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Abstract

Over the last decade, an enormous interest and activity in complex networks have been

witnessed within the physics community. On the other hand, diffusion and its theory have

equipped the toolbox of the physicist for decades. In this paper, we will demonstrate how to

combine these two seemingly different topics in a fruitful manner. In particular, we will review

and develop further an auxiliary diffusive process on weighted networks that represents a

powerful concept and tool for studying network (community) structures. The working

principle of the method is the observation that the relaxation of the diffusive process toward

the stationary state is non-local and fastest in the highly connected regions of the network. This

can be used to acquire non-trivial information about the structure of clustered and non-

clustered networks.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion processes arise very naturally in a number of physical, chemical and
engineering problems. The topic has, therefore, attracted a lot of attention by
numerous brilliant scientists for more than a century. Early pioneers of the field were
well-known scientists like Einstein, Smoluchowski, Langevin, Wiener, Ornstein,
see front matter r 2005 Elsevier B.V. All rights reserved.
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Uhlenbeck, etc. This year, in fact, we celebrate the one hundred year anniversary
of Einstein’s seminal 1905 paper on the kinetic theory of Brownian motion [1,2].
To acknowledge this event, as well as the other two influential ground breaking
papers by Einstein from the same year, United Nations has appointed year 2005 the
World Year of Physics. So what can be more appropriate than choosing the title
Diffusion and soft matter physics for this years Karpacz Winter School of Theoretical

Physics.
Today there exists a well-developed theory of diffusion [3]—a research field that

still is vibrant and very much alive. The theory is capable of successfully describing a
number of natural occurring processes. However, diffusion and the concept of
random walks, first introduced by Perrin, are also useful concepts outside the branch
of natural processes. This very paper might serve as one particular (out of many)
example of such. Herein we will apply diffusion as a concept, or tool, to study a
problem that has no direct connection to diffusion. In particular, what will be
considered is the (large scale) topology of networks.
Complex networks are abundant in nature and society. They are set of objects

with some relations defined among them, resulting in complicated non-regular
structures. A prototype example, taken from sociology, is a group of people (the
objects) where social acquaintances represent the relations (known as edges or links)
between the objects. The readers unfamiliar with networks are encouraged to consult
Refs. [4,5] for a general introduction to the topic as well as numerous examples of
real-world networks.
Traditionally the topology of networks has been studied by visual inspections.

This was made possible since the number of objects, known as vertices or nodes, was
typically rather small. However, with the advent of the computer and an increased
use of networks in technological applications, the size of the studied networks started
to grow rapidly. Today, like in, say, Internet and web-page networks, the number of
nodes can reach millions or more. Under such circumstances, visual analyzing tools
are not appropriate, and new methods for their study are needed. It was at this point
in time in the history of network analysis that the method of statistical physics, and
the physicists that know them, entered the scene.
The present paper will, in the spirit of the winter school, combine diffusion with a

topic from soft matter physics—complex networks. In particular, what will be done
is to report on, and extend, previous works [6,7] where an auxiliary random walk
process was used to characterize large topological features of complex networks. Of
special interest is the ability to locate and identify community structures, a topic that
has attracted a great deal of attention lately [8–10]. Network clusters, or community
structures, are characterized by a subset of vertices of the network having a
considerably larger number of edges among themselves than to vertices outside the
subset. In such cases the subset is said to form a network community (or cluster).
Recently there has been quite some interest in the study of weighted networks

[11,12]. To incorporate the weight of edges into the analysis of network can be
critical for determining, say, its structure. However, it is only recently that such
studies have been taken up upon by the community in general. In this paper we will
incorporate the weights of the edges into the diffusion, or random walk, formalism
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that was developed previously [6,7]. Herein we will review and extend the presently
known results to weighted networks.
This paper is organized as follows: In Section 2, the foundation of the diffusion

approached is derived, that is, the master equation and its solutions. Then we
address the so-called current mapping technique that utilize these solutions in order to
uncover information about the large scale topology of networks (Section 3). The
application of this technique to various types and sizes of real-world networks is
presented in Section 4. We finally round off the paper in Section 5 by presenting the
conclusions.
2. The master equation

