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ABSTRACT
In this work we consider a structure consisting of vacuum in the region x3 > ((xi); a dielectric film characterized by
a real, positive, dielectric constant e in the region —D < x3 < (xi); and vacuum in the region X3 < —D. The surface
profile function ((xi) is assumed to be a single-valued function of x1 , that is differentiable, and constitutes a random
process. This structure is illuminated from the region x3 > ((x1) by s-polarized light whose plane of incidence is
the xx3-p1ane. By the use of the geometrical optics limit of phase perturbation theory we show how to design the
surface profile function C(xi) in such a way that the mean differential transmission coefficient has a prescribed form
within a specified range of the angle of transmission, and vanishes outside this range. In particular, we consider
the case in which the transmitted intensity is constant within a specified range of the angle of transmission, and
vanishes outside it. Rigorous numerical simulation calculations show that the transmitted intensity indeed has this
property.
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1. Introduction
A band-limited uniform diffuser is defined as an optical element that scatters light uniformly within a specified range
of scattering angles, and produces no scattering outside this range. In the existing theoretical studies of random
surfaces that act as band-limited uniform diffusers('5 ) only their scattering properties have been investigated.
However, the experimental demonstrations that surfaces fabricated according to the prescriptions given in Refs. 2—5
do act as band-limited uniform diffusers have been carried out for the transmission of light through dielectric films
with a random surface of this type(35 ) . It seemed desirable, therefore, to extend the theory developed in Refs. 1—5
for the scattering problem to the transmission problem. In this paper we consider the simplest version of this problem,
namely the transmission of s-polarized light through a free-standing dielectric film, whose illuminated surface is a
one-dimensional random surface whose generators are perpendicular to the plane of the incidence and whose back
surface is planar. On the basis of the geometrical optics limit of phase perturbation theory the surface profile function
of the illuminated random surface is determined in such a fashion that at normal incidence the angular dependence
of the mean intensity of the light transmitted through the film is constant for the angle of transmission Ut in the
interval (Om , Orn) and vanishes outside this interval. A rigorous computer simulation of the angular dependence of
the mean intensity of the transmitted light confirms that the optical element designed in this way indeed possesses
the properties specified for it.

The transmission properties of more complicated geometries, e.g. supported random dielectric films, will be inves-
tigated in a separate work, from the standpoint of designing them to possess specified mean intensity distributions.
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Figure 1. A sketch of the scattering system considered in the present work.

2. The Transmission Amplitude
The system we consider in this work consists of vacuum in the region x3 > C(xi) ; a dielectric film, characterized by a
real, positive, dielectric constant , in the region —D < x3 < ((x1); and vacuum in the region X3 < —D (Fig. 1). The
surface profile function ((x1) is assumed to be a single-valued function of x1 that is differentiable, and constitutes a
random process. This system is illuminated from the region x3 > C(xi) by an s-polarized plane wave, whose plane
of incidence is the xix3-plane. The single nonzero component of the electric field in this system is

E2(xi, x3w) = exp{ikx1 — iao(k)x3]+ j R(q(k) exp[iqxi + iao(q)x3] (2.1)

in the region x3 > C(xi),

E2(x1, x3Iw) = I: exp(iqxi)[A(qjk) exp[ia(q)x3] + B(qfk) exp[—i(q)x3] (2.2)

in the region —D < x3 <((x1), and

E2(xi, x3Iw) = I: T(qIk) exp[iqxi — iao(q)(D + x3)J (2.3)

in the region £3 < —D. In these expressions the functions cEo(q) and a(q) are defined by

o(q) = (_q2) IqI< C
(2.4)

j(q2_)2 IqI>
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and

(q) = I ( - q2) II <
(2.5)

I j(q2_)2 lqI>.
From the boundary conditions at the interface x3 = —D, we obtain the relations

A(qk) =
(1

_
a(q)

) T(qk) exp{ia(q)D] (2.6a)

B(qlk) = (1 + )) T(qlk)exp[-ia(q)D]. (2.6b)

The boundary conditions at the interface x3 = ((x1 ) can be written in the forms

i: R(qk) expqx1 + io(q)((xi)J = - exp[ikxi -

00 d

exp{iqxi][A(qjk) exp[ia(q)C(xi)] + B(qk) exp[—ia(q)(x1)] (2.7a)

f_oc [-q('(x1) +ao(q)}R(qjk) exp[iqxi + iao(q)((xi)] [k('(xi) + ao(k)} exp[ikxi - iao(k)((xi)]

