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Abstract

We investigate intra-day foreign exchange (FX) time series using the inverse statistic analysis
developed by Simonsen et al. (Eur. Phys. J. 27 (2002) 583) and Jensen et al. (Physica A 324
(2003) 338). Speci4cally, we study the time-averaged distributions of waiting times needed to
obtain a certain increase (decrease) � in the price of an investment. The analysis is performed
for the Deutsch Mark (DM) against the US$ for the full year of 1998, but similar results are
obtained for the Japanese Yen against the US$. With high statistical signi4cance, the presence of
“resonance peaks” in the waiting time distributions is established. Such peaks are a consequence
of the trading habits of the market participants as they are not present in the corresponding
tick (business) waiting time distributions. Furthermore, a new stylized fact, is observed for the
(normalized) waiting time distribution in the form of a power law Pdf. This result is achieved by
rescaling of the physical waiting time by the corresponding tick time thereby partially removing
scale-dependent features of the market activity.
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1. Introduction

Per Bak was a great scientist and a fantastic source of inspiration for many of us
over many years. Through numerous lively and exciting discussions with him, one
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always felt that a project or a calculation was brought back on track again by his
clever comments and suggestions. He applied his ingenious idea of “self-organized
criticality” to many diHerent systems ranging from sand piles, earthquakes to the brain
and even 4nance. As he said: “It’s all the same”, meaning that in the end the paradigm
of the sand pile model would after all describe the behavior of the particular system he
considered. The idea of applying inverse statistics to turbulence data was the subject
of the discussion between Per Bak and one of us (MHJ) several times. He liked
the idea, and as such, we are quite sure that he would have liked our application
of inverse statistics to 4nancial data. This in particular applies to the scale invariant
power-law scaling that is being observed for the normalized waiting time distribution.
It is therefore our pleasure to dedicate this paper to his memory.

With the 4nancial industry becoming fully computerized, the amount of recorded
data, from daily close all the way down to tick-to-tick level, has exploded. Nowa-
days, such tick-to-tick high-frequency data are readily available for practitioners and
researchers alike. In general, such high-frequency data are irregularly spaced in (phys-
ical) time, since an actual trade is a negotiation between sellers and buyers through
a bid and ask process highly inKuenced by the irregular Kow of information reaching
the market. Hence, in order to apply the classic return approach to such data, the asset
price has to be re-sampled equidistantly in physical time. This has been suggested in
the seminal paper on high-frequency foreign exchange (FX) data analysis published by
the Olsen & Associates Research Institute [3], but in many ways such a re-sampling
violates the true dynamics of the market. Consequently, there has been an increasing
interest over the past decade in studying variations in the market over a variable time
span opposed to that of a Dxed time span as for the return distribution [1,2,4]. One
such approach is to consider drawdowns/ups, where an increasing or decreasing trend
is followed to the end [6,7]. Recently, the present authors MHJ, AJ and IS introduced
another such time varying approach—the inverse statistics approach [1,2]. At the heart
of this technique, lies the waiting time needed to cross a pre-described return barrier. 1

The distribution of these waiting times, also termed investment horizons, characterize
the inverse statistics [5] and has successfully been applied to daily close stock index
data [1,2].

The purpose of the present paper is to follow up on these studies and investigate
the corresponding statistical distributions for the FX market using high-frequency data.
In particular, this work focuses on the exchange rate for the full year of 1998 between
the two major currencies of the world, namely the US$ and the Deutsch Mark (DM),
the latter in 2000 replaced by the Euro.

2. Formalism

Before we present the results of our analysis, we will set the stage by recapitulat-
ing a few important de4nitions and properties of inverse statistics. A more detailed

1 One may also consider the completion process of a trade as the crossing of the bid and ask random
walks.
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introduction can be found in Refs. [1,2,5]. Let us assume the value of the asset under
study is described by the time varying asset price S(t). 2 Here, the time variable t can
in principle be any time variable and below we will use both physical and tick time.
The log-return at time t calculated over a time interval Rt, is de4ned as

rRt(t) = s(t + Rt) − s(t) ; (1)

where s(t) = ln S(t). The waiting time for an investment made at time t at log-price
s(t), is de4ned as the time interval Rt = t′ − t, t′¿t, where the relation rRt(t)¿ �
is ful4lled for the Drst time. If physical time is used as the time scale, then the
waiting time for return level � is denoted by ��(t). If tick time is used instead, the
corresponding (dimensionless) waiting time is denoted by T�. The investment horizon,
or waiting time distributions are the probability density functions of ��(t) and T� when
using physical or tick time, respectively.