Consider a network consisting of a set of vertices (of one single type) and weighted,
directed edges connecting them. It will be assumed, for simplicity, that the network
represents a single component, i.e., any pair of vertices can be reached by following
the edges of the graph. The weight associated with the edge from, say, vertex j to i,
will be denoted W ij and corresponding to the elements of the weighted adjacency
matrix.
We will study diffusion (or random walks) on such networks and derive the master

equation that governs the time development of the process. The derivation parallels
the one given previously for unweighted, undirected networks [6,7]. One starts by
imagining placing a large number of (random) walkers onto the vertices of the
network. These walkers are allowed, in each time step, to move between adjacent
vertices along the directed edges connecting them. What edge, out of the possible
(outgoing) ones, a walker chooses to move along, is picked randomly with a
probability that is proportional to the weight associated with that (directed) edge.
The different outgoing edges leaving a given vertex will therefore in general, unlike
the unweighted case [6,7], have different probabilities for ‘‘accepting’’ walkers. In
this way the system evolves in time.
Let the number of walkers ‘‘living’’ on vertex i at time t be NiðtÞ. Then the fraction

of walkers at this vertex, out of a total of N, is riðtÞ ¼ NiðtÞ=N. The starting point of
the derivation of the master equation that describes the walker dynamics on the
network, is the observation that the total number of walkers is guaranteed to be
constant at all time, i.e.,

P
i riðtÞ ¼ 1 for every t. Furthermore, the change in the

walker density of a vertex i during one time step equals the difference between the
relative number of walkers entering and leaving the same vertex over the time
interval. In mathematical terms one may write1

riðt þ 1Þ ¼ riðtÞ þ J
ð�Þ

i ðtÞ � J
ðþÞ

i ðtÞ , (1)

where J
ð�Þ

i ðtÞ denote the relative number of walkers entering (�) and leaving (þ)
vertex i. How many walkers that leaves along the different outgoing edges of vertex i

depends on the total outgoing weight of this vertex,
P

k W ki. The fraction of
1This equation resembles the continuity equation of, say, diffusing particles: qtrþr � J ¼ 0.
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outgoing walkers from vertex i (a current) per unit weight is thus

ciðtÞ ¼
riðtÞP
k W ki

, (2)

so that the edge current on the directed edge from vertex j towards i is given by2

CijðtÞ ¼ W ij cjðtÞ ¼ W ij

rjðtÞP
k W kj

. (3)

Notice that the factor W ij=
P

k W kj is the probability of a walker deciding on the
edge from vertex j to i. By adding all outgoing edge currents from vertex j, the
relative number of outgoing walkers (from j) will result; J

ðþÞ

j ðtÞ ¼
P

i CijðtÞ.
Substituting Eq. (3) into this expression, one readily demonstrates that
J
ðþÞ

j ðtÞ ¼ rjðtÞ. This expresses the fact that all walkers at vertex j at time t, will
leave it in the next time step. Similarly, one finds for the walkers leaving vertex j,
J
ð�Þ

j ðtÞ ¼
P

i CjiðtÞ, but now the expression can not be simplified further. Introducing
the expressions for J

ð�Þ

i ðtÞ into Eq. (1) results in

qtriðtÞ ¼
X

j

TijrjðtÞ � riðtÞ , (4)

where qtriðtÞ ¼ riðt þ 1Þ � riðtÞ and

Tij ¼
W ijP
k W kj

. (5)

Moreover, this equation can easily be casted into the following matrix form

qtqðtÞ ¼ DqðtÞ , (6)

where Dij ¼ Tij � dij , and it is the earlier announced master equation for the random
walk dynamics on the network. It resembles the diffusion equation, so we have
termed D the diffusion matrix (or operator). Alternatively, Eq. (6) could be
reformulated as

qðt þ 1Þ ¼ TqðtÞ , (7)

where the elements of T are defined by Eq. (5). Notice that Eqs. (6) and (7) are in
principle equivalent. Physically, Eq. (7) means that T transfers (propagates) the
walker density qðtÞ one step forward in time. Due to this property, T has been termed
the transfer matrix [6,7]. The attentive reader should check, and find, that in the
special case of an unweighted network, i.e., W ij ¼ Aij with Aij being the unweighted
adjacency matrix, Eqs. (6) and (7) reduce to the expressions that were reported
previously in Refs. [6,7].
It is often of advantage to work directly with the currents (per unit edge weight)

cðtÞ instead of the walker densities qðtÞ. An equation satisfied by these currents can be
obtained from Eq. (7) by dividing it through by