+ 1-00 2 exp[iqx] {[-qC'(xi) + a(q)]A(qk) exp[ia(q)((xi)]

+[—q('(xi) — a(q)]B(qk) exp[—ia(q)(xi)]} . (2.7b)

We eliminate R(qk) from this pair ofequations by multiplyingEq. (2.7a) by [p'(xi)+ao(p)] exp{—ipxi+iao(p)((xi)]
and integrating on xi; multiplying Eq. (2.7b) by exp[—ipxi + ico(p)((xi)J and integrating on x1; then subtracting
the second equation from the first. The result takes the form

(1 - e) {
I(ao(p) + a(q)Ip - A(qIk)+ 1° - (q)p- q)

B(qlk)} = 2s(P- k)2a0(k), (2.8)C 2ir ao(p) + a(q) ao(p) — a(q)

where

I(71Q) = i: dx1 exp[-iQxi + i7((x1)]. (2.9)

The use of the relations (2.6) in Eq. (2.8) yields the reduced Rayleigh equation for the transmission amplitude
T(qk):

I °° dq I I(ao(p) + (q)p — q) 1 1 ao(q)\I — ____________________ — ii — I exp[ia(q)D]j_ 2ir ao(p) + a(q) 2 a(q) j

+ 1(ao( a(q
q)

(1 + ao(() exp[_ia(q)D]} T(qk) = -26(p- k) (e-fl(w2/c2) (2.10)

We solve Eq. (2.10) as an expansion in powers of the surface profile function through terms linear in ((x1), with
the result that

T(qIk) = To(k){2(q- k) + i(e -1)(q - k) + 0(C2)], (2.11)

where T0 (k) is the Fresnel transmission amplitude in the absence of the surface roughness,

4a0(k)cr(k)T0(k) =
V(k) (2.12)
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and

A(k) = 2a(k) cos{a(k)D] — i2ao(k) sin[a(k)D] (2.13)

V(q) = 4ao(q)cr(q) cos[cx(q)D] — i2[a(q) + ci2(q)] sin[a(q)V] (2.14)

(q - k) = t: dx1 exp[-i(q - k)xi]((xi). (2.15)

The result given by Eq. (2.11) can be rewritten as

T(qlk) = To(k) i: dx1 exp[-i(q - k)xi] [i + i(e - 1)((xi)] . (2.16)

The phase perturbation theory result for T(qk) is obtained by exponentiating the expression in brackets in the
integrand. Thus, finally, we have the result that

T(qk) = T0(k) i: dx1 exp[-i(q - k)xi] exp[i(c -1)((xi)]. (2.17)

3. The Mean Differential Transmission Coefficient
The differential transmission coefficient is defined as the fraction of the total time-averaged incident flux that is
transmitted into the angular interval (° ,Gt + dOe) , where Ut is the angle of transmission (Fig. 1) . The magnitude of
the total time-averaged incident flux is given by

Pinc = —Ref dxifdx2(S)inc

= LiL2—.--—cro(k), (3.1)8irw

where S3 is the 3-component of the complex Poynting vector, and the minus sign compensates for the fact that the
flux is in the —x3-direction. L1 and L2 are the lengths of the surface along the x1-and x2-axes. The magnitude of
the total time-averaged transmitted flux is given by

Ptr = —Re fdXifdX2(S)tr

= L2j a0(q)jT(qk)2. (3.2)

We introduce the angles of incidence and transmission, 9o and Ot, respectively, by (Fig. 1)

w. w.k = —sinG0, q = —smG. (3.3)
C C

It follows that the incident and scattered fluxes are given by

C
Pinc = L1L2—cosG0 (3.4)

Ptr = L2f 2
dO cos2 OtIT(qIk)I2. (3.5)

The differential transmission coefficient by definition is then given by

OT 1 cos2O 2— = —— T(qk). (3.6)ot L1 2irc cos90
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Since we are studying transmission through a random surface, it is the mean differential transmission coefficient that
is of interest to us. It is given by

K) = (3.7)

where the angle brackets denote an average over the ensemble of realizations of the surface profile function C(xi).
on combining Eqs. (2.17) and (3.7) we find that in phase perturbation theory

/T\ 1 w cos2Ot 21 - — To(k)l
\ Ott I L1 2irc cos

x i: dx1 f dx exp[i(q -k)(xi - x)](exp{i(c - i)[((xi) -
:C(x)1}). (3.8)

In what follows, we specialize to the case of normal incidence: Go = 0, so that k = 0. In this case Eq. (3.8)
becomes

