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Localization of surface plasmon polaritons on a random surface
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Abstract

We study the possibility of the strong localization of surface plasmon polaritons propagating along a metal surface
a "nite part of which is randomly rough. The surface roughness is such that the roughness-induced conversion of
a surface plasmon polariton propagating on it into volume electromagnetic waves in the vacuum above the surface is
suppressed. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the prediction of localization of electrons in
a disordered random system [1], there has been
a great interest in localization phenomenon in the
physics community. Although this phenomenon
was predicted for `quantuma waves, it is not re-
stricted to these kinds of waves, and should in
particular also apply to classical waves in random
media. For example, the experimental observation
of the localization of light was reported recently in
a bulk disordered semiconductor [2,3]. In the pres-
ent work we discuss the Anderson localization of
another type of classical wave by disorder of a dif-
ferent nature, namely the localization of surface
plasmon polaritons on a randomly rough metal
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surface in contact with vacuum. This e!ect has been
believed to be di$cult to observe due to its being
masked by competing e!ects such as roughness-
induced conversion of the surface plasmon polar-
iton into volume waves in the vacuum above the
surface (leakage), and ohmic losses due to the non-
vanishing imaginary part of the dielectric function
of the metal [4}6]. In this work we show how to
circumvent this problem by using a specially de-
signed randomly rough surface that suppresses
leakage.
The Anderson localization length of a surface

plasmon polariton of frequency � propagating
along a one-dimensional randomly rough surface
of a metal in contact with vacuum can be deter-
mined by calculating the amplitude t(�,¸) of the
surface plasmon polariton transmitted through
a "nite length ¸ of the random surface. The surface
plasmon polariton transmission coe$cient is then
given by ¹(�,¸)"�t(�,¸)��. For large ¸ the aver-
age of the self-averaging quantity ln¹(�,¸) over
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Fig. 1. The scattering system considered in the study of Ander-
son localization of surface plasmon polaritons on a random
surface.

the ensemble of realizations of the random surface,
�ln¹(�,¸)�, is expected to display a linear depend-
ence on ¸,

�ln¹(�,¸)�"const.!¸/l
�
(�), (1.1)

where the characteristic length l
�
(�) is called the

Lyapunov exponent. It is not the localization
length of the surface plasmon polariton l(�), but
can instead be related to the latter by

l��
�
(�)"l��(�)#l��� (�)#l��

���
(�), (1.2)

where l� (�) and l
���
(�) are, respectively, the char-

acteristic decay lengths associated with the leakage
and ohmic losses [7].
In the present paper we analyze analytically and

numerically the propagation of surface plasmon
polaritons along a metal surface a "nite part of
which is randomly rough. This random roughness
is chosen to constitute a random process that sup-
presses leakage, i.e. the roughness-induced conver-
sion of a surface plasmon polariton propagating on
it into volume electromagnetic waves in the vac-
uum above the surface. The use of a random surface
that suppresses leakage facilitates the investigation
of the strong localization of surface plasmon polar-
itons by random surface roughness by removing
the contribution l��

���
(�) from the expression for

l��
�
(�) (Eq. (1.2)).
In the approach to the suppression of leakage

taken by Sornette and his colleagues [4,5], it was
assumed that the random surface was not planar on
average, but periodic, so that the dispersion curve
of the surface plasmon polaritons supported by the
mean surface displays a gap at the boundary of
the one-dimensional "rst Brillouin zone de"ned by
the period of the mean surface. Leakage should
then either vanish or decrease signi"cantly for the
surface plasmon frequency at the band edge. How-
ever, this was not observed in the numerical simula-
tion calculations of leakage carried out in Refs.
[6,8].
In this work we "rst present an approach to

designing a one-dimensional random surface that
suppresses the leakage of a surface plasmon polar-
iton as it propagates across it that di!ers from that
proposed by Sornette et al. [4,5]. Although the
power spectrum of the resulting surface is nonzero

in a narrow range of wave numbers, that surface is
not periodic on average. However, as with the sur-
face proposed by Sornette et al. our surface is
speci"c to the frequency of the surface plasmon
polariton propagating across it: if that frequency is
changed, a new surface has to be designed.
For a weakly rough random surface of this na-

ture we analyze the possibility of the localization of
surface plasmon polaritons by an analytic ap-
proach. In the case of a strongly rough surface we
solve the problem of surface polariton propagation
numerically.

2. The transmitted 5eld

We study the scattering of a p-polarized surface
plasmon polariton of frequency � propagating in
the x

�
-direction that is incident on a segment of

a one-dimensional randomly rough surface de"ned
by the equation x

�
"�(x

�
). The surface pro"le

function �(x
�
) is assumed to be a single-valued

function of x
�
that is nonzero only in the interval

!¸/2(x
�
(¸/2 (Fig. 1).

