield, i.e., the �nal
value of stocks and cash divided by the initial amount of cash (and stocks), resulting
from random trading on the BUX that is a persistent market [8]. It was found, as we
did, that such trading on average would be pro�table due to the correlations, and that
the di2erent investment horizons did not a2ect the yield distribution signi�cantly (see
Fig. 2). Furthermore, we agreed on the fact that there is substantial probability for loss
when exploiting the correlations of the market. Averaging over many transactions will
minimize the risk, but then transaction costs will become important.
Therefore, we �nally will consider the role of transaction costs. Until now this has

been neglected, as it could be for a long-time investment. However, since the pro�t
de�ned above always scales with the spread in prices, W (T )˙ �(T )˙ TH , the pro�t
per time unit W (T )=T ˙ TH−1 favours (if we neglect transaction costs) very short
investments (since H ¡ 1). The only limit to short-term investments is transaction
costs, that is a �xed fraction r of every investment. With transaction costs the net
pro�t for an investment W�(r; T )˙ (Hp(T )− r) where Hp(T ) here is de�ned as the
relative price change in order to be on the same scale as the transaction cost r. In
principle there is of course transaction costs at both beginning and end of each trade,
but that would not change the functional form (i.e., Hp− r → (1− r)Hp− 2r). With
transaction costs the average W�(r; T ) is negative at small T and 〈W�(T )〉=T has a
maximum at some �nite time T that depends on Hurst exponent, as well as � and r.
This maximum sets the optimal investment horizon in a correlated market.
In summary, we have considered the possibility of making pro�t in a fractional

Brownian market. It is noted that one can make pro�t for all cases where H �=0:5,
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and it is found that the average pro�t increases with the willingness to bet on extreme
variations.
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