K) = cos29tITO(O)l2jdxifdxexp[_iq(xl

x(exp{i'c(q){((xi) - :((x}), (3.9)

where

IT0(O)12
C

. (3.10)
16ecos2(/D) +4(e+ 1)2sin2(/D)

In order to pass to the geometrical optics limit of phase perturbation theory, we have to work in a parameter range
where the coefficients of C(xi) and ((xi) in the exponent in the integrand in Eq. (3.9) are the same and real. This
requires that the inequality

IA(0)1 IA(0)1ImLi << Re ---j (3.11)

be satisfied. For specified values of the wavelength of the incident light A, the mean thickness of the film D, and the
dielectric constant of the film c, this inequality defines the range of q values, or equivalently of t values, for which
the geometrical optics limit of the phase perturbation theory is valid.

An indication of the conditions under which the inequality (3. 1 1) is satisfied can be obtained by considering the
limit where q = 0. In this limit the inequality (3.11) can be expressed as

sin (2/D) << [-- + cos2 (/D)] . (3.12)

For the value of e we assume in the present work (e =2.69), the right hand side of this inequality is greater than
unity for all values of /(/c)D. Consequently, this inequality will be satisfied whenever 2/(w/c)D is close to nir,
where n is a postive integer. In what follows we will assume that this is the case.

The expression (3.9) for (ôT/ôO) now takes the form

K) = cos2 Gt ITo(0)12L dx, dx exp[-iq(xi - x)J(exp[ia(((xi) -C(x))D, (3.13)

where

c—lw IA(0)1a = —-7=——a(q)Re L] (3.14)
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We now make the change of variable xc = x1 + u, and obtain

() = icos29tITo(O)I2f dxif du exp[iqu](exp[ia(((xi) —((x1 +u))]). (3.15)oUt L1 2irc —00 —
To obtain the geometrical optics limit of this expression, we expand the difference ((x1) —C(xi + n) in powers of ti,
and retain only the term linear in u. Thus, we have that in this limit

'OT' 1 p00

( ) = — cos2 9tITo(O)12 J dx1J dexp[iqJ(exp[—iau('(x1)]). (3.16)\ae/ L12rrc —:2

This expression is the starting point for the determination of a surface profile function ((xi) that yields a specified
form for (3T/D9).

4. The S urface Profile Function ((xi)
We assume that the surface profile function ((x1) is written in the form2

C(xi) =c1s(xi —2b), (4.1)

where the {ct} are independent, positive, random deviates, b is a characteristic length, and the function s(xi) is
defined by

0 xi<—(m+1)b
—(771 + 1)bh — hx1 —(rn + 1)b < x1 < —nib

s(x1) = —bh —nib < x1 < mb (4.2)
—(ni+ 1)bh+hxi nib < xi < (rn+ 1)b
0 (ni+1)b<xi,

where rn is a positive integer. Due to the positivity of the coefficient ci, its probability density function (pdf)
fey) = (6(7 — c1)) is nonzero only for y > 0.

It has been shown2 ) that for the random surfaces defined by Eqs. (4. 1) and (4.2),

i: dx1 J du exp[iqJ(exp[-iau('(x)]) = [i() + i (i)] (4.3)

On combining Eqs. (3.16) and (4.3) we find that the mean differential transmission coefficient is given in terms of
the pdf of Ct by

K) = cos2 etITo(0)I2 [i (-) +1 (--k)]. (4.4)

We now make the change of variable (q/ah) = , so that

h———— sin6 1 45—
a

—
E — 1 (e — sin2 °) (w/c)Re[A(0)/V((w/c) sin9)]

We need to invert this expression to obtain sin Ot and cos Ot as functions of y. This can be done analytically if we
replace (w/c)Re[A(0)/V(sinOt)] by its value for Ct = 0, which is valid for small angles of transmission. In this limit
we have that

WR A(0) — 2ecos2('D) + (e+ 1)sin2('D)
c V(0)

—

4ecos2(\/D) + (e + 1)2 sin2(VJD)
f. (4.6)
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It then follows from Eq. (4.5) that

. €(e — 1)2f22h2 1
SlflOt =

(e— 1)2f272h2]
(4.7a)

— (e — 1)3f22h2cosot =
e+(e—1)2f272h2

. (4.7b)

On inverting Eq. (4.4) with the aid of these results we find that

1(7) + f(-) = 2fh1 [e±(e_i)2f22h2] K) • (4.8)

