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Abstract

Inverse statistics in economics is considered. We argue that the natural candidate for such
statistics is the investment horizons distribution. This distribution of waiting times needed to
achieve a prede-ned level of return is obtained from (often detrended) historic asset prices.
Such a distribution typically goes through a maximum at a time called the optimal investment
horizon, �∗� , since this de-nes the most likely waiting time for obtaining a given return �. By
considering equal positive and negative levels of return, we report on a quantitative gain–loss
asymmetry most pronounced for short horizons. It is argued that this asymmetry re2ects the
market dynamics and we speculate over the origin of this asymmetry.
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Financial time series have been recorded and studied for many decades. With the
appearance of the computer, this development has accelerated, and today large amounts
of -nancial data are recorded daily. These data are used in the -nancial industry for
statistical studies and for benchmarking. In particular, they can be used to measure the
performance of a -nancial instrument. Traditionally this has been done by studying the
distribution of returns [1–3] calculated over a ,xed time period =t. Such distributions
measure how much an initial investment, made at time t, has gained or lost by the
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time t + =t. Numerous empirical studies have demonstrated that for not too large
=t’s, say from a few seconds to weeks, the corresponding (return) distributions are
characterized by so-called fat tails [1–4]. This is to say that the probability for large
price changes are much larger than what is to be expected from Gaussian statistics,
an assumption typically made in theoretical and mathematical -nance [1–3]. However,
as =t is increased even further, the distribution of returns gradually converge to the
Gaussian distribution.
In the context of economics, it was recently suggested [5], partly inspired by earlier

work in turbulence [6], to alternatively study the distribution of waiting times needed
to reach a ,xed level of return. These waiting times, for reasons to be clari-ed in the
discussion below, were termed investment horizons, and the corresponding distributions
the investment horizon distributions. Furthermore, it was shown for positive levels of
return, that the distributions of investment horizons had a well-de-ned maximum fol-
lowed by a power-law tail scaling like 2 p(t)∼ t−3=2. The maximum of this distribution
signi-es the optimal investment horizon for an investor aiming for a given return.
In order to present the method, let us start by letting S(t) denote the asset price.

Then the logarithmic return at time t, calculated over a time interval =t, is de-ned as
[1–3]

r=t(t) = s(t +=t)− s(t) ; (1)

where s(t) = ln S(t). Hence the log-return is nothing but the log-price change of the
asset. We consider a situation where an investor is aiming for a given return level
denoted �, which may be both positive (being “long” on the market) or negative (be-
ing “short” on the market). If the investment is made at time t, then the investment
horizon is de-ned as the time ��(t)==t so that the inequality r=t(t)¿ � when �¿ 0,
or r=t(t)6 � when �¡ 0, is satis-ed for the ,rst time. The investment horizon distri-
bution, p(��), is then the distribution of investment horizons �� (see Fig. 1) averaged
over the data.
A classic assumption made in theoretical -nance is that the asset prices follow a

geometrical Brownian motion, i.e., s(t) = ln S(t) is just a Brownian motion. For a
Brownian motion, the solutions to the investment horizon (-rst passage time) problem
is known analytically [7,8]. It can be shown that the investment horizon distribution is
given by the Gamma-distribution: p(t) = |a| exp(−a2=t)=(√�t3=2), where a˙ �. Note,
that in the limit of large (waiting) times, one recovers the well-known -rst return
probability p(t)∼ t−3=2. As the empirical logarithmic stock price process is known
not to be Brownian [1–4], we instead suggest to use a generalized (shifted) Gamma
distribution of the form:

p(t) =



�(�=
)
|�|2�

(t + t0)�+1
exp

{
−
(
�2

t + t0

)
}
(2)