P
k W ki. After recalling Eq. (2), it is
2The magnitudes of these currents measure how important a link is. They are therefore intimately

related to the edge betweenness, so that a high value of this latter quantity corresponds to a high value for

the edge current.
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straightforward to arrive at

cðt þ 1Þ ¼ TycðtÞ , (8)

where Ty denotes the adjoint of T. Thus, technically Ty is the transfer matrix for the
currents cðtÞ. In a similar way, the adjoint of the diffusion matrix will play the role for the
currents that D did for the walker densities.3 The governing equations for the currents
cðtÞ are thus analogous to Eqs. (6) and (7) except for the use of the adjoint matrices.
We will now demonstrate that the master equation supports a stationary solution,

i.e., a solution that does not depend on time. The easiest way to show this is to start
from Eq. (7) and conjecture that the stationary state satisfies: rið1Þ /

P
j W ji. This

form is motivated by what was previously found for unweighted networks [6,7]
where in the stationary state the walker density of a vertex is proportional to its
degree. By introducing this expression for rið1Þ into Eq. (7) and recalling Eq. (5),
one readily finds that rið1Þ indeed is a stationary state, but only if

P
j W ij ¼

P
j W ji

for all i’s. This implies that a stationary state exists if the total outgoing and incoming

weight of each vertex of the network are equal. Notice, that this is trivially satisfied
for an undirected network, but also a sub-class of directed graphs satisfies this
requirement. In the stationary state, the walker densities are therefore proportional
to the total outgoing weight (wi ¼

P
j W ji) of the vertex, and hence according to

Eq. (2) the current per unit outgoing weight will just be constant; cð1Þ / 1.
Formally the stationary state corresponds to the unit eigenvalue of T (or Ty) that

turns out to also be the largest possible eigenvalue [6,7]. In fact it is of interest to
know a number of the largest eigenvalues and the corresponding eigenvectors of
T(or D). The reason being, as was explained in detail in Ref. [7] that they control the
relaxation toward the stationary state of the slowest decaying modes of the diffusive
process on the network. It should be mentioned, that one can show, like for the case
of unweighted networks, that the non-symmetric matrix, say, T, is similar to the
symmetric matrix KTK�1 where Kij ¼ dij=

ffiffiffiffiffi
wi

p
and wi ¼

P
j W ji. Hence, T is

guaranteed to have real eigenvalues and eigenvectors [13]. It is practical (and usual)
to sort the real eigenvalues so that lð1Þ corresponds to the largest eigenvalue of T, lð2Þ

the next to largest, and so on. Below we will silently assume that this convention is
followed and collectively denote the eigenvalues by lðaÞ where a ¼ 1; 2; . . . is the mode

index. Moreover, all eigenvalues of T fall in the range �1olðaÞp1, as is a
consequence of the number of walkers being conserved at all time. The largest
eigenvalue lð1Þ ¼ 1 will, as a consequence of the Perron–Frobenius theory (non-
negative matrices) [13], be unique for a single component network and the elements
of the corresponding eigenvector will all have the same signs.
3. The current mapping technique

Part of the power of the network diffusion approach lies in the current mapping
(or projection) technique. It is based on the observation that vertices being connected
3In order to show this, simply add cðtÞ to both sides of Eq. (8).
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to each other will, crudely speaking, result in currents, c
ðaÞ
i , that are almost the same.

In particular, vertices being part of the same (large scale) community, are likely to be
close to each other in this auxiliary space [6,7,10]. On the other hand, vertices
belonging to different communities (detected by the mode a) will show up with
different signs for their corresponding currents. Such behavior is expected since the
stationary state being approached non-uniformly over the network; in highly
connected regions, like within a cluster, the stationary state will be approached faster

than in regions that are poorly connected, as for instance between communities. If
the network under scrutiny is clustered, then often distinct, well separated, groups of
vertices, with different directions (i.e., signs) of the currents, will result. Even if the
network being analyzed does not posses a community structure, the current mapping
may still reveal non-trivial topological ‘‘secrets’’ of the network (see Ref. [6]).
The current mapping technique consists of mapping (or projecting) the vertices of

the network onto the current space. This d ¼ a� 1 dimensional vector space,
corresponding to the a� 1 slowest decaying modes (largest eigenvalues of T being
different from one), is constructed for vertex i by associate a point of coordinates