For a geometrical Brownian motion this distribution, known as the Drst passage
distribution, is known analytically [9–11] to be p(t) = a exp(−a2=t)=

√
t3=2, where a

depends on the return barrier �. In Refs. [1,2] it was shown that this distribution
is too “primitive” to 4t the waiting time distributions for the three major US stock
market indexes (DJIA, SP500 and NASDAQ) and instead a type of generalized Gamma
distribution was found to give an excellent parameterization of the data, see Refs. [1,2]
for details. As the daily close of the stock indexes was analyzed, which by de4nition are
regularly sampled with the exception of weekends and public holidays, the distinction
between physical time and “tick-time” was not made.

3. Analysis of the FX market

We have been able to obtain FX data (cf. Ref. [3] for “stylized facts” of FX-markets)
for the DM against the US$ for the full year of 1998. The data set consists of 1,620,944
ticks irregularly distributed in physical time. This corresponds to an average time be-
tween ticks of roughly 20 s. However, as we will see, there are hours during the day
where the trading activity is much higher than during the remaining of the 24 h day.
This will play an important role for our results.

For high-frequency data, the results depend highly on how “time” is de4ned [3,8].
Two obvious choices for a time scale are physical time (or “wall time” displayed on
the trading Koor) and tick time (also referred to as “business time” by some authors) as
mentioned previously. As we see in Fig. 2 the average physical time interval between
ticks will decrease during active market periods and on the other hand increase when
the market comes less active.

In Figs. 1a and b, the physical waiting time distribution p(��) and the tick waiting
time distribution p(T�) for the DM against the US$ are shown for the year 1998. The
return level used to obtain these results was � = 0:005. We did also check that our

2 As the true trading price is not publicly disclosed, we have chosen to calculate the price as S(t) =
(Sbid(t) + Sask (t))=2. Other options are to use s(t) = (log Sbid(t) + log Sask (t))=2 suggested in Ref. [3] or the
algorithm proposed in Ref. [8].
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Fig. 1. Inverse statistics (p(��) or p(T�)) vs. waiting time using physical waiting time �� (a) or tick
time T� (b) for the 1998 DM/US$ data. The return level used to obtain these results was � = 0:005. The
vertical dashed lines in Fig. 1a indicate physical waiting times of 1–3 days (from left-to-right). Notice the
apparent resonances seem to coincide with the daily structure, while such resonances are not present in the
corresponding tick time distribution.

4ndings were not aHected in any signi4cant way by instead considering a return level
of �= −0:005. This indicates that drift is not an important component to the analyzed
data set, as opposed to the daily data analyzed in Refs. [1,2], and hence no need
for detrending is present. The two graphs of Fig. 1 both go through a single global
maximum and for waiting times smaller then these maxima the two distributions are
similar. However, for longer waiting times, there are some notable diHerences between
the two distributions. First, the tick time distribution, p(T�), falls oH faster, actually
as 1=T , than the corresponding distribution using physical time. Secondly, and more
important, the “resonance peak” structure present in p(��) has vanished in p(T�). The
4rst of these peaks is located roughly at the daily scale (indicated by the left vertical
dashed line in Fig. 1a) and we clearly see the second and third “harmonics”.
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Fig. 2. The tick frequency probability distribution, p(h), vs. UTC-hour, h, at which the tick took place for
the DM/US$ of the year 1998.

The origin of these “resonances” is to be found in the varying activity of the market.
The main diHerence between the two ways of quantifying time is that tick time is
equidistant, whereas physical time between ticks is not. Mathematically, one may say
that the data using physical time is the “convolution” of the data using tick-time with
the distribution of ticks as a function of physical time. Hence, a change in market
activity will alter the inter-relation between these two time scales. In order to study
the daily peak structure of Fig. 1a in more detail, we in Fig. 2 show the Pdf of ticks
as a function of the universal time coordinate, (UTC, former GMT) hour of that tick.
One observes that this distribution is far from being Kat. Thus there exists indeed time
periods where the FX-market is semi-closed. In particular, almost 80% of the ticks
correspond to a UTC-hour of 6–16 with a local maximum located around UTC-hour
8 and another one at 13 or 14. The active periods de4ned by UTC-hours from 6 to
16, correspond to working hours in London and the east coast and the mid-west
of the US.