2 Notice that this scaling behavior implies that the -rst (average investment horizon), and higher, moments
of this distribution do not exist.
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Fig. 1. The historic daily closure prices, S(t), of the Dow Jones industrial average (DJIA) over the period
from May 26, 1896 to June 5, 2001. The upper curly curve is the raw logarithmic DJIA price s(t)= ln S(t),
while the smooth curve represents the drift on a scale larger then 1000 trading days. The lower curly curve
represents the wavelet -ltered logarithmic DJIA data, s̃(t), de-ning the 2uctuations of s(t) around the drift.

as a basis for -tting the empirical investment horizon distributions. It will be seen
below, that this form parametrize the empirical data excellently. Note, that the dis-
tribution, Eq. (2), reduces to the Gamma-distribution (given above) in the limit of
� = 1=2; � = a; 
 = 1, and t0 = 0. Furthermore, the maximum of this distribution, i.e.,
the optimal investment horizon, is located at �∗� = �

2(
=(� + 1))1=
 − t0 for a given
level of return �. If the underlying asset price process is geometric Brownian, then one
would have �∗� ∼ �2 for all values of �. We will later see that this is far from what is
observed empirically.
It is well-known that many historic -nancial time series posses an (often close

to exponential) positive drift over long time scales. If such a drift is present in the
analyzed time series, one can obviously not compare directly the histograms for positive
and negative levels of return. Since we in this paper mainly will be interested in making
such a comparison, one has to be able to reduce the ePect of the drift signi-cantly.
One possibility for detrending the data is to use de2ated asset prices. However, in
the present study we have chosen an alternative strategy for drift removal based on
the use of wavelets [9], which has the advantages of being non-parametric and does
not rest on any economic theory whatsoever. This technique has been described in
detail elsewhere [5], and will therefore not be repeated here. It suQces to say that
this wavelet technique enables a separation of the original time series into a short
scale (detrended) time series s̃(t) and a drift term d(t) so that s(t) = s̃(t) + d(t). In
Fig. 1, we see the ePect of this procedure on the whole history of one of the major
US economical indicators, namely the Dow Jones industrial average (DJIA). In this
particular example, which is the one used in the analysis, the separation is set to 1000
trading days, corresponding to roughly 4 calendar years.
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Fig. 2. The investment horizon distributions for the DJIA logarithmic closing prices at a return level |�|=0:05.
The open symbols correspond to the empirical distributions, while the solid lines represents the maximum
likelihood -t of these distributions to the functional form given by Eq. (2). The -tting parameters used
to obtain these -ts are for � = 0:05: � = 0:50; � = 4:5 days1=2; 
 = 2:4, and t0 = 11:2 days; and for
� =−0:05: � = 0:50; � = 5:0 days1=2; 
 = 0:7, and t0 = 0:6 days.

Based on s̃(t) for the DJIA, the empirical investment horizon distributions, p(��), can
easily be calculated for various levels of return �. In Fig. 2 these empirical distributions
for �=0:05 (open circles) and �=−0:05 (open squares) are presented. The solid lines
in this -gure are the maximum likelihood -ts of the empirical data to the functional
form (2). It is indeed observed that the generalized Gamma distribution, Eq. (2), -ts the
empirical data well for both positive and negative levels of return. It has been checked
separately that the quality of the -ts are of comparable quality for other values of
�. However, as |�| becomes large, the empirical distributions are hampered by low
statistics that makes the -tting procedure more diQcult.
The most interesting feature that can be observed from Fig. 2, is the apparent asym-

metry between the empirical investment horizon distributions for � = ±0:05. In par-
ticular, for � = −0:05 there is a higher probability, as compared to what is observed
for � = 0:05, to -nd short investment horizons, or in other words, draw-downs are
faster than draw-ups. Consequently, one might say that there exists a gain–loss asym-
metry! This result is in agreement with the draw-down/draw-up analysis presented in
Ref. [10]. Similar results to those presented here have also been obtained for SP500
and NASDAQ.
Fig. 3 depicts the optimal investment horizon vs. level of return. From this -gure it