The region x
�
'�(x

�
) is vacuum and the region

x
�
(�(x

�
) is a metal characterized by an isotropic,

frequency-dependent, complex dielectric function
�(�)"�

�
(�)#i�

�
(�). We are interested in the fre-

quency range in which �
�
(�)(!1, �

�
(�)'0,

within which surface plasmon polaritons exist.
We write the surface pro"le function �(x

�
) in the

form

�(x
�
)"�(x

�
)s(x

�
), (2.1)

where s(x
�
) is a single-valued function of x

�
that

is di!erentiable and constitutes a stationary,
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zero-mean, Gaussian random process de"ned by

�s(x
�
)�"0, (2.2a)

�s(x
�
)s(x�

�
)�"��=(�x

�
!x�

�
�), (2.2b)

�s�(x
�
)�"��. (2.2c)

The angle brackets in Eqs. (2.2) denote an average
over the ensemble of realizations of s(x

�
), � is

the rms height of the roughness, and=(�x
�
!x�

�
�)

is the surface height autocorrelation function.
The form of the power spectrum of the surface
roughness, which is de"ned by

g(�Q�)"�
�

��

dx
�
e�����=(�x

�
�), (2.3)

appropriate for our purposes will be speci"ed be-
low. The function �(x

�
) serves to restrict the non-

zero values of �(x
�
) to the interval !¸/2(x

�
(

¸/2. One form �(x
�
) can have is

�(x
�
)"	�

¸

2
#x

��	�
¸

2
!x

��, (2.4a)

where 	(x
�
) is the Heaviside unit step function.

A smoother, di!erentiable version of �(x
�
) is pro-

vided by

�(x
�
)"

1#cosh(1/2)
¸

cosh
x
�
#cosh(1/2)
¸

, (2.4b)

where the parameter 
 controls the range of
x
�
values over which �(x

�
) decreases from 1 to 0. In

view of the factor �(x
�
) in Eq. (2.1), the surface

pro"le function �(x
�
) is not a stationary random

process even though s(x
�
) is.

We assume that the surface roughness is su$-
ciently weak that the surface pro"le function �(x

�
)

satis"es the conditions for the validity of the
Rayleigh hypothesis [9]. In this case the single
nonzero component of the magnetic "eld in the
vacuum region x

�
'�(x

�
)
���

can be written as the
sum of the "elds of the incident and scattered waves

H�
�
(x

�
,x

�
��)"exp[ikx

�
!�

�
(k,�)x

�
]

#�
�

��

dq

2�
R�(q,�)exp[iqx

�
!�

�
(q,�)x

�
], (2.5a)

while in the region of the metal, x
�
(�(x

�
)
��	
,

H�
�
(x

�
,x

�
��)"exp[ikx

�
#�(k,�)x

�
]

#�
�

��

dq

2�
R�(q,�)exp[iqx

�
#�(q,�)x

�
]. (2.5b)

In Eqs. (2.5) k is the wave number of the incident
surface plasmon polariton,

k"

�
c �

�(�)
�(�)#1�

���
"k

�
(�)#ik

�
(�), (2.6)

while the functions R�(q,�) and R�(q,�) are the
scattering amplitudes of the surface plasmon polar-
iton in the vacuum and in the metal, respectively,
and

�
�
(q,�)"�q�!

��

c� �
���
, Re�

�
(q,�)'0,

Im �
�
(q,�)(0, (2.7a)

�(q,�)"�q�!�(�)
��

c� �
���
Re�(q,�)'0,

Im �(q,�)(0. (2.7b)

The scattering amplitude R�(q,�) satis"es the
reduced Rayleigh equation [10]

R�(p,�)"G
�
(p)�v(p�k)J(�(p,�)!�

�
(k,�)�p!k)

#�
�

��

dq

2�
v(p�q)J(�(p,�)!�

�
(q,�)�p!q)R�(q,�)�,

(2.8)

where

J(��Q)"�
�

��

dx
�
e�����

e��	�� 
!1

�
(2.9)

and

v(p�q)"
1!�(�)

�(�)
[pq!�(p,�)�

�
(q,�)], (2.10)

while

G
�
(p)"

�(�)
�(�)�

�
(p,�)#�(p,�)

(2.11)
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is the Green's function of surface plasmon polar-
itons associated with the planar surface. We note
that G

�
(p) has simple poles at p"$k.

If we introduce the transition matrix ¹(p�k) by
the relation

R�(p,�)"G
�
(p)¹(p�k), (2.12)

then Eq. (2.8) takes the form

¹(p�k)"<(p�k)#�
�

��

dq

2�
<(p�q)G

�
(q)¹(q�k), (2.13)

where the scattering potential <(p�q) is given by

<(p�q)"v(p�q)J(�(p,�)!�
�
(q,�)�p!q). (2.14)

From Eqs. (2.5a) and (2.12) we see that the scat-
tered "eld in the vacuum region can be written in
the form

H�
�
(x

�
,x

�
��)


�
"�

�

��

dq

2�
G

�
(q)¹(q�k)e������� 	���
�� .