V
ðdÞ
i ¼ ðc

ð2Þ
i ; cð3Þi ; . . . ; cðdþ1Þi Þ . (9)

To identify communities, if any, and the vertices that belong to them, one has to
somehow cluster the points of the current space [6,7,10]. For a projection space of
low dimension, this can be achieved by visual inspection. As the dimension of the
current space becomes larger, this is no longer feasible. Instead classic clustering
algorithms, like hierarchical and optimization clustering techniques, may be utilized
[14–16]. Such an approach, generalizing the ideas of the current mapping
(projection) technique of Refs. [6,7], has recently been adapted by Donetti and
Muñoz [10] in a study similar in spirit to the present one. These authors applied
various types of metrics in the clustering algorithms, and found the angular metric to
perform the best.
Herein, however, we will adapt a conceptually much simpler (and more

pedagogical) approach that directly utilize the difference in signs of the currents.
The starting point of the algorithm ða ¼ 2Þ is to assign vertices of different signs for
c
ð2Þ
i to different partitions.4 As the dimension of the projection space is increased by
one, a partition from the previous step (a) is further sub-divided if its members
correspond to different signs for the ‘‘new’’ current c

ðaþ1Þ
i . This will define a set of

new potential partitions and the modularity Q (to be defined in Eq. (10)) will be used
to chose among them to obtain the optimal partition for a given a. A new
partitioning is only accepted if it increases the modularity as compared to the best
value obtained previously. So for each a, there exists an optimal partitioning of
modularity QðaÞ. In this way the dimension of the current projection space is
increased till the modularity (and therefore the optimal partitioning) do not change
any longer with a. Hence, this simple clustering method is a top-down approach in
4In general, cðaÞ are the eigenvectors of Ty (see Eq. (8)) corresponding to the eigenvalues lðaÞ, or one may
calculate them from the eigenvectors qðaÞ, of D.
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contrast to many of the other known methods that can be characterized as being
bottom-up.
For large networks suspected to show a rich community structure, this simple and

pedagogical algorithm is, however, not optimal due to computational cost being high
when the number of communities is large. In such cases, faster more sophisticated
and complex clustering algorithms should be applied [10,14–16]. On the other hand
for networks with limited number of communities it performs more than adequately.
It is conceptually easy to follow and has therefore been adapted here. Moreover, it
demonstrates that the current mapping technique does not rely on a sophisticated
clustering algorithm.
To qualitatively measure the degree of clustering for a given partitioning of a

network, the concept of modularity has recently been introduced [5,9,12]. It can be
defined, for a given partitioning of a weighted network, as

Q ¼
1

W

X
ij

W ij �
wiwj

W

� �
dkikj

, (10)

where W ¼
P

ij W ij is the total ‘‘directed’’ weight of the graph,
5 wi ¼

P
j W ji the

weight of outgoing edges from vertex i, and ki denotes the community to which
vertex i is assigned.
4. Application

In this section we will present some real-world examples of the application of the
concept of diffusion to the investigation of the topology of networks. The chosen
examples correspond to networks of both know and unknown topology, as well as
being small to moderate in size.

4.1. Zachary karate club network

A classic real-world network of known community structure is the social network
known as the karate club network. It has been considered recently in a number of
studies [8,9,12,10]. Sociologist Wayne Zachary studied in the early 1970s the
relations among the members of a karate club at an American university [17,18].
During the study period, it happened by chance, that the club went through a
turbulent period. A controversy between the club’s administrator and its trainer over
the question of raising clubs fees, finally resulted in it breaking apart. During the two
years period, Zachary quantified the social ties between the members of the club on a
scale from 1 (lowest) to 5 (highest). It is the resulting weighted network that we will
consider here [18]. The network is depicted in Fig. 1, where circles and squares are
used to indicate the original partitioning obtained by Zachary. Notice that these two
communities are center around the trainer (vertex 1) and the other around the
administrator (vertex 34).
5For an undirected, unweighted networkW is equal to two times the number of edges.
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edges. Here open squares and circles are used to denote the supporters, in the ongoing conflict, of the

trainer (node 1) and administrator (node 34), respectively.
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A current mapping, based on Zachary’s tie data, will now be conducted and the
results of such an analysis compared against the known structure of the network.
Fig. 2(a) shows the 1-dimensional projection of the network for the slowest decaying
(a ¼ 2) mode.6 As a guide to the eye, we have here labeled the vertices according to
the convention used in Fig. 1, but it should be stressed that this information has not

been used during the analysis. Fig. 2(a) shows a striking division of the vertices into
two groups corresponding to positive and negative values of c