is observed that the asymmetry feature found for a return level of 5% is not unique.
For the smallest levels considered, |�| ∼ 10−3, no asymmetry can be detected. However,
as |�| is gradually increased, the asymmetry starts to emerge at |�| ∼ 10−2. By further
increasing the level of return, a state of saturation for the asymmetry appears to be
reached. In this state the asymmetry in the optimal investment horizon for the DJIA is
almost 200 trading days.
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Fig. 3. The optimal investment horizon �∗� for positive (open circles) and negative (open squares) levels
of return ±�. In the case where �¡ 0 one has used −� on the abscissa for reasons of comparison. If a
geometrical Brownian price process is assumed, one will have �∗� ∼ �� with �= 2 for all values of �. Such
a scaling behaviour is indicated by the lower dashed line in the graph. Empirically one -nds � � 1:8 (upper
dashed line), only for large values of the return.

These -ndings in fact con-rms the saying in the -nancial industry that it takes time
to drive up prices. From this analysis, one may add compared to driving them down,
a result that coincides with the common belief that the market reacts more violently
to negative information than to positive. To our knowledge, this is the -rst time that
such statements have been founded in a quantitative analysis. The investment horizon
distributions are, in fact, ideal tools for addressing such questions quantitatively. Before
arriving at the conclusion of this paper, we will take the opportunity to speculate about
the reason for this asymmetry. It cannot be due to any residues of the drift left by the
wavelet analysis. The economic expansion in the 20th century (corresponding to the
time period of the data) has in general been positive. Hence, if this was an ePect of
the drift, it should be expected that the waiting times for �¿ 0 should be the shortest.
However, from the data we -nd it to be the other way around. Hence, we are led to
conclude that this asymmetry is re2ecting the market dynamics. Both from the point
of view of risk management and of market psychology, it makes sense that market
participants reacts faster to “bad” news than “good” news.
In conclusion, we have considered inverse statistics in economics. It is argued that the

natural candidate for such statistics is what we call the investment horizon distribution.
Such a distribution, obtained from the historic data of a given market, indicates the
time span an investor historically has to wait in order to obtain a prede-ned level of
return. The distributions are parametrized excellently by shifted generalized Gamma
distributions for which the -rst moment does not exist. The typical waiting time, for
a given level of return �, can therefore be characterized by, e.g., the time position of
the maximum of the distribution, i.e., by the optimal investment horizon. By studying
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the behaviour of this quantity for positive (gain) and negative (loss) levels of return,
a very interesting and pronounced gain–loss asymmetry emerges. It is concluded that
this asymmetry is part of the market dynamics in contradiction with the symmetric
assumption of the eQcient market hypothesis.

Acknowledgements

We would like to thank E. Aurell, S. Maslov and Y.-C. Zhang for useful comments.

References

[1] J.-P. Bouchaud, M. Potters, Theory of Financial Risks: From Statistical Physics to Risk Management,
Cambridge University Press, Cambridge, 2000.

[2] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance,
Cambridge University Press, Cambridge, 2000.

[3] J. Hull, Options, Futures, and Other Derivatives, 4th Edition, Prentice-Hall, London, 2000.
[4] B.B. Mandelbrot, J. Bus. 36 (1963) 394.
[5] I. Simonsen, M.H. Jensen, A. Johansen, Eur. Phys. J. B 27 (2002) 583.
[6] M.H. Jensen, Phys. Rev. Lett. 83 (1999) 76.
[7] S. Karlin, A First Course in Stochastic Processes, Academic Press, New York, 1966.
[8] G. Rangarajan, M. Ding, Phys. Lett. A 273 (2000) 322.
[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd Edition,
Cambridge University Press, New York, 1992.

[10] A. Johansen, D. Sornette, J. Risk 4 (2) (2001/2002) 69.


	Inverse statistics in economics:the gain--loss asymmetry
	Acknowledgements
	References