(2.15)

The "eld of the scattered surface plasmon polariton
in the region x

�
'¸/2 is given by the contribution

from the pole in the integrand of the integral in Eq.
(2.15), and has the form

H�
�
(x

�
'¸/2,x

�
��)


�
"iC¹(k�k)e����e���	���
�� ,

(2.16)

where

C"

�!��(�)
��(�)!1

(2.17)

is the residue of the Green's function G
�
(q) at

q"$k. The amplitude of the transmitted surface
polariton is therefore

t(�,¸)"1#iC¹(k�k). (2.18)

The surface plasmon polariton transmission coef-
"cient ¹(�,¸) is then de"ned by

¹(�,¸)"
P
��
(¸/2)

P
�	�
(!¸/2)

"�t(�,¸)��exp�!
¸

l� (�)�,
(2.19)

where

l� (�)"
1

2k
�
(�)

(2.20)

is the propagation length of the surface plasmon
polaritons due to the ohmic losses in the metal, and
gives the fraction of the #ux entering the random
segment of the metal surface at x

�
"!¸/2,

P
�	�
(!¸/2), that leaves it at x

�
"¸/2, P

��
(¸/2).

From Eq. (2.19) we "nd that

�ln¹(�,¸)�"�ln�t(�,¸)���!

¸

l� (�)
. (2.21)

We can rewrite Eq. (2.21) in the form

�ln¹(�,¸)�"2Re�ln [t(�,¸)]�!

¸

l� (�)
. (2.22)

Therefore, in view of Eqs. (1.1) and (1.2), and in the
absence of leakage, we expect that

2Re�ln [t(�,¸)]�"const.!
¸

l(�)
. (2.23)

3. The random surface

Before proceeding, several remarks on the prop-
erties of the rough surface have to be made. From
Eq. (2.5a) it follows that the total power scattered
into the vacuum above the surface is

P

�

"¸
�

�
16���

���

����

d	


cos� 	


 �R��
�
c
sin 	



,���

�
,

(3.1)

where ¸
�
the length of the surface along the x

�
-

axis. The scattering angle 	


, measured clockwise

from the x
�
-axis, is related to the wavenumber q by

q"(�/c)sin 	


. Since the integrand in Eq. (3.1) is

non-negative, we see that the only way in which
leakage can be suppressed, i.e. the only way in
which P


�
can be made to vanish, is to design a one-

dimensional random surface for which the ampli-
tude R�(q,�) is identically zero for !(�/c)(q(

(�/c). Several ways to design surfaces that give rise
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to speci"ed angular distributions of the scattered
intensity have been proposed recently [11,12]. To
suppress the leakage we will use a surface charac-
terized by the power spectrum [13]

g(�Q�)"
�

2
k
[	(Q!k

��	
)	(k

���
!Q)

#	(!Q!k
��	
)	(k

���
#Q)], (3.2)

where

k
��	

"2k
�
(�)!
k, (3.3a)

k
���

"2k
�
(�)#
k, (3.3b)

and 
k must satisfy the inequality


k;k
�
(�)!(�/c). (3.4b)

That a surface characterized by the power spec-
trum (3.2) suppresses leakage can be seen from the
following argument: The incident surface plasmon
polariton has a wave number whose real part is
k
�
(�). After its "rst interaction with the surface

roughness it will be scattered into waves the real
parts of whose wave numbers lie in the two inter-
vals (3k

�
(�)!
k, 3k

�
(�)#
k) and (!k

�
(�)!
k,

!k
�
(�)#
k). This is because the wave numbers

in the spectrum of the surface roughness with
which k

�
(�) can combine lie in the intervals

(2k
�
(�)!
k, 2k

�
(�)#
k) and (!2k

�
(�)!
k,

!2k
�
(�)#
k). For the same reason, after the

scattered waves interact again with the surface
roughness the real parts of the wave numbers
of the doubly scattered waves will lie in the
three intervals (5k

�
(�)!2
k, 5k

�
(�)#2
k),

(k
�
(�)!2
k, k

�
(�)#2
k), and (!3k

�
(�)!2
k,

!3k
�
(�)#2
k). After the third interaction with

the surface roughness the real parts of the
wave number of the scattered waves will lie in the
four intervals (7k

�
(�)!3
k,7k

�
(�)#3
k),

(3k
�
(�)!3
k,3k

�
(�)#3
k), (!k

�
(�)!3
k,

!k
�
(�)#3
k), and (!5k

�
(�)!3
k,

!5k
�
(�)#3
k), and so on. Thus, for example,

if!k
�
(�)#3
k(!(�/c), so that
k(�

�
(k

�
(�)!

(�/c)), after triple scattering the surface plasmon
polaritons will not be converted into volume elec-
tromagnetic waves. In general, if we wish the sur-
face plasmon polariton to scatter n times from the

surface roughness without being converted into
volume electromagnetic waves, we must require
that 
k((1/n)(k

�
(�)!(�/c)). It is clear that the

strongest scattering processes are those whose "nal
states are backward or forward propagating sur-
face plasmon polaritons, since they result in
propagating excitations while all others "nal states
are strongly decaying electromagnetic waves.
A randomly rough surface with a power spec-

trum of the form of two Gaussian peaks centered at
q"$2k

�
(�) has been assumed in Ref. [14] in

a search for the localization-induced enhancement
of the surface plasmon polariton "eld. However,
such a power spectrum is nonzero in the range
�q�((�/c) and, therefore, such a surface does not
suppress leakage.