In view of the results of Figs. 1 and 2, one might suspect that the daily peak
structure observed in p(��) is a result of this uneven trading activity during the day
of the global FX-market. If it is (partly) true that (tick time) returns calculated from
two consecutive ticks are only weakly correlated, one would naively expect that the
volatility of a given physical time interval is larger in a high market activity period
than in a low one. Under this assumption, the tick time distribution p(T�) should not
be sensitive to whether or not one is in a high or low activity region, since tick time by
construction is equidistant. On the other hand, for the physical waiting time distribution,
p(��), the market activity does indeed matter. Here the pre-described return level will
more likely be reached during the highly active periods. If the return level is not
reached within one and the same period of high activity, there is higher chance that it
will do so in the next one than in the intermediate low activity period, simply because
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Fig. 3. The probability distribution of normalized waiting time ��=T� needed to reach a return level
� = 0:005 for the 1998 DM against the US$ exchange rate data (open circles). The power-law dependence
p(��=T�) ∼ (��=T�)−� with � � 2:4 is indicated by the solid line.

there are fewer ticks during this low activity periods. Such a behavior will therefore
result in an enhanced physical waiting time probability corresponding to an integer
numbers of days, just like we see in Fig. 1a.

To investigate this further, we introduce a new type of time scale, speci4cally a
normalized waiting time that aims at partly suppressing the eHect of varying market
activity. This time scale is de4ned as ��=T�, or in words, as the average physical waiting
time per tick needed to break through the return level �. As we will see, normalizing
the physical waiting time with the (corresponding) number of ticks needed to cross
the � return barrier, reduces the eHect of varying market activity. It should also be
noted that one naively would expect the inverse statistics, as characterized by the
normalized waiting time distribution, to be less sensitive to the level of return � then
their unnormalized partners. This is so since an increase in |�| will increase the overall
waiting time measured both in physical or tick time units.

In Fig. 3, the probability distribution function for the normalized waiting time, ��=T�,
is presented. As suspected, there seems to be little, or no, eHect of the change in market
activity throughout the day. For instance, the daily peaks that are so marked features
of p(��) are not observable in Fig. 3. However, more surprisingly, the behavior of
p(��=T�) for not too low normalized waiting times, seems to be well 4tted by a single
power law. In particular one 4nds

p
(
��
T�

)
∼

(
��
T�

)−�
; (2)

with � � 2:4 when �=0:005, spanning nearly three orders of magnitude in normalized
time ��=T�. (The question of how sensitive � is to the return level � will be addressed in
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a separate forthcoming publication.) The conclusion is that the proposed rescaled time
is the most natural one to use when analyzing high-frequency data in terms of inverse
statistics and makes the inverse statistics approach well suited for high-frequency data.

4. Conclusions

In conclusion, we have studies high-frequency FX data for the DM against the
$US from an inverse statistics point of view. It is found that the change in market
activity makes it more challenging to de4ne an appropriate and unique time scale,
since the change in activity level of the market causes certain resonances to emerge
in some quantities. In particular, when physical time is used as the time scale it is
demonstrated that daily peaks emerge in the inverse statistics as quanti4ed by the
physical waiting time distribution function. Such peaks are, however, not fond to be
present in the corresponding inverse statistics for tick time. The trading activity eHect
is partly removed from the inverse statistics by studying the new time scale de4ned as
the average physical waiting time per tick, ��=T� needed to reach a given level of return
�. In terms of this normalized time variable a new type of power law is observed for
the inverse statistics. Over a nearly three orders of magnitude in normalized waiting
times, excluding the smallest ones, the waiting time distribution for � = 0:005 was
found to be well characterized by a single power law of exponent � � −2:4. This
scaling law represents a new type of stylized fact for the FX-market which, to the best
of our knowledge, has not been reported before.
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