ð2Þ
i .
7 This division is

fully consistent with the original classification made by Zachary. Hence, the slowest
decaying diffusive mode a ¼ 2 of the karate club network can be associated with the
trainer–administrator separation. The modularities corresponding to this division

are Qð2Þ ¼ 0:404 and Q
ð2Þ
A ¼ 0:371, where QA refers to the modularity using the

unweighted adjacency matrix, but the same partitioning, for its calculation.8
6Recall that a ¼ 1 corresponds to the stationary state, and is thus of no interest to us in the present

context.
7Notice that the signs (and values) of the currents are not absolute. A multiplication of the eigenvector

cð2Þ by a constant may result in different values and signs for the currents. However, independent of the

normalization, the relative signs of the elements would remain unchanged.
8We prefer to give both these modularities for comparison since many authors only give QA. However,

our partitioning was obtained using the weighted network.



ARTICLE IN PRESS

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

C
i

(2)

C
i(3

)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

C
i

(2)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

C
i

(2)

0
Trainer Administrator

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C
i(3

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Administrator

Trainer

3

17

6,7

5

12

29

4

20
14

27
32

26

13
18

2

9 10,31

11

Administrator

Trainer

3

17

6,7

5,11

12

29

4

20

14

33
15,16,19,21,23

24

32

26

13 18 2

9 10

(a)

(b)

(c)

Fig. 2. The lowest order current projections of the Zachary network. The (a) c
ð2Þ
i and (b) c

ð2Þ
i c

ð3Þ
i current
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Fig. 2(b) presents the results of performing a 2-dimensional current mapping of
the network (modes a ¼ 2; 3). The results suggest that the communities associated
with the trainer and administrator may be further sub-divided. In particular, the
members f5; 6; 7; 11; 17g are well separated from the rest of the supporters of the
trainer with different signs for the c

ð3Þ
i currents. A close inspection of the network

(Fig. 1) reveals that these members are connected to the rest of the network only via
the trainer. They may therefore serve as good candidates for forming a trainer sub-
community. The supporters of the administrator do also map to c

ð3Þ
i -currents of

different signs. However, in this case, the currents are more clustered around c
ð3Þ
i ¼ 0
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and no striking separation between them exist. It is therefore not clear that this
separation can be attributed to a administrator sub-community. This is, indeed,
confirmed by investigating the values of the modularity of the possible divisions.
Based on the 2-dimensional current space, a division into three community is
optimal (Qð3Þ ¼ 0:435); an administrator community, and two communities where
one consists of members f5; 6; 7; 11; 17g, while the other one consists of the remaining
supporters of the trainer. Insisting on four communities corresponding to
the vertices located in each of the quadrants of the 2-dimensional current plot
(Fig. 2(b)), would have given a modularity of 0.423. This is smaller than Qð3Þ and this
latter partitioning was therefore rejected compared to the chosen one. It is interesting
to observe that if one had based the analysis on the unweighted network [7], the
results would have been rather similar (Fig. 2(c)), but vertex 3, for instance, would
not have been correctly identified,9 and there would have been more ‘‘degeneracy’’
among the current values.
Increasing the dimension of the projection space will introduce new potential

partitions that may be accepted or rejected. The results of gradually increasing the
dimension of the projection space are depicted in Fig. 3. Therefrom it is observed
that the optimal partitioning of the network, according to our algorithm, is into four
communities that correspond to a modularity of Q ¼ Qð4Þ ¼ 0:445 and
QA ¼ Q

ð4Þ
A ¼ 0:420. Adding new modes beyond a ¼ 4 will not improve the

partitioning. The members of the last community, not given above, are
f24; 25; 26; 28; 29; 32g. For the same network, four communities was also reported
by Newman and Girvan [9]. However, their communities (for the best partitioning)
were put together a little differently resulting in a slightly lower modularity than the
9The same vertex, using unweighted data, was also classified incorrectly by one of the methods of e.g.

Ref. [9].
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one reported here. Donetti and Muñoz [10], on the other hand, identified the same
communities as we did, but in addition, they had a single vertex community (vertex
12). In effect, this difference resulted in a slight decrease in the modularity compared
to the results reported here. For the karate club network, the partitioning given
herein, results in, to the best of our knowledge, the highest modularity values
reported for this network.

4.2. Scientific collaboration network

The network under scrutiny in this subsection is a collaboration network of
scientists that have published work together. The data set originates from Park and
Newman [19] and was later restudied in Ref. [9]. The network was constructed by
taking an initial list of ‘‘network’’ scientists (actually those appearing in the reference
list of Ref. [5]) and cross-reference those names against the physics e-print archive
arxiv.org in search for joint publications. If, at least, one joint work was found, an
edge was created between these two scientists. Its weight depended on the number of
joint publications as well as the number of co-authors taking part in the joint work.
Consult Ref. [19] for further details regarding this network. The largest component
of the resulting network is presented in Fig. 4(a). This component consists of N ¼

140 scientists with the present author being among them. This network component
was recently analyzed by Newman and Girvan [9] who reported an optimal
partitioning (using his method) consist of 13 communities characterized by a
modularity of QA ¼ 0:72� 0:02.
The findings using the current mapping clustering technique are summarized in

Fig. 4(b). It is seen that the optimal number of clusters is found to be 14. The
corresponding modularities were Q ¼ 0:78 and QA ¼ 0:70, comparable to the result
reported in Ref. [9]. We do not here intend to delve into a detailed discussion on the
networks community structure. However, it should be added that our findings for
the community structure follow mainly the structure reported by Newman and
Girvan (and indicated by vertex colors in Fig. 4(a)).

4.3. Autonomous systems

The last example that will be considered herein is a relatively large network where
the (about 6 500) vertices represent so-called autonomous systems (AS), while the
edges corresponds to an entry in the (dynamic) routing table of those devices at the
time of observation [20]. These networks are changing with time, and their structures
are not known in advance.
Fig. 5 shows the 2-dimensional current mapping of the networks. The star-like

structure indicates that there is a hierarchy of vertices where those located the
furthest away from the origin of the current plot are the most peripheral vertices of
the network. Furthermore, each hierarchy corresponds roughly to the national
division of the autonomous systems network. Fig. 5 shows that the three legs of the
star-structure correspond to Russia, the US and France. For the AS-network we
identified 13 communities resulting in a modularity of about one-half.
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I. Simonsen / Physica A 357 (2005) 317–330328



ARTICLE IN PRESS

2

4

6

8

10

12

14

16

18

α [mode order]

0

0.1

0.2

0.3

0.4

0.5

Q
(α

)

N
(α

)

Q
(α)

N
(α)

0 0.04 0.08 0.12 0.16 0.2

C
i

(2)

C
i(3

)

0.00

0.04

0.08

0.12

0.16

0.20

All
RU
FR
US

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5. The 2-dimensional current mapping of an autonomous system (AS) network [6,20]. The symbols

refer to the geographical location of the AS: Russia (&), France (�), USA (�). The inset shows the

modularity and number of communities for the optimal partitioning of the network at a given diffusive

mode.

I. Simonsen / Physica A 357 (2005) 317–330 329
5. Conclusions

We have considered random walks on weighted networks. This auxiliary network
process is used to obtain information on the large scale topological structure
of the underlying network. This is done by projecting the nodes of the network
onto a low dimensional current space. In this space, vertices that are connected
to one another are likely to appear close to each other. This is a consequence
of the relaxation toward the stationary state being non-uniform; it is fastest in
well-connected regions, therefore quickly reaching a quasi-stationary state here,
and slow between poorly connected regions. It was found that the weights
of the edges of the network may be important to take into consideration in
order to reveal the correct underlying topology. Furthermore, this work explicitly
demonstrates that the concept of diffusion, or random walks, is a powerful tool that
can be applied successfully to problems where no natural connection to diffusion
exists.
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