4. Analytical arguments

Let us consider Eq. (2.13) for the transition
matrix ¹(q�k). In deriving this equation we have
assumed that the conditions for the validity of
Rayleigh hypothesis are satis"ed. The scattering
potential <(q�p), given by Eq. (2.14), does not have
any poles in the complex plane of the variables q
and p, and the inequality (e	�	���
��� 	���

�	�� 
!1);
1 is satis"ed. In view of the power spectrum of the
surface roughness assumed, the main contribution
to the integral term in Eq. (2.13) comes from the
poles of the Green's function G

�
(p). In the pole

approximation for the Green's function [15] we
can rewrite Eq. (2.13) as

¹(q�k)"<(q�k)#iC<(q�k)¹(k�k)

#iC<(q�!k)¹(!k�k), (4.1a)

¹(k�k)"iC<(k�!k)¹(!k�k), (4.1b)

¹(!k�k)"<(!k�k)#iC<(!k�k)¹(k�k). (4.1c)

From Eqs. (4.1) we obtain

¹(q�k)"
<(q�k)#iC<(q�!k)<(!k�k)
1#C�<(k�!k)<(!k�k)

(4.2a)

and

¹(k�k)"
iC<(k�!k)<(!k�k)

1#C�<(k�!k)<(!k�k)
. (4.2b)
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Therefore, from Eq. (2.18) we "nd that the ampli-
tude of the transmitted "eld is given by

t(�,¸)"
1

1#C�<(k�!k)<(!k�k)
. (4.3)

Using Eq. (4.3) we can calculate the desired
quantity �ln¹(�,¸)�,

�ln¹(�,¸)�"2Re�ln t(�,¸)�

"!2Re�ln[1#C�<(k�!k)<(!k�k)]�. (4.4)

In order to calculate the average in the second
line of Eq. (4.4) we shall use the Taylor expansion of
the logarithm

�ln[1#C�<(k�!k)<(!k�k)]�

"

�
�
���

(!1)���

n
C���[<(k�!k)<(!k�k)]��, (4.5)

and calculate the moments �[<(k�!k)<(!k�k)]��.
From Eq. (2.14) it follows that

�[<(k�!k)<(!k�k)]��,[v(k�!k)v(!k�k)]�

��J�(�(k,�)!�
�
(k,�)�2k)J�(�(k,�)

!�
�
(k,�)�!2k)�. (4.6)

To calculate these moments we use their repres-
entation in terms of cumulant averages [16,17]. In
doing so we will use the fact that due to the non-
stationarity of the surface the cumulant average of
J(��Q) is given by

�J(��Q)�
�
"¸ sinc�Q

¸

2�
1

�
(e������!1), (4.7)

the cumulant average of the product J(��Q
�
)J(��Q

�
)

is given by

�J(��Q
�
)J(��Q

�
)�

�
"j(Q

�
,Q

�
)

,¸��
�

��

dr

2�
sinc�

(Q
�
!r)¸

2 �
�sinc�

(Q
�
#r)¸

2 �g( (r), (4.8)

where

g( (r)"
1

��
e�����

�

��

du e��	
[e�����	�
�
!1] (4.9)

and so on. As a result, the cumulants of any odd
numbers of J functions from Eq. (4.6) are found to
be proportional to at least one factor sinc(k

�
¸),

which is small when k
�
¸<1. Only the cumulant

averages of products of even numbers of J func-
tions, which contain equal numbers of J(��2k) and
J(��!2k), do not contain this small factor.
When the length of the rough part of the surface

is not very large, so that ¸��;��(�)���, where
�"(2�c/�), the main contribution to the average
of the product of J functions comes from the prod-
ucts of pair cumulant averages, so that the mo-
ments are found to be given by

�J�(�(k,�)!�
�
(k,�)�2k)J�(�(k,�)!�

�
(k,�)�!2k)�

+n![�J(�(k,�)!�
�
(k,�)�2k)

�J(�(k,�)!�
�
(k,�)�!2k)�

�
]�

"n!j�(2k,!2k). (4.10)

With the use of Eq. (4.10) we can rewrite the in"nite
series in Eq. (4.5) as

�ln[1#C�<(k�!k)<(!k�k)]�

"C�v(k�!k)v(!k�k)
�
�
���

(!1)�n!C��

�[v(k�!k)v(!k�k)j(2k,!2k)]�

"C�v(k�!k)v(!k�k)j(2k,!2k)

��
�

�

du
e�


1#C�v(k�!k)v(!k�k)j(2k,!2k)u
.

(4.11)

In the limit of a weakly rough surface, �;����(�)�,
the function g( (r) can be approximated by
g( (2k)"��g(�r�), so that j(2k,!2k) takes the form

j(2k,!2k)"¸����
�

��

dr

2�
g(�r�)

�sinc��(2k!r)
¸

2�. (4.12)

When the length of the rough part of the surface is
small, so that the conditions ¸
k;1 and k

�
¸;1

are satis"ed, the function j(2k,!2k) becomes
j(2k,!2k)"¸���/2. Since in this case

C�v(k�!k)v(!k�k)j(2k,!2k);1, (4.13)
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the integral in Eq. (4.11) can be replaced by unity,
and therefore, we obtain

�ln¹(�,¸)�+!Re[C�¸���v(k�!k)v(!k�k)].

(4.14)

To illustrate these results we assume that
surface polaritons of frequency � corresponding
to a wavelength �"(2�c/�)"457.9 nm propagate
along the silver surface, whose dielectric function at
this wavelength is �(�)"!7.5#i0.24. Let the
surface roughness be characterized by the para-
meters 
k"0.3(k

�
(�)!(�/c))J0.15�/(c��(�)�)

and the rms height �"3 nm. For these parameters
the two main characteristic lengths of the problem
are l

�
��
,1/(
k)"4� and l�,1/2k

�
(�)"30.1�.

Therefore, to satisfy the condition ¸
k;1 the
length of the surface should be of the order of a few
wavelengths. Then, since ¸(l

���
"5.3�, where

l
���
(�)"�Re[C�v(k�!k)v(!k�k)]�����, the condi-

tion at which Eq. (4.14) have been obtained is
satis"ed, and the average logarithm of the transmis-
sion coe$cient of surface plasmon polaritons has
the form �ln¹(¸)�"const.!(¸/l

���
(�))�.

However, when studying the localization of
classical waves we are interested in the limit
¸PR. Therefore, in this limit ¸
k<1, and the
function j(2k�!2k) has the form

j(2k�!2k)"¸

2�

k

��. (4.15)

If, in addition, the condition (4.13) is satis"ed, we
obtain the expression for the averaged logarithm of
the transmission coe$cient in the form

�ln¹(�,¸)�+!Re�C�¸
2�


k
��v(k�!k)v(!k�k)�,

(4.16)

i.e.

�ln¹(�,¸)�+!

¸

l(�)
, (4.17)

where

l��(�)"Re�C�
2�


k
��v(k�!k)v(!k�k)� (4.18)

and coincides with the scattering length

l��

�
(�)"2�


�
(�), (4.19)

where �

�
(�) is the roughness-induced decay rate of

surface plasmon polaritons. Indeed, let us intro-
duce the exact Green's function G(q�p) in accord-
ance with Ref. [18] by the relation

G
�
(p)¹(p�k)"�

�

��

dq

2�
G(p�q)<(q�k). (4.20)

In the limit ¸
k<1 the stationarity of the surface
is almost restored and the average Green's function
G(q), which is then de"ned by �G(q�p)�"G(q)2��
(q!p), has the form

G(q)"
1

G��
�
(q)!M(q)

, (4.21)

where M(q) is the averaged self-energy de"ned by
�M(q�p)�"M(q)2��(q!p). The self-energyM(q�p)
satis"es the equation [18]

M(q�k)"<(q�k)#�
�

��

dp

2�
<(q�p)G

�
(p)[M(p�k)

!�M(p�k)�]. (4.22)

In the pole approximation the averaged self-energy
can be obtained in the same manner in which we
calculated the transition matrix¹(q�k). The result is

�M(k�k)�"

�iC<(k�!k)<(!k�k)/[1#C�<(k�!k)<(!k�k)]�
�[1#iC<(k�!k)]/[1#C�<(k�!k)<(!k�k)]�

.

(4.23)

In the limit in which Eq. (4.16) was obtained the
averaged self-energy is given by

�M(k�k)�+iCv(k�!k)v(!k�k)j(2k�!2k). (4.24)

Therefore, �

�
(�)"ImCM(k), and is indeed the

roughness}induced decay rate of surface plasmon
polaritons.
For example, for the case where the rms height of

the surface roughness is �"3 nm while the length
of the rough part of the surface is small¸(20�, the
length l


�
(�) turns out to be l+8�, and is smaller
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than the propagation length of surface plasmon
polaritons associated with the ohmic losses. How-
ever, the exponential decay of the transmission
coe$cient of surface plasmon polaritons does not
necessarily imply that they are localized. For such
a weakly rough surface, although the scattering by
surface roughness leads to a strong damping of the
surface waves, nevertheless they remain propa-
gating electromagnetic waves, since k

�
(�)#

�

�
(�);k

�
(�). And if the rough surface is not very

long, the surface polaritons can escape the rough
part of the surface.
The situation is di!erent when the surface is

moderately rough, or the length of the rough part
of the surface increases, so that ��¸<��(�)���. In
this limit the main contribution to the average of
the product of nJ functions comes not from the
products of pair cumulants but from the cumulant
average of largest order that is

�J�(�(k,�)!�
�
(k,�)�2k)J�(�(k,�)!�

�
(k,�)�!2k)�

+�J�(�(k,�)!�
�
(k,�)�2k)J�(�(k,�)

!�
�
(k,�)�!2k)�

�
"¸ng( ����(2k), (4.25)

where g( (q) is given by Eq. (4.9). In this case we
can sum the in"nite series in Eq. (4.5) with the
result

�ln[1#C�<(k�!k)<(!k�k)]�"¸

�
�
���

(!1)�C����

�¸[v(k�!k)v(!k�k)]���g( ����(2k)

"2¸
C�v(k�!k)v(!k�k)g( (2k)

1#C�v(k�!k)v(!k�k)g( �(2k)
. (4.26)

The average of the logarithm of the transmission
coe$cient in this case takes the form

�ln¹(�,¸)�"!2¸Re

��
C�v(k�!k)v(!k�k)g( (2k)

1#C�v(k�!k)v(!k�k)g( �(2k)�.
(4.27)

Therefore, we obtained the linear dependence

�ln¹(�,¸)�+!

¸

l(�)
, (4.28)

where

l��(�)"2Re�
C�v(k�!k)v(!k�k)g( (2k)

1#C�v(k�!k)v(!k�k)g( �(2k)�.
(4.29)

For a rough surface with an rms height �"10 nm,
we "nd that C�v(k�!k)v(!k�k)g( �(2k)<1. There-
fore, instead of Eq. (4.27) we can write

�ln¹(�,¸)�+!2¸Re�
1

g( (2k)�, (4.30)

so that

l��(�)"2Re�
1

g( (2k)�. (4.31)

Thus, in this case the localization length is
l(�)+0.1�. In this case, the surface polariton "eld
is overdamped and the waves cease to propagate.
As in the case of a weakly rough surface the length
l(�) coincides with the roughness induced decay
length of surface plasmon polaritons, l(�)"
1/(2�


�
(�)), where �


�
(�)"ImCM(k), since in this

limit the average self energy, Eq. (4.23) is

M(k)"!

i

Cg( (2k)
. (4.32)

Several remarks have to be made concerning the
pole approximation we have used here. When using
the pole approximation and, thus, reducing the
integral equations (2.13) to a system of algebraic
equation, we lose the contributions from the non-
singular part of the integrand. This might be signi"-
cant if the transition matrix ¹(q�k) has strong
peaks. However, the heights of the peaks can be
expected to be of the order of 1/�


�
(�) and 1/
k.

Since �

�
(�)<k

�
(�) and 
k<k

�
(�), the contribu-

tions of these possible peaks to the integral part of
Eq. (2.13) are much smaller than the contribution
from the poles of the Green's function G

�
(q) and

can be neglected.
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In the analytical approach described above we
assumed that the surface is weakly rough, so that

���(�);�. In the case when the surface roughness
is quite strong, so that ���(�)*�, but the condi-
tions for the validity of the Rayleigh hypothesis are,
nevertheless, satis"ed, to study the localization of
surface plasmon polaritons we solved Eq. (2.13)
numerically.

5. Numerical solution

In order to solve the equation for the transition
matrix care has to be taken. We recall that our
ultimate goal is calculate the transmission ampli-
tude t(�,¸) de"ned in Eq. (2.18), i.e. essentially to
obtain ¹(�,¸) from a numerical solution of the
inhomogeneous Fredholm integral equation of the
second kind satis"ed by the transition matrix. In
doing so one is facing at least two major challenges:
(i) How to calculate the transition matrix ¹(p�k) at
the wave number of the surface plasmon polariton
p"k, which is complex due to the non-vanishing
imaginary part of the dielectric function of the
metal, and (ii) how to handle the poles of G

�
(q) at

q"$k. The numerical technique used to calcu-
late ¹(k�k) numerically is a two step process. It is
started by observing that for a real (absorbing)
metal there will be no poles located directly on the
real axis. Therefore, at least in principle, one can
calculate ¹(p�k) for all real arguments p. Since the
kernel is well de"ned for all real q's, this is done by
converting the integral equation into a set of linear
equation that can be solved by standard techniques
[19]. For step 2 we notice that the integral equation
(2.13) is valid for all momenta p and q, both real and
complex. Thus, one can calculate the desired
transition matrix at p"k by integrating along the
real q-axis because here ¹(q�k) is already known
from the preceding step, i.e. one calculates

¹(k�k)"�
�

��

dq

2�
<(k�q)G

�
(q)¹(q�k). (5.1)

Note that the scattering potential vanishes at
q"k, <(q�k)"0, since �(k,�)�

�
(k,�),k�.

Although the poles are not located on the real
axis, they are still rather close to it. Therefore, in the

vicinity of q"$k
�
, where the poles are closest to

the real axis, the integrand in Eq. (5.1) changes
rapidly. Furthermore, ¹(q�k) might have weaker
peaks, due to multiply scattered surface plasmon
polaritons, located at q"$(2n#1)k

�
(�)

n"1, 2, 32. It is therefore bene"cial not to use
a uniform discretization grid, so that a higher den-
sity of points can be used around these wave num-
bers. This was done by "rst replacing the upper and
lower limits in the integral in Eq. (5.1) by "nite
values and then subdividing this resulting region of
integration into subintervals where di!erent densit-
ies of points were allowed for. The integration
range was divided into a total of 27 subintervals
and, in particular, small intervals with high den-
sities of points were chosen around $k

�
(�),

$3k
�
(�), and $5k

�
(�). Within each subinterval

the grid points corresponding to di!erent densities
were obtained by the classic Gauss}Legendre
method [19]. The total number of points used in
the integration was N"1850.
In this way we solved the integral equation (5.1)

satis"ed by the transmission matrix ¹(k�k) needed
to calculate e.g. the transmission coe$cient of sur-
face plasmon polaritons as a function of the length
¸ of the rough part of the surface, for each particu-
lar realization of the surface. In numerical calcu-
lations the function �(x

�
) which serves to restrict

the nonzero values of s(x
�
) to the interval

!¸/2(x
�
(¸/2, was taken in the form given by

Eq. (2.4b) with 
"100¸ so that s(x
�
) was cut o!

smoothly.
The traditional way of generating randomly

rough surfaces with a well-de"ned power spectrum
and Gaussian height distribution is to use the so-
called Fourier "ltering method [20, Appendix A].
This method consists of generating Gaussian un-
correlated random variables that are "ltered with
the desired (decaying) power spectrum. By Fourier
transforming this "ltered sequence back into real
space one obtains a randomly rough surface with
the desired statistical properties. In most imple-
mentations of this algorithm, it is bene"cial to take
advantage of the fast Fourier transform for per-
forming the inverse transform needed. However, to
generate numerically surfaces that suppress leakage
as de"ned in the preceding sections, the use of the
fast Fourier transform (FFT) is not necessarily the
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Fig. 2. Example of a random surface.

Fig. 3 . Plot of (�/c)���R�(q,�)��� as a function of cq/� cal-
culated by averaging analytically the expression (5.1) for the
transition matrix ¹(q�k) for a silver surface characterized by the
parameters 
k"0.3(k

�
(�)!(�/c)) and �"3 nm. The rough

portion of the surface has length ¸"20�. The wave number of
the surface plasmon polariton, k(�)"k

�
(�)#ik

�
(�)"

(1.0741#i0.0026)�/c, corresponds to a vacuum wavelength of
�"457.9 nm, and the dielectric function of silver at this fre-
quency is �(�)"!7.5#i0.24.

best option. The reason for this is that the power
spectrum, according to its de"nition, is nonvanish-
ing only in a very narrow interval of width 2
k
about $2k

�
(�), where k

�
(�) is the real part of the

wave number of the surface plasmon polaritons
supported by the planar surface. This has the con-
sequence that the number of points needed in order
to resolve the nonvanishing part of the power spec-
trum in a satisfactory matter is very large. Since it is
the widths of the rectangles contained in the power
spectrum that makes the surface randomly rough,
we want a rather good resolution here. For
example for the numerical results for silver to be
shown later, 
k&10���/c and the number of
points needed in order to generate surfaces in a sat-
isfactory manner by using the FFT was N*10�.
The FFT for this number of points is a computa-
tionally costly algorithm, and we therefore cal-
culated the Fourier transform by straightforward
numerical integration for which a high-density dis-
cretization in momentum space is possible at lower
computational costs. Another advantage of this
numerical integration approach is, as we will see
below, that the surface now may be generated dir-
ectly on a non-uniform grid without any need for
any interpolation. In Fig. 2 an example of a surface

realization generated by the method just described
is presented.

6. Numerical results

We start our discussion of the numerical results
by presenting a result that explicitly shows that the
surfaces generated in the way described above sup-
press leakage, i.e. that the scattering amplitude van-
ishes in the radiative region �q�(�/c. In Fig. 3 we
present a plot of (�/c)���R�(q,�)��� as a function of
cq/� for a silver surface where the rough portion
had a length ¸"20�. The result plotted in Fig.
3 was calculated from the analytical expression for
the transition matrix ¹(q�k), Eq. (4.2a), obtained in
the pole approximation for the Green's function.
No expansion in powers of the surface pro"le
function s(x

�
) was used when averaging �R�(q,�)��.

The vacuum wavelength of the surface plasmon
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Fig. 4. The same as in Fig. 3 but calculated by means of
a numerical solution of Eq. (2.13). The rms height of the surface
roughness is �"30 nm. The results for 50 realizations of the
surface pro"le function were averaged numerically to obtain the
results plotted in this "gure.

Fig. 5. Numerical simulation results for �ln¹(�,¸)� versus the
length of the rough portion of the surface ¸.

polaritons was taken to be �"(2�c/�)"
457.9 nm, so that the dielectric function of silver
at this frequency is �(�)"!7.5#i0.24. The cor-
responding wave number of the surface plasmon
polariton is k(�)"k

�
(�)#ik

�
(�)"(1.0741#

i0.0026)�/c. The surface roughness was character-
ized by the parameters 
k"0.3(k

�
(�)!(�/c)) and

�"3 nm. With this value of 
k the surface should
suppress leakage due to scattering processes of up
to, and including, third order. We observe from Fig.
3 that ��R�(q,�)��� is indeed suppressed in the
radiative region. The analogous results obtained by
means of a numerical solution of Eq. (2.13) is pre-
sented in Fig. 4 for the case where the rms height of
the surface roughness was taken to be �"30 nm.
From this "gure we see that although ��R�(q,�)���
is heavily suppressed in the region of small values of
q;(�/c), it is far from zero for almost grazing
directions of radiation q)(�/c). This is due to the
strong higher-order scattering processes which are
possible for such a strongly rough surface. Only
six peaks corresponding to $k

�
(�), $3k

�
(�),

and $5k
�
(�) are easily seen in this "gure. It

should also be noted that when �q�*7�/c,
(�/c)���R�(q�k)��� becomes #atter. This #atness is
due to leakage setting in for such scattering wave
numbers, and they are no longer restricted to well-
de"ned values as is the case for �q�)7�/c. The
reason for the rapid dip at q+k

�
(�) is caused by

the vanishing of the scattering potential <(k�q) at
q"k.
By numerically solving Eq. (2.13), and calculating

¹(k�k) by numerical integration in Eq. (5.1), the
transmission amplitude t(�,¸) de"ned in Eq. (2.18),
and the transmission coe$cient ¹(�,¸) de"ned by
Eq. (2.19) could be calculated for di!erent values of
the length ¸ of the rough portion of the surface.
From this equation we also recall that the decay
due to ohmic losses in the metal could be factored
out leaving only possible leakage or Anderson loc-
alization in the quantity �t(�,¸)��. In Fig. 5 we show
numerical simulation results ("lled circles) for
�ln¹(�,¸)� as a function of the length of the rough
portion of the surface. The remaining parameters
are those used to obtain the results of Fig. 4. The
error bars indicate errors due to the use of a "nite
number of samples. These errors tend to increase
with increasing system size ¸ because of numerical
di$culties related to the peaks that can be seen in
Fig. 4 becoming narrower and higher.
We observe from Fig. 5 that the behavior of

�ln¹(�,¸)� within the error bars is consistent with
the behavior predicted in Eq. (2.23), i.e. with an
exponential decay of the surface plasmon polariton
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transmission coe$cient. The solid line in Fig. 5 rep-
resents a ��-"t [19] to the simulation data. We
recall that in the absence of leakage the slope of this
straight line gives according to Eq. (2.23) the in-
verse of the Anderson localization length, l(�). The
numerical value that we obtain in this way is

l(�)"(5319$905)�. (6.2)

Thus, by large-scale numerical simulations we have
shown that for such a strongly rough random sur-
face the average logarithm of the transmission coef-
"cient is a linear function of the length of the rough
part of the surface. However, in this case the char-
acteristic length of the decay of the transmission
coe$cient l(�) is of the order of many thousands of
wavelengths. As we have seen in Fig. 4 in this case
the bulk electromagnetic waves are quite e$ciently
radiated into the vacuum in the directions almost
parallel to the surface. These scattered bulk waves
are, in their turn, scattered by the surface roughness
and excite surface plasmon polaritons. Just these
processes of reexcitation of surface plasmon polar-
itons lead to such a long decay length l(�). Thus, in
this case, although the scattering length l


�
(�)

might be quite small, any possibility of localization
is destroyed by the strong reexcitation of surface
plasmon polaritons.

7. Conclusions

In this paper we have presented an approach to
generating a one-dimensional random surface that
suppresses leakage. The suppression of leakage is
essential for being able to observe the localization
of surface plasmon polaritons on a randomly rough
surface. We have shown that in the case of a weakly
and moderately rough surface the transmission co-
e$cient ¹(�,¸) of surface plasmon polaritons
decays exponentially with the length ¸ of the rough
part of the surface. The inverse of the characteristic
length of the decay l��


�
(�) is determined by the

roughness-induced decay rate of the surface plas-
mon polaritons l��


�
(�)"2�


�
(�)"2 ImCM(k). In

the case of a weakly rough surface and when the
length ¸ of the rough part of the surface is small,
although the localization length is smaller than the
propagation length l�(�), which is due to the ohmic

losses in the metal, it is large enough to ensure the
propagative nature of the surface plasmon polar-
iton "eld. With the increase of the strength of the
surface roughness, the localization length becomes
considerably smaller than the vacuum wavelength
of the surface plasmon polariton. In this case the
surface plasmon polaritons lose their wave-like na-
ture and their "eld is localized. With a further
increase of the rms height, the scattering processes
of higher order (higher than the third) become
e$cient. These processes lead to the appearance of
leakage and, more important, to the processes of
reexcitation of surface plasmon polaritons. By
large-scale numerical simulations we showed that
the localization length in this case is of the order of
many thousands of wavelengths. This is because in
this case the surface plasmon polaritons which
propagate along the planar surface away from the
rough part of the surface (x

�
'¸/2) are actually

not the transmitted surface plasmon polaritons but
can be regarded as the surface plasmon polaritons
excited by the e!ective modes of the rough surface:
coupled multiply scattered surface plasmon polar-
itons and bulk electromagnetic waves.
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