Thus, if we wish to design a surface for which (ôT/89) has the form

() = Ae(em _ 16t1),

= AG(5fl28m sin0t), (4.9b)

where A is a constant and 0(x) is the Heaviside unit step function, we can use the fact that the expression for sin O
given by Eq. (4.7a) is a monotonically increasing function of y, for the value of e we assume here, to rewrite Eq.
(4.9) as

() = AO(m - II) (4.10)

where 7rn i5 related to G by

1 j? sinGm7m7"7 . 2 ! (4.11)J It E — I [e — sin 0172] 2

If we then substitute Eq. (4.10) into Eq. (4.8) and assume that y is positive, we obtain finally that the pdf of CL 15

given by

1(7) = 2fh1 AG(7m _ )O(). (4.12)

The constant A is then obtained from the normalization condition

2 hE1)A I [e+(e—1)2f2h272] — 1 413f
To(0)12 Jo c—(e—1)3f2h22

. ( .

From this form for f(y) a long sequence of {ct} can be generated, e.g. by the rejection method(6 ), and the surface
profile function ((x1) generated by the use of Eqs. (4.1) and (4.2).

5. Numerical Results and Discussions
The pdf fey) given by Eq. (4.12), was obtained by taking the geometrical limit of phase perturbation theory, a
single-scattering theory. it is therefore not known a priori if random surfaces generated from this pdf will give rise
to a band-limited, uniform mean differential transmission coefficient (DTC) for the light transmitted through the
dielectric film when multiple-scattering effects are taken into account.

In order to see how well the geometrical optics limit is able to represent the full solution to the transmission
problem we have to resort to numerical simulations(7). Such simulations are based on the use of Green's second
integral identity in the plane(8) to derive a set of four coupled inhomogeneous integral equations for the field and its
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Figure 2. A particular example of the film geometry that we are considering in the present study. The parameters
used to generate the rough upper surface were b = 15,um, h = 0.01, and ni = 1. The mean thickness of the film was
D 15.24A, where A is a the wavelength of the incident light.

normal derivative on both surfaces, from which the transmitted field can be calculated. This procedure is described
in detail in Ref. 9. With this approach the transmitted field can be calculated in a rigorous way.

The rough illuminated upper surface of the dielectric film was generated according to Eq. (4.1) with the indepen-
dent random deviates {ct} drawn from the pdf f-y), Eq. (4.12), by the use of the rejection method (6)• Notice that
the profiles generated according to Eq. (4.1) do not give rise to surfaces of vanishing mean. Hence, for each realization
of the surface used in the numerical calculation, its mean was adjusted to zero in order to have a well-defined mean
film-thickness, independent of the parameters used to generate the surface profile function ((x1) . A plot of one
particular realization of the rough profile generated in this way is presented as the upper surface in Fig. 2, where we
also have included the planar lower surface.

The free standing dielectric film that we considered in this work was characterized by a dielectric constant e =2.69

and a mean thickness D/A n/(4/) (see Eq. (3.12)) where n is a positive integer. S-polarized light of wavelength
) = 612.7nm was incident normally on the rough surface of the film, which was characterized by the parameters
b = l5pm, h = 0.01, rn = 1, and 9 = 200. Furthermore, in order to guarantee that the film for these parameters is
continuous, z.e. without holes, the value n = 100 was used to define its mean thickness, which in the present case
was D 15.24A 9.34pm. For these parameters Irn [A(O)/V(q)] /Re [A(O)/V(q)] ' iO.

In Fig. 3 we present rigorous numerical simulation results (solid curve) for the mean differential transmission
coefficient, (3T/ô9), for the scattering system defined above. The dashed curve in the same figure represents the
results obtained in the geometrical optics limit of phase perturbation theory as defined by Eq. (4.4) , where f(y)
is given by Eq. (4. 12) . The length of the surface used in these simulations was L1 = 100A and the sampling rate
used was Lx1 = O.1A, corresponding to N = 1000 sampling points along the surface. The number of surface
realizations used to obtain these results was N = 2000. As can be seen from the numerical simulation results (solid
curve) of Fig. 3, the transmitted light is nicely restricted to a well-defined angular interval, viz it is band-limited.
Furthermore, the mean DTC is quite uniform within the band-limited region. However, we observe from Fig. 3 a
minor disagreement between the rigorous result (solid curve) and the result of the geometrical optics limit of the
phase perturbation theory (dashed line) for the angular interval over which the transmitted light is expected to be
band-limited: the geometrical optics limit seems to overestimate this region. This disagreement, we believe, is a sign
of the inadequacy of the geometrical optics limit of phase perturbation theory to fully describe the transmitted light.
It worth noting that even if the observed O 's from the rigorous and geometrical optics limit are somewhat different,
the total transmitted power is the same (within the noise level) for the two cases.

Furthermore, if we want the transmitted light to be limited to we have found (results not shown) that we can
use a slightly larger "input" 8 to obtain this. A good choice for the new "input" 9, is empirically found to be given
by Om — i9m, where = 99eo/9rig is the ratio between the upper limit in the geometrical optics calculation (G°)
and that of the rigorous simulations (G).
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Figure 3. The mean differential transmission coefficient for s-polarized light of wavelength ) = 612.7nm transmitted
through a free standing dielectric film of mean thickness D 15.24A 934pm and characterized by a dielectric
constant c = 2.69. The solid curve is the result of rigorous Monte Carlo simulations, while the dashed curve is the
result obtained in the geometrical optics limit of phase perturbation theory, Eq. (4.4) . The length of the surface
used in the simulations was L1 = 100A, and the number of surface realization over which (ôT/ôO) was averaged was
N = 2000. The number of sampling point used was N = 1000 (Lxxi = O.1A). The illuminated rough surface was
characterized by the parameters b = l5pm, h = 0.01, in = 1, and 8m 20°.

It should be mentioned that in order to obtain the numerical results shown in Fig. 3 we had to shift the lower
limit of fey) slightly away from zero in order to avoid a small specular peak that is due to the tails of the two
distributions in Eq. (4.4) caused by diffraction effects. This procedure has been described in detail in Ref. 2, and the
arguments for doing so will not be repeated here.

It has earlier been demonstrated3 ) that for surfaces that are designed to act as band-limited uniform diffusers
in reflection this property is not very sensitive to the wavelength of the incident light over a substantial range. To
see how robust the property of band-limited uniform diffusers in transmission is when the wavelength is changed, in
Fig. 4 we present rigorous simulation results for the case where the wavelength is A = 582mm and the remaining
parameters have the values given above. We observe from this figure (solid curve) that the transmitted light is nicely
band-limited and is also rather uniform, except for the weak peak in the specular direction. This peak is due to the
overlapping of the tails of the two distributions in Eq. (4.4) caused by diffraction effects. In calculating the result
presented in Fig. 4 we used the same cut-off used to obtain the results shown in Fig. 3. By using another value for
the lower cut-off of f(y) we can make this peak vanish. This is shown in Fig. 5, where the angular distribution of the
transmitted light is uniform except for some noise, and is band-limited. That the results shown in Figs. 4 and 5 are
so close to being band-limited and uniform we in fact find rather surprising since the assumption (3. 1 1) ,on which the
derivation of the pdf f(-y) relies, is not even close to being satisfied in this case (Irn {A(0)/V(q)] /Re [A(0)/V(q)J '- 1).
This shows that the prediction of the geometrical optics limit of phase perturbation theory is rather robust.

6. Conclusions
In this paper we have developed the geometrical optics limit of phase perturbation theory for the transmission of
light through a free-standing dielectric film whose illuminated surface is a one-dimensional random surface while
its back surface is planar. The result for the mean differential transmission coefficient in the case where the film
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Figure 5. The same as Fig. 4, but with a slightly different value for the lower cut-off for the pdf.

is illuminated by s-polarized light whose plane of incidence is normal to the generators of the random surface is
used to design that surface in such a fashion that the film acts as a band-limited uniform diffuser. That is, the
angular dependence of the intensity of the transmitted light is constant within a specified region of the angle of
transmission, and vanishes outside that region. The results of rigorous numerical simulations of the transmission of
s-polarized light through a film whose random surface has been defined in this way show that it indeed acts as a
band-limited uniform diffuser, although there are some small quantitative differences between the rigorous result for
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Figure 4. The same as Fig. 3, but now the wavelength of the incident light is A = 582mm.
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the mean differential transmission coefficient and the result obtained by the use of the geometrical optics limit of
phase perturbation theory. These are believed to be a reflection of the limitations of the geometrical optics limit of
phase perturbation theory in describing the transmission of light through the film system studied here. Moreover,
in contrast with the results obtained in reflection, where the mean differential reflection coefficient proved to be
independent of the wavelength of the incident light, the mean differential transmission coefficient depends on the
wavelength, primarily due to the finite mean thickness of the dielectric film. Nevertheless, the results obtained here
demonstrate that the approach used in our earlier papers to generate one-dimensional random surfaces that act as
band-limited uniform diffusers in reflection can be applied to solve the same problem in transmission as